Notre Dame Journal of Formal Logic
Volume XIII, Number 4, October 1972
NDJFAM

FOR SO MANY INDIVIDUALS

KIT FINE

In [2], Tarski introduces the numerical quantifiers. These are expressions ($\exists_{k} x$) which mean "there are at least k individuals x such that'", where k is any nonnegative integer. Thus ($\exists_{1} x$) is the ordinary quantifier ($\exists x$). The numerical quantifiers may be defined in terms of the ordinary quantifier and identity as follows:

$$
\begin{gathered}
\left(\exists_{0} x\right) A \text { for } A \rightarrow A \\
\left(\exists_{k+1} x\right) A \text { for }\left(\exists_{k} x\right)(\exists y)(-(x=y) \& A \& A(y / x))
\end{gathered}
$$

where y is the first variable which does not occur in A and $A(t / x)$ is the result of substituting a term t for all free occurrences of x in A.

Because of their definability, the numerical quantifiers have rarely been considered on their own account. However, in this paper I consider a predicate logic without identity which is enriched with numerical quantifiers as primitive. In section 1, I present the syntax and semantics for this logic; and in sections 2 and 3, I establish its completeness.

1. The Logic L.

Syntax
Formulas These are constructed in the usual way from relation letters of given degree, (individual) constants, (individual) variables, the truthfunctional connectives v and - , the quantifier (x) and the quantifiers $\left(\exists_{k} x\right), k=2,3, \ldots$ We use $\left(\exists_{0} x\right) A$ to abbreviate $A \rightarrow A$ and $\left(\exists_{1} x\right) A$ to abbreviate $(\exists x) A$, i.e. $-(x)-A$. Also we suppose that there are a denumerable number of individual variables and at least one predicate letter.
Axioms (where $k=2,3 \ldots$, and $l=1,2, \ldots$)

1. All tautologous formulas
2. $(x) A \rightarrow A(t / x), t$ free for x in A
3. $(x)(A \rightarrow B) \rightarrow((x) A \rightarrow(x) B)$
4. $A \rightarrow(x) A, x$ not free in A
5. $\left(\exists_{k} x\right) A \rightarrow\left(\exists_{l} x\right) A, l<k$
6. $\left(\exists_{k} x\right) A \leftrightarrow \vee_{i=0}^{k}\left(\exists_{i} x\right)(A \& B) \&\left(\exists_{k-i} x\right)(A \&-B)$
7. $(x)(A \rightarrow B) \rightarrow\left(\left(\exists_{k} x\right) A \rightarrow\left(\exists_{k} x\right) B\right)$
8. $\left(\exists_{k} x\right) A \rightarrow\left(\exists_{k} y\right) A(y / x), y$ free for x in A and not free in A

Rules of Inference

Modus Ponens. From $A, A \rightarrow B$ infer B.
Generalisation. From A infer $(x) A$.

Semantics

A structure $\mathfrak{\mathfrak { A }}$ for a language \mathfrak{a} consists of:
(a) a non-empty domain $|\boldsymbol{U}|$
(b) an assignment of an n-adic relation $\mathfrak{A}(R)$ on $|\mathfrak{A}|$ to each n-th place relation letter in $\mathbf{\Sigma}$
(c) an assignment of an element $\mathfrak{A}(a)$ of $|\mathfrak{A}|$ to each constant in \mathfrak{R}.

We may extend our language $\boldsymbol{\Omega}$ to a language $\boldsymbol{\Omega}^{\prime}$ by adding each element of $|\boldsymbol{A}|$ as a constant to $\boldsymbol{\&}$. We may then define the truth of a sentence (i.e. closed formula) of $\mathbf{\Omega}^{\prime}$ in the usual manner. The clause for $\left(\exists_{k} x\right), k=2$, 3 , . . ., is:
$\left(\exists_{k} x\right) A$ is true in \mathfrak{U} if and only if card $\{a \epsilon|\mathfrak{A}|: A(a / x)\} \geq k$.
Validity and modelhood etc. can then be defined in the usual manner.
2 A Preliminary Result. We say that a theory T has the Henkin property if whenever $(\exists x) A(x) \epsilon T$ then $A(a) \in T$ for some constant a. (I use $A(x)$ for a formula with at most one free variable $x . A(t)$ is then $A(x)(t / x))$.

Fix on a consistent and complete theory T with the Henkin property and in a language \&. As in the standard Henkin completeness proof for the predicate calculus it suffices to construct a canonical model \mathfrak{H} for T. However, we cannot simply let the domain of \mathfrak{U} be the set C of constants in 2. Firstly because several constants may correspond to one individual; and secondly because one constant may correspond to several individuals.

