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ANALOGOUS CHARACTERIZATIONS OF
FINITE AND ISOLATED SETS

J. BARBACK, W. D. JACKSON, and M. PARNES

Introduction. Let E = {0, 1 ,2, . . .}. Members of E will be called numbers.
A set shall mean a subset of E, and a function shall mean a function
from a set into E. For a function /, then δ/ will denote its domain.
Post [2] introduced simple sets; i.e., recursively enumberable (r.e.) sets
with infinite isolated complements. Dekker [1] observed that if Dedekind's
definition of finiteness (a is finite iff a is not equivalent to any proper
subset of a) is made effective in a natural way, then exactly the class of
isolated sets is obtained. The purpose of this note is to characterize when
a set a is finite, by giving a condition C(α) that involves partial orderings of
a, and proving

Theorem A. a is finite ΦΦC(a).

In addition, we effectivize, in the spirit of Dekker, the condition C(α)
obtaining Ce(a), and prove

Theorem B. a is isolated <€ΦCe(a).

1. C(a) and Ce(a). We write Pa if a is a set and P is a binary relation that
partially orders a. If Pa and Qβ, then we write Pa ^ Qβ if there is a function
/such that

m (a c δ/, / i s one-to-one on a,f(a) c β,
{ } land (v*, y e a) [xPy=>f(x) Qf(y)l

The condition C(α) is defined by,

(VP, Q) [Pa * Qa and Qa^Pa^Pa~ Qal

where Pa ~ Qameans that there is a function/ such that,

(9, (oi c δ/, / is one-to-one on α, /(α) = α
U (and (Vx, y e a) [xPyΦΦf(x) Qf(y)].

If Pa and Qβ then we write Pa ^* Qβ if there is a partial recursive function /
that satisfies (1). The condition Ce(α) is defined by
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(VP, Q) [Pa ^ * Qa and Qa ^ * Pa=^Pa^ Qa],

where Pa ^ Qa means that there is a partial recursive function / that
satisfies (2).

2. Proof of Theorem B. (=>). Assume that a is an isolated set and that P
and Q are partial orders that satisfy Pa ^ * Qa and Qα ^ * Pα. We wish to
prove that Pa ^ Qa. Let / and g be partial recursive functions that effect
the conditions Pa —* Qa and Qα ^ * Pα respectively. Since Pα —* Qa, we know
that for any numbers x, ye a,

(3) xPy=Φf(x)Qf(y).

Now, suppose there are numbers x, yea such that/(#) Q/(;y). We want to
show that in this case that xPy. Because xe a and gf(a) c α, it follows that
{x,gf(x)9 (gf)2(x), . . •} will be an r.e. subset of a. Since a is an isolated
set, this particular set must be finite. Hence there will exist numbers
rc and fe Ξ> 1, such that (gf)n(x) = (gf)n*k (x); and since the function 5/will be
one-to-one on α, it follows that also,

(4) x = {gf)\x).

In a similar manner one can show that there will be a number m ^ 1, such
that

(5) 3> = te/rω.
Combining (4) and (5) we obtain,

(6) x = fef )"*(*) and y = fe/)'B*(y).

Because /(x) Qf(y) and g effects Qα s* pα, it follows that gf(x) Pgf(y), and
therefore also,

(7) (gf)m\χ)P(gf)mk{y).

In view of (6) and (7), we obtain that xPy. We can conclude from these
remarks that for all numbers x, y e a,

(8) f{x)Qf(y)=ΦxPy.

Combining (3) and (8) we obtain,

(V#, y e a) [xPy^^f(x) Qf(y)].

Let/* be the restriction of the function / to the r.e. set

η = {xe δf I (3m) [m ^ 1 and (gf)m(x) = x]}.

In view of our remarks above it is easy to verify that a c 77, and that/* will
be a partial recursive function which satisfies the conditions in (2), i.e., f*
will effect Pa - Qa

(<=). (Indirect) Assume that a is not an isolated set. Let β be an
infinite recursive subset of a and let β = {δ0, bu b2, . . .}, with bn denoting a
one-to-one recursive function. We desire to construct two partial orders
Pα and Qa such that
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(9) Pa ^* Qa and Qa ^* Pa and yet not Pa ^ Qa.

