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SEMI-INTUITIONISTIC SET THEORY

LAWRENCE J. POZSGAY

The Zermelo-Fraenkel axioms represent set theory as a kind of
‘‘constructive’’ enterprise involving the production of new sets from old
ones by means of carefully delineated processes. This could suggest that
for the purposes of formalization the usual classical first-order logic may
not be altogether appropriate (see [3]). In any case it seems worthwhile to
investigate what happens when this quasi-constructive attitude is reflected
in the very logic of the system, and what follows is an attempt to formulate
a definite formal system along such lines and to compare it with the usual
formulation of Zermelo-Fraenkel set theory as a classical first-order
theory.*

Our system will be ‘‘constructive’’ in the sense that the law of the
excluded middle will be postulated only for predicates with quantifiers
restricted to certain terms representing sets. To get a sufficiency of such
terms, we shall introduce various term-operators corresponding to the
constructions postulated in the axioms. If ‘‘ZF.”’ represents the usual
classical formulation of Zermelo-Fraenkel set theory (including the axioms
of regularity and choice), we may represent our system by ‘“‘ZF *’’, where
the ““s’’ represents the ‘‘semi-intuitionistic’’ logic and the asterisk
represents the addition of the term-operators. In section 1 we shall
present the system ZFg*, in 2 discuss the development of set theory within
ZFs*, and in 3 add some further remarks.

1. The System ZFs*. The symbols are the constants 0, w, the variables

X0y X1, Xa, « - . , the operators U, 7, C, the predicates =, €, the connectives
—, &, v, =, ¥, 3, and the punctuational symbols (, ), [, ], {, }, :, and ,. In the
metalanguage we shall represent variables by lower-case letters a, b,
c,..., terms by early capitals A, B, C,..., and formulas by later

*Most of this work was done in connection with a National Science Foundation
program of Research Participation for College Teachers conducted at the University
of Oklahoma in the summer of 1968.
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capitals P, @, R,. ... We define terms and formulas simultaneously as
follows: The primitive terms are the constants and variables. If A, B are
terms and P is a formula and x, y are distinct variables, then {4, B}, U (4),
£(A), ¢(A), and {y: (3xe A) [P]} are terms and (A) = (B) and (A)e (B) are
formulas. If P, @ are formulas and x is a variable, then -[P], [P] & [@],
(PIviQ], [P]1— (@], (vx) [P], (3x) [P] are formulas.

In the metalanguage we shall freely depart from the formal symbolism
for greater clarity in representing formal expressions. Some particular
terminology and notation follows:

(a) The notions of “‘free’” and ‘‘bound’® variables are the same as
usual, but with the added stipulation that the term-operator {y: (3xeA) [P]}
should act as a kind of double quantifier on the formula P, with each of the
dummy variables x and y having P, but not A, within its scope.

(b) If Pis a formula and x is a variable not occurring free in the term
A, we shall write “‘(VxeA) [P]” for (Vx) [xe A — P]and ‘““(3xeA) [P]’ for
(3x) [x€A & P]. In each case we shall say that the quantifier in question is
‘‘restricted to the term A.”’ If all the quantifiers of a formula @ other than
those occurring within terms are so restricted to terms, @ will be called a
‘“‘restricted-quantifier formula (rqf).”’ Thus the formulas x€ 0, (3x) [xew &
x=y]and 0e{y: (3ze P(x)) [(3w) [zew & vy = z][} are all rqf’s.

(c) The notation ““P(A4, B, C, .. .)”” will be used in accordance with
[2, pp. 78-79], although the stipulation that A, B, C, ... be ‘‘free for”’
x, y, %, ... respectively in P(x,y,z,...) is of course subject to the

modification induced by (a).

(d) Write “(E!x) [P(x)]” for (3x) [P(x) & (Vy) [P(y) — y = x]], “(Elx =
A) [Px)] for [P(A) & (Vy) [P(y) — y=A]], “[P <> Q] for [P —~ Q] & [Q—
Pl, ““A C B” for (Vxe A) [xe B] (where x is any variable not occurring free
in A or B), “{A}’ for {4, A}, “AU B’ for U ({4, B}, and A"’ for A U {A}.

(e) Unless the context indicates otherwise, distinct lower-case letters
occurring in an expression for a formula or term should be taken to
represent definite and distinct variables. Thus for example axiom [E1]
cited below is to be taken as a single formula, not a schema.