We say constants a and b are indistinguishable, $a \sim b$, if for each formula $A(x), A(a) \leftrightarrow A(b) \epsilon T$. Clearly, \sim is an equivalence relation. So to overcome the first difficulty we can let the elements of $\mathfrak{\ell}$ be equivalence classes [a] with respect to \sim.

We say $A(x)$ defines $[a]$ if $[a]$ is the one and only member of C / \sim such that $A(a) \in T$. Now [a] corresponds to several individuals if some formula $A(x)$ defines $[a]$ and $\left(\exists_{k} x\right) A(x) \epsilon T$ for some $k>1$. So put
$d([a])=\left\{\begin{array}{l}1 \text { if no } A(x) \text { defines }[a] \\ k \text { if } k \text { is the greatest number such that for some } A(x), \\ \omega \text { otherwise. } \quad A(x) \text { defines }[a] \text { and }-\left(\exists_{k+1} x\right) A(x) \epsilon T\end{array}\right.$
Then $d([a])$ gives the number of individuals corresponding to $[a]$. Then we may overcome the second difficulty by letting d ([a]) individuals correspond to each [a]. Put

$$
N(A(x))=\sum d([a]), \text { for }[a] \text { such that } A(a) \in T .
$$

Then $N(A(x))$ gives the number of individuals "satisfying" $A(x)$. Therefore we require the following lemma:

Lemma. For $k>0, N(A(x)) \geq k$ if and only if $\left(\exists_{k} x\right) A(x) \in T$.
Proof. By induction on k.
$k=1 \Rightarrow$. Suppose $N(A(x)) \geq 1$. Then clearly for some $a, A(a) \in T$. But then by axiom-scheme $2,(\exists x) A(x) \in T$.
\Leftarrow. Suppose $(\exists x) A(x) \in T$. Since T has the Henkin property, $A(a) \in T$ for some constant a. So $N(A(x)) \geq 1 . k>1 \Rightarrow$. Suppose $N(A(x)) \geq k$ i.e. $\sum d([a])$, for $[a]$ such that $A(a) \in T \geq k$. We distinguish two cases:

Case $1 A(x)$ defines some $[a]$. So $d([a]) \geq k$. But then by the definition of d some $B(y)$ defines $[a]$ and $(\exists k y) B(y) \in T$. For by axiom-scheme 5 , if $-\left(\exists_{k} y\right) B(y) \in T$ then $-\left(\exists_{l} y\right) B(y) \in T$ for all $l>k$. Let z be a variable which does not occur in $A(x)$ or $B(y)$. Then $(z)(B(z) \rightarrow A(z)) \epsilon T$. For otherwise $(\exists z)(B(z) \&-A(z)) \epsilon T$ and so by the Henkin property $B(b) \&-A(b) \epsilon T$ for some b. But then not $a \sim b$ and $B(y)$ does not define [a], contrary to assumption. Now ($\exists_{k} z$) $B(z) \epsilon T$ by axiom-scheme 8. So $\left(\exists_{k} z\right) A(z) \epsilon T$ by axiom-scheme 7. Hence $\left(\exists_{k} x\right) A(x) \in T$, by axiom-scheme 8 again.

Case $2 A(x)$ defines no $[a]$. Then there are distinct $[a]$ and $[b]$ such that $A(a), A(b) \in T$. So there is a formula $B(y)$ such that $B(a) \epsilon T$ and $B(b) \notin T$. Let $X=\{[a]: A(a) \in T\}, Y=\{[a]: A(a) \& B(a) \epsilon T\}$ and $Z=\{[a]: A(a) \&-B(a) \epsilon$ $T\}$. Then it is easy to see that $\{Y, Z\}$ is a partition of X. So card $X=$ card $Y+$ card Z and card Y, card $Z>0$. Hence there are integers $l, m>0$ such that $l, m<k, l+m=k, N(A(z) \& B(z)) \geq l$ and $N(A(z) \&-B(z)) \geq m$, where z is a variable not in $A(x)$ or $B(y)$.

By the induction hypothesis, $\left(\exists_{l} z\right)(A(z) \& B(z)),\left(\exists_{m} z\right)(A(z) \&-B(z)) \epsilon$ T. So by axiom-scheme 7, $\left(\exists_{k} z\right) A(z) \in T$. Therefore $\left(\exists_{k} x\right) A(x) \in T$ by axiom-scheme 8.
\Leftarrow. Suppose $\left(\exists_{k} x\right) A(x) \in T$. Again we distinguish two cases:
Case $1 A(x)$ defines some $[a]$. Then by axiom-scheme 5 , it should be clear that $d([a]) \geq k$. So $N(A(x)) \geq k$.