Consider the following array of all the elements of 0, here identified by
points.

b2 b7 b12

t>0 ϊ>3 \ ^5 b8 \ &10 &13 "

bι δ 4 b6 b9 blx b14

We define on β a binary relation ^ in the following way, bm ^ bn if either
bm = bn or else m < n and there is a route via consecutive arrows in the
preceding array that leads from the point bn to the point bm. It is clear that
the relation ^ partially orders the set β. Also we observe that different
points appearing in the list bl9 b4, bG, . . . , will not be ^ related. We
define a binary relation P on a in the following manner,

xPyW {* = \ o r

\x, ye β and x ^ y.
We now define by a s i m i l a r approach a binary relat ion Q on a. Consider
the following a r r a y of all the elements of β, h e r e also identified by points.

b3 b8

bo bι b4 T b6 b9 t frii

b2 b5 bΊ b10 bίZ

We define on β the relation ^2 in the following way, bm ^ bn if either bm = δw

or else m <. n and there is a route via consecutive arrows in the preceding
array that leads from the point bn to the point bm. It is easy to see that the
relation ^ partially orders the set β. Also we note that different points
appearing in the list b2, b5, b7, . . . , will not be ^2 related. We define a
binary relation Q on a in the following manner,

π -co ίx = y, or
xQy iff { ' ,

KX, yeβ a n d x ^2 y.

It is easy to see that each of the relations P and Q partially orders a, i.e.,
Pa and Qa. Moreover, it is clear that the relation Pa ^ Qa will not be true,
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for even the relation Pa ~ Qa is not true. On the other hand, we now verify
that each of the relations Pa ^ * Qa and Qa ^ * Pa does hold.

For: Pa - * Qa- Consider the two given arrays of the elements of β;
call the first <J1 and the second c42. Alter the array <A2 by removing the
point b0 together with the arrow that appears to its right, and call this new
array cA{. Then the first two rows of both <AX and c4'2 together with their
respective arrows are the same except for the indexing of the points. Let
the mapping g: β —» β be characterized by the property that it maps the first
two rows of cAγ onto the first two rows of cA[ in the natural way, i.e.,

g(bo) = 61, g(b2) = b3,g(b3) = δ 4 , g(b5) = &β, . . . ,

and define

g(f>i) = b0, g(b4) = 62, g(b6) = b5, g(b9) = δ 7 , . . . .

Then it is easy to verify that g maps β onto β in a one-to-one manner, and
in addition,

(10) x <! y =>£•(#) ^gΐy) .

Let g* : E -+ E denote the function that is equal to g on numbers in β, and is
the identity map on the complement of β. In view of the recursive property
of the function bny the definition of the mapping g, and the fact that β is a
recursive set it follows that the function g* is recursive. We also note that
g*(a) = a. It is an easy consequence of (10) and the definitions of the partial
orderings Pa and Qa and of the function^*, that

(VAT, yea) \xPy=ϊg*(x)Qg*(y)l

We can conclude from this property that Pa —* Qa

For: Qa - * Pa Our proof here is similar to the one given above. Let
c4λ and cA2 denote the first and second given arrays respectively. Alter the
array <AX by removing the two points bΌ and b2 together with their arrows
adjacent to them and call this new array cA[. Then the first two rows of
both cA2 and cA[ together with their respective arrows are the same except
for the indexing of the points. Let the mapping h:β-+ β be characterized
by the property that it maps the first two rows of σ42 onto the first two
rows of o4γ in the natural way, i.e.,

h(b0) = b3, h{bλ) = b5, h(b4) = 68, h(b3) = bΊ, h(b6) = 6 1 0, . . . ,

and define

h(b2) = b0, h(b5) = b2, h(b7) = bu h(b10) = δ 4 , . . . .

Then it is easy to verify that h maps β onto β in a one-to-one manner, and
also, such that x ^2 y==>h(x) ^ h(y). Let h* :E —> E denote the function that
is equal to h on numbers in β, and is the identity map on the complement of
β. As in the previous case with the function g*, one can readily verify that
here also the function ft* is recursive and will satisfy

(V*, yea) [xQy=Φh*(x) Ph*(y)].

This will establish the property Qa ^ * Pa and complete the proof.
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3. Proof of Theorem A. Because the proof of Theorem A is essentially
identical to the proof of Theorem B, we will confine ourselves to a few
remarks.

(=Φ). The essential step in the proof of Theorem B (==>) was based on
the fact that any r.e. subset of an isolated set is finite. Here, the essential
step is based on the fact that any subset of a finite set is finite.

(#=). In the proof of Theorem B (<̂ =), the main step was, if a is not an
isolated set, then there will be a one-to-one recursive function bn that
ranges over an infinite recursive subset of a. Here, the main step is, if a is
not a finite set, then there is a one-to-one function bn that will range over a.

If the modifications indicated by these remarks are made to the proof
of Theorem B, then a proof of Theorem A can be readily obtained.

4. Concluding remarks. We wish to mention that there are finiteness
conditions whose effective versions (as in the spirit of the paper) have the
property that the class of sets which satisfy them properly contains the
finite sets and is properly contained in the collection of isolated sets. An
example of a finiteness condition of this kind is given by

D(ά) = (V/) [a c δf and f(a) = a ==> /is one-to-one on a],

whose effective version, De(α), we would define as,

(V/) [/ partial recursive and a c δf and f(a) = a ==> / is one-to-one on a].

In addition, it can be shown that there is a finiteness condition H(α) whose
effective version He(α) is satisfied by every set.
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