In addition to the axioms and rules of the infuitionistic predicate
calculus [2, pp. 82, 101}, we postulate the following logical axioms for ZFg*:

[EM] P v-P for every vqf P.

[E1] x=y - ixez<>yez].

[E2] x=y — c(0) = ().

[E3] [a=0b & (Vx) (vy) [P<>Q]] — {y: Bxea)P} = {y: (3xed)Q} for all
formulas P, Q, all distinct variables a, b, x, .

[E4] {y: Bxea) P(x, )} ={z: (Bwe a) P(w, 2)} for all formulas P, all vari-
ables a, x,y, 2, w such that: (1) x is distinct from y; z from w; and a from
x,y, 2, w; (2)w, z are free for x, y vespectively in Plx, y); and (3) w, 2z do
not occur free in Plx, y) unless w is x ov z is y ov both.

The following are the set-theoretical axioms of ZF*:

[Ex] x=y<s[xCy&yCx]
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[Em] x¢o.

[Pr] ze{x, y}<>[z2=xvz=1].

[Sm] ye U (x) <> (3zex) [ye z].

[m] (E'lx=w)[xCw&0ex & (Vyex) [y'ex]].

[Pw] yeP(x)<>y C x.

[Ch] x+0—- c(x)ex.

[Rg] x#0— (3yex) (Vzex) [2€y].

[Rp] (VxeA) (E'y) P— [ye{y: (3xe A)P} <> (3xe A)P] for all formulas P,
all distinct variables x, y and all terms A not containing x free.

Note that apart from the addition of the term-operators and the
consequent strengthening of the axiom of choice, these nonlogical axioms
are essentially the same as the usual ones (as formulated, for example, in
[1, pp. 51-53]). In [3] we speculated that the quasi-constructive attitude
which we wish to formalize might warrant a change in the formulation of
the replacement axiom, but we have since realized that this is unnecessary;
the change in the logic is sufficient. A weakened form of the axiom of
separation does result, however, as can be seen at the end of the following
list of basic metatheorems.

Theorem (Substitutivity of Equality [SE]). If y is a variable free for x in
A(x) and P(x), we have:

Fx=y — [A(X) = A(Y) & [P(x) <> P(y)]].

Theorem (Equivalence [EQ]). Let Rg and Ag be the rvesult of replacing
certain specified occurvences of P in R and A by Q. If P and Q do not
contain free variables belonging to quantifiers (in the extended sense of @)
above) of R or A having the specified occurvences of P within their scope,
then +[P <> Q] — [A = Ag & [R <> Rg]].

Theorem (Change of Bound Variables [BV]). Let P and Q be congruent with
respect to theiv bound variables in the sense of [2, p. 153] and likewise for
A and B. Then +[A =B & [P <> Q]].

Theorem (Separation). If A is any teym not containing x free and P is any

formula, write “{xe A:[P]P’ for the term U{y: 3xeA) (P& y={xPv(-P&
y=0)]}. Then: [Sp] - (VxeA) [Pv-P]— [xe{xeA: [P]}<>[xeA & P]].

2. The Development of Set Theory within ZFs*. Rather than list a multitude
of formal theorems, we shall compare the results derivable in ZF¢* with
those listed for ZF. in [4]. We begin with a theorem of a general nature
which makes use of Gddel’s method [2, pp. 492-7] for interpreting classical
number theory within the intuitionistic version. We cannot quite get an
interpretation of classical ZF within intuitionistic ZF, but the method does
provide a handy means of comparing the relative strength of ZFs* to that of
its classical counterpart. We begin with some definitions and lemmas.

Let ““ZF.*’’ be obtained from ZF.* by extending [EM] to include
[Pv-P] for all formulas P. For any term A and any formula P we define
corresponding expressions A° and P° as follows. If A is a constant or

variable, let A°be A. If A is U(B), {B, C}, P(B), C(B), or {y: (3xe B) [ P]},
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let A° be U (B9, {B°, C°%, 2(B°), ¢(B°), and {y: (3x e B°) [P°]} respectively.
If P is (A) = (B) or (A) e (B), let P°be (A°) = (B°) and (A°) e (B°) respectively.
If Pis Q— R,Q&R, QvR, -Q,VxQ, or 3xQ, define P° as indicated in
[2, p. 494]. Note that in the following results the symbol + continues to
refer to provability in ZF¢*.

