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THE COMPLETENESS OF SI AND SOME RELATED SYSTEMS

M. J. CRESSWELL

The system SI, although dating back to Lewis and Langford in 1932 [12]

has proved singularly recalcitrant to the algebraic and semantic techniques

applied so successfully to other modal logics. In this paper* we define

Sl-algebras (section 2), use them to prove the finite model property for SI

(section 3), introduce a semantical definition of Sl-validity (section 4) and

make a few remarks about various other systems which seem amenable to

the SI treatment (section 5).

1 The system SI. We use the basis for SI given by Lemmon in [9, p. 178].

Lemmon takes ~, =), and L as primitive with the definitions1:

Def ^ : (a^β) =df L(a 3 β)

Def =: (a= β)=df((a^β) . (β*a))

Def M: Ma =df~L~a

The axioms are:

1.1 Lp^p

1.2 (L(p 3 q) . L(q => r)) D L(p D r)

and the rules:

1.3 If a is a PC-tautology or an axiom then La is a theorem.

1.4 Uniform substitution for propositional variables.

1.5 Modus Ponens: ha, ha 3 β —* hβ

1.6 Substitution of proved strict equivalents.

In view of 1.3 and 1.6 the choice of primitives is immaterial. The

following strict equivalences will frequently be tacitly assumed in what

follows:

*This paper was written in 1969 before the publication of A. Shukla's work on
SI in [15]. A comparison between his algebras and ours is instructive. I am
indebted to Mr. K. E. Pledger of the Victoria University of Wellington Mathematics
Department for drawing my attention to some errors in an .-earlier draft of this
paper.
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1.7 Lp = ~M~p
1.8 (P^q) = ~M(p .~q)

2 Sl-algebras.2 A quadruple (K x - *) is an Sl-algebra iff {K x -} is a
Boolean algebra, K is closed with respect to * and for any a, beK the
following conditions hold:

2.1 a c *α
2.2 *α + *δ + *0 = *(α + 5) + *0
2.3 *0 c *α + *b provided ax b = 0
2.4 !f/*α c *o then a = 0

In the presence of *0 = 0 (2.5) or even *0 c *α (2.6) 2.3 becomes redundant
and 2.2 reduces to

2.7 *α + * δ = * ( α + δ)

Conversely given 2.7, 2.6 can be proved.

Lemma 1. In any Sl-algebra if a c b then *a c (*δ + *0)

This is an easy consequence of 2.2

Theorem 1. Conditions 2.2 and 2.3 in an Sl-algebra can be replaced by the
following condition {for any a,b, ce K):

2.8 *(α x c) c *(a x -6) + *(6 x c)

We first prove 2.8 from 2.2 and 2.3

(1) ( α x c ) c ( α x -6) + (b x c)

(1) lemma 1 (2) *(a x c) c *((Λ x -δ) + (& x c)) + *0
(2)2.2 (3) * ( α X c ) c * ( α x - 6 ) + * ( δ X c ) + * 0
2.3 (4) *0 c *(αx -6) + *(6x c)
(3)(4) (5) *(α x c) c * ( α x -b) + *(6 x c)

Given 2.8 we may prove 2.2 and 2.3

2.5 0/b,b/c (1) *(αxδ)c*α + *θ
(1) a + δ/α, a/b (2) *α c *(α + δ) + *0
similarly (3) *δ c *( α + δ) + *0
(2)(3) (4) *α + *δ + *0 c * ( α + δ) + *0
2.8 a + b/c, a+b/a (5) *(α + δ) c *((α + δ) x -δ) + *(δ x (a + b))
(5) (6) * ( α + δ) c * ( f l χ -δ) + * δ

2.8 -b/c, 0/b (7) *(α x -δ) c *α + *0
(6)(7) (8) *(α + δ) c * α + *δ + *0
(4)(8) (9) *α +" *δ + *0 = *(α + δ) + *0

Thus 2.2. From 2.8 with -a/c we have *0 c *(αx -δ) + *(δ x -a) and if
ax δ = 0 then ax -b = a and bx -a= b and so *0 c *# + *δ. QED

Where V is a function from wff of SI to the members of K in an
Sl-algebra (Kx - *) we shall say that V is a modal assignment iff:
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2.9 V(~α) = -V(α)
2.10 V(a => β) = -V(α) + V(β)
2.11 V(Ma) = *V(α)

We define a subset D of # a s follows:

2.12 D= {aeK\ -*0 c α}

Clearly Z> is a filter (additive ideal) in K. We shall say that a wff a of SI is
Sl-valid iff for every modal assignment V to the propositional variables of
a in every Sl-algebra V(a)eD. The following are all easy consequences of
2.9-2.12.