Case $2 A(x)$ defines no $[a] . A(a) \in T$ for some a by the Henkin property. So there are distinct $[a]$ and $[b]$ such that $A(a), A(b) \in T$. So $A(a) \& B(a)$, $A(b) \&-B(b) \epsilon T$ for some formula $B(y)$. By axiom-scheme 8, $\left(\exists_{k} z\right) A(z) \epsilon T$, z not in $A(x)$ or $B(y)$, and by axiom-scheme 6 , ($\left.\exists_{i} z\right)(A(z) \& B(z)),\left(\exists_{k-i} z\right)$ $(A(z) \&-B(z)) \dot{\epsilon} T$ for some $i=0,1, \ldots, k$. Now $\left(\exists_{1} z\right)(A(z) \& B(z)),\left(\exists_{1} z\right)$ $(A(z) \&-B(z)) \in T$. So by axiom-scheme 2 we may suppose $0<i<k$. But then by the induction hypothesis $N(A(z) \& B(z)) \geq i$ and $N(A(z) \&-B(z)) \geq$ $k-i$. Hence $N(A(x))=N(A(z)) \geq k$.

3 Completeness. Let $D=\{\langle[a], l\rangle: 0 \leq l<d([a])\}$. Extend the language \boldsymbol{R} of T to $\boldsymbol{\Omega}^{\prime}$ by adding the elements of D as constants. The canonical structure $\mathfrak{\sharp}$ for $\mathfrak{\Omega}^{\prime}$ is then defined as follows:
(a) $|\boldsymbol{A}|=D$
(b) $\mathfrak{U}(R)=\left\{\left\langle\left\langle\left[a_{1}\right], l\right\rangle, \ldots,\left\langle\left[a_{n}\right], l\right\rangle\right\rangle \in D^{n}: R a_{1} \ldots a_{n} \epsilon T\right\}$ for each relation R in \mathfrak{x} of degree n
(c) $\mathfrak{\ell}(e)=e$ for $e \in D$ and $\mathfrak{A}(a)=\langle[a], 0\rangle$ for a in \mathfrak{E}.

If A is a sentence of \mathfrak{E}^{\prime}, let A^{\prime} be any sentence of $\mathfrak{\Sigma}$ obtained by replacing each constant $\langle[a], l\rangle$ in A by a.

Theorem (On the Canonical Model). For any sentence A of $\mathbf{\Sigma}^{\prime}, A$ is true in \mathfrak{U} if and only if $A^{\prime} \in T$.

Proof. By induction on the length of A. We consider only the main case when $A=\left(\exists_{k} x\right) A(x)$. Now $\left(\exists_{k} x\right) A(x)$ is true in \mathfrak{M}
iff card $\{\langle[a], l\rangle \in D: A(\langle[a], l\rangle$) is true in $\mathfrak{\mu}\} \geq k$ (by semantical clause for $\left.\left(\exists_{k} x\right)\right)$
iff card $\left\{\langle[a], l\rangle \in D: A^{\prime}(a) \epsilon T\right\} \geq k$ (by the induction hypothesis)
iff $N\left(A^{\prime}(x)\right) \geq k$ (by the definitions of d and D)
iff $\left(\exists_{k} x\right) A^{\prime}(x) \in T$ (by the lemma).
Since our logic contains the ordinary predicate logic we know that every consistent set of sentences is contained in a consistent and complete theory with the Henkin property. So by standard methods we can obtain such results as the following.
Corollary 1 (Completeness) A is a theorem of $\mathfrak{\mathfrak { z }}$ if and only if A is valid. Corollary 2 Every consistent set of sentences has a model.

Finally, it is worth noting the connection between this and [1]. The uniform monadic predicate logic with numerical quantifiers is isomorphic, syntactically and semantically, to $\mathrm{S} 5 \mathrm{n} . P(x)$ corresponds to p and $\left(\exists_{k} x\right)$ to M_{k}. On the other hand, the predicate logics with several variables introduce something new, as do the modal logics weaker than S5n.

REFERENCES

[1] Fine, K., "In so many possible worlds," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 516-520.
[2] Tarski, A., Introduction to Logic, Oxford University Press (1946).

St. John's College
Oxford University
Oxford, England