Lemma 1. For any formula P, +--(-P° — P°.

Proof. By induction on the complexity of P° using the same argument as
given for Lemma 43a in [2, p. 495] except that for the basis we note that
every formula of the form (A) = (B) or (4) e (B) is an rqf, so that [EM] (and
*49c in [2, p. 119]) applies.

Lemma 2. If P is an vqf and A is a term containing only vqf’s as sub-
formulas, then [A = A° & [P <>P°]].

Proof. By induction on the conplexity of terms and formulas simulta-
ously, using [SE], [E3], [EQ], [EM] and basic facts about intuitionistic logic
like *86 in [2, p. 162].

Theorem (Godel’s Method applied to ZFg* [GM]). Let @ be a formula
provable in ZF.* by a proof which uses [Rp] only with vespect to vqf’s P
and terms A containing only vqf’s such that the hypothesis (Vxe A) (E'y) P is
provable in ZFs* and actually occuvs as a sepavate formula in the proof of
Q. Then FQ° by a proof which uses the same nonlogical axioms as the

broof of Q.

Corollary. (By Lemma 2): If @ is as described in the theorem and is an
rqf, then @ by a proof which uses the same nonlogical axioms as its proof
in ZF.* (and possibly also [Ex], [Pr], [Sm], and [Pw] by way of an applica-
tion of [SE)).

Proof of the Theovem. By induction on the length of proofs in ZF * which
satisfy the stated conditions, using basically the same arguments as given
for Theorem 60(c) of [2, pp. 495-6], but using Lemma 2 in the consideration
of [Pr], [Sm], [Rg] and [Rp], using our Lemma 1 instead of Kleene’s Lemma
43a, and noting that his Theorem 59(b) also holds for ZF*.

What [GM] provides is a means of transforming proofs in ZF.* into
proofs in ZF *. As a result, by rephrasing definitions so that they involve
only rqf’s and adjusting proofs here and there so that they conform to the
conditions described in [GM] one can verify that all the main set-theovetical
theovems listed in [4] as provable in ZF.* (using the axiom of choice) are
actually provable in ZF* as well. Here of course we are neglecting
Suppes’ distinction between individuals and sets and are overlooking the
fact that most of his terms are, strictly speaking, not a part of his initial
symbolism. But with this reinterpretation all of his main formal theorems
become theorems of ZF¢* also, with terms in his theorems representing
specific terms of ZF*. If we take ‘“M.N”’ to mean ‘‘Theorem N of Chapter
M in [4],”’ the only exceptions are the following:
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(1) We have no counterpart of Suppes’ notation {x: ¢(x)}and so cannot
obtain 2.47-54.

(2) In4.32,4.86, 5.22, 7.1, 7.4-5 and 7.61-62 we need to stipulate that
the formula @(x) be an rqf.

The details of this development, though complicated, are relatively
straightforward and shall not be presented here.!

To round off this section we note that the following axiom schema,
which seems intuitively acceptable from the point of view which we are
trying to formalize, would enable us to remove the restriction on @(x)
mentioned in (2) as regards the theorems 4.32, 4.86, 5.22, 7.1 and 7.4 (but
not 7.5 or 7.61-2):

Axiom of set induction: (Vx) [(Vyex) [P(»)] — P(x)]— (vx) [P(%)], for all
formulas P.

This schema, which is obtainable in ZF. using the notion of rank, would
also make [Rg] superfluous.

3. Further Remarks. One may think of ZF.* as an extension of ZF.
obtained by adding the term-operators and axioms of ZF *. The question
arises whether it is a ‘‘conservative’’ extension in the sense that every
formula of ZF. which is provable in ZF * is also provable in ZF.. It turns
out that this is actually the case, although we shall not present a proof
here. If we omit the choice operator, standard methods such as those
discussed in [4, pp. 14-19] give the desired result. And we have been
informed that certain unpublished results involving more sophisticated
methods provide ways of handling even the choice operator.

It follows from this in particular that the consistency of ZF. is
equivalent to that of ZF.*, which in turn implies that of ZF *. An in-
teresting question is whether in some sense the latter implication goes the
other way. We have hopes of formulating some sort of constructive or
quasi-constructive proof in that direction but so far have not been
successful.
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1. A more ample treatment in mimeographed form may be obtained from the author.