2.13 V(α) c v(β) (# V(α => β) = 1
2.14 V(Lα)eD zβf V(α) = 1 (2.4 is required here)
2.15 V(a *β)eΏiff V(a) c v(β)
2.16 V(α = β)eDz//V(Q!) = V(β)

Theorem 2. If a is a theorem of SI then a is Sl-valid.

The proof is by induction on the proof of en in SI. We first show that if
a is an axiom then V(a) = 1.

1.1 By 2.1 we have a c *α for every aeK, whence - * - αC α whence
V(Z./>) c V(/>) and so by 2.13 V(Lp =>/?) = 1.

1.2 From 2.8 we have for anyα, b, ceK

-(*(α x -b) + *(6 x c)) c -*(α x c)

whence with -c/c

(-*-(-α + δ) x -*-(-6 + c)) c -*-(-α + c)

i.e. where V is any modal assignment (by 2.9-2.11)

V(L(p 3 )̂ . L(q 3 r)) c v(L(/> 3 r))

whence by 2.13

V((L(/> ^ ^) . L(^ 3 r)) D L(p => r)) = 1
1.3 If a is an axiom then V(α) = 1 and if a is a PC-tautology then V(α) = 1
for any modal assignment, whence by 2.14 V(La)e D. 1.4 is clearly satisfied
and since D is a filter so is 1.5.
1.6 If V(α = β)eD then by 2.16 V(α) = V(β).

So every SI theorem is Sl-valid QED.

Theorem 3. There is a characteristic Sl-algebra.

The characteristic algebra is of course the Lindenbaum algebra taken
with respect to the relation of strict equivalence, i.e. \a\ is the class of all
β such that tgi a = β.

2.17 K is the set of all such equivalence classes.
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2.18 - | α | is I —ce|

2.19 \a\x\β\is \a . j8|

2.20 *\a\is \Ma\

By 1.6 this equivalence relation will generate a congruence. From 1.3
and 1.6 (Kx -) is a Boolean algebra.

Lemma 2. (i) // ^ La then \a\ = 1
(ii) //fe L(a^β)then \a\ c |/3|
(iii) 7/-*0C lαUfcew ^ α

Proof: (i) »si La ^> (a = (p^ p)) whence if ^ Lα then ^Ί α = (/> D />) whence
I α | = \ p ^ p \ = 1.

(ii) If isi L(α 3 j3) then by (i) \a => β| = 1 whence | α | c |/3|.
(iii) If -*0 c \a\ then *0 + | α | = 1, i.e., ki (M(/> . ~ρ)va) =(p D />)

whence h^ M(£ . ~p)va, but »si ~M(£ . ~/>) whence ^ α.
We show that (Kx - *) is an Sl-algebra. From 1.1 and 1.3 we may

prove L(p =) Mp) whence by lemma 2(ii) \a\ c JΛfαl for any wff α, i.e. α c *α
and 2.1 holds. 2.2 and 2.3 follow from 2.8 which follows by lemma 2(ii)
from L(M(p . r) 3 (M(p . ~q) v M(q . r )) (a consequence of 1.2 and 1.3). For
2.4 suppose * | α | c *0, then -*0 c \~Ma\. Whence by lemma 2(iii) fe ~Λfα
whence since ^ ~Mp ^ (P = (q . ~q)) ^ a = (q . ~q), i.e. | a\ = \q . ~q\ = 0.
Thus (Kx - *) is an Sl-algebra.

Further (ifx - *) is characteristic for SI. For suppose sίa. Then
where βlf . . . , βn are the n wf parts of a let V(jSt ) = |β, | (1 ^ f < w ) . From
2.18-2.20 it can be seen that 2.9-2.11 are satisfied and that V is a modal
assignment and V(a) = \a\. Now if ~*0 c |<ar/ then by lemma 2(iii) ^ α?
contrary to hypothesis. So -*0 ^ \a\ i.e. V(a)fίD, i.e. α is falsified by
(Kx - *) QED.

3 The finite model property.

Theorem 4. If {Kx - *) is an Sl-algebra and {al9 _̂ . .., an] is a finite subset
of K then there is an Sl-algebra (Kr x' - ' *') with Kf ^ 22n+1 such that:

(i) If a, beK* then -a, ax be K* and -'a = -α and ax* b = ax b.
(ii) If a, *aeK* then *'a = *a
(iii) al9 . . . , aneK'

The proof is an adaptation of McKinsey's proof in [13] for S2 but is a
little more complicated because of the extra complexity of Sl-algebras.
(Kf xr - f) is the Boolean subalgebra of (K x -) generated by {al7. . ., an, *θ}.
Clearly K' will have no more than 22M+1 elements. Further (i) and (iii) will
be satisfied. We shall show how to define *' so as to satisfy (ii) and so that
the result will be an Sl-algebra.

We shall say for aeK*, ceK that c covers a iff a c c and (*c + *0)eK1.
Now there may be an infinite number of c's which cover a but since Kr is
finite there will be a finite number of them say cl9 . . . , cm such that for
each c covering a there is some a (1 ^ i ^ m) such that (*c + *0) =
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(*c, + *0). We shall say that cl9 . . . , cm form a finite covering of α. Now
either *aeK' or not. If *aeK' then let *'a = *α. If *a^K' then let *'α =
(*cx + *0) x . . . x (*cw + *0). Clearly *'aeK' and further (ii) is satisfied.
We have to show that (Kr x f - ' *') is an Sl-algebra. Since (Kr x f -') is a
Boolean algebra and Kr is closed with respect to * ' we need only show that
2.1-2.4 are satisfied. We note first that * f0 = *0 (since *0eK').

2.1 First suppose *aeKr. Then *'α = (*cx + *0) x . . . x (*cm + *0) where
c1? . . . , cm form a finite covering of α. Now for each c/ ( l ^ i - w ) a C c j ,
whence by 2.1 (for *) a c *c; whence α c *cf + *0 whence α c * '#. And if
* ' α e # ' *'α = *α.

2.2 (*'α + *'δ + *0) = (*'(α + 6) + *0)

First consider the case where none of *α, *&, *(α + b) e Kr. Let cl9 . . . , cm

form a finite covering of a, dl7 . . . , ri^ of 5 and ex, . . . , e^ of α + b. We
have to show that,

3.1 ((*d + *0) x . . . x (*cOT + *0)) + ((*dλ + *0) x . . . x (*dk + *0)) + *0
= ((*βχ + *0) x . . . x (*eh + *0)) + *0

Now each βi (1 ^ i ^h) covers α + b, whence it covers both a and b and so
(*e, + *0) = (*cy + *0) for some C / (1 ^ j ^ m) and (*ef + *0) = (*dp+ *0) for
some dp(\^p ^ k). Whence (*ct + *0) x . . . x (*cm + *0) c (*β l + *0) x . . .
x (*eA + *0) and (*df1 + *0) x . . . x (*Λ + *0) c (*β l + *0) x . . . x (*eh + *0)
whence *'α + *'b + *0 c * f(α + δ) + *0. Now consider any a,dj (1 ^i ^ m,
1 - j ~ k). Since cf covers a and dy covers b then (α + 6) c (a + ίZy) and
*c/ + *0, *^ ; + *0e Kr thus by 2.2 *(c/ + φ) + *0e Kr and so (c, + dj) covers
{a + δ) and so for some ep (1 — p — h) *(c, + ί?; ) + *0 = *£p + *0 whence by
2.2 *c; + *c?; + *0 = *ep + *0 whence (*ex + *0) x . . . x (*^ + *0) c (*C l +
*dλ + *0) x . . . x (*cw + *dk + *0) whence [i(ίeι + *0) x . . . x (*^Λ + *0) c
((*Ci + *0) x . . . x (*cw + *0)) + ((*^i + *0) x . . . x (*dk + *0)) i.e. * f(α + b) +
*0 c *'α + * f δ + *0.

We now consider the cases where some of *a, *δ, *(a + b) e K1. Each of
these has one of the following forms:

3.2 *α + ((*£*! + *0) x . . . x (*dA + *0)) + *0
= ((*eχ + *0) x . . . x (*^Λ + *0)) + *0

3.3 ((*d + *0) x . . . x (*cw + *0)) + *b + *0
= ((*βi + *0) x . . . x (*eh + *0)) + *0

3.4 ((*ci + *0) x . . . x (*cw + *0)) + ( ( * ^ + *0) x . . . x (*dk+ *0))
= * ( α + 6) + *0

3.5 *α + ((*<* + *0) x . . . x (*rf + *0)) + *0 = * ( Λ + 6) + *0
3.6 ( ( * d + *0) x . . . x (*cw + *0)) + *δ + *0 = *(α + δ) + *0
3.7 *α + *δ + *0 = ((*β! + *0) x . . . x (*eh + *0)) + *0
3.8 *α + *6 + *0 = *(α + b) + *0

3.3 and 3.6 reduce to 3.2 and 3.5 respectively and 3.8 is trivial. For 3.2
we have as above (3.1) that each *β; + *0 is one of the (*dj + *0)'s. Since
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each βi covers a + b then a c e,-, whence by lemma l % c *ef- + *o for each
βi, so *'α + *'& c *'(« + b) + *0. For the converse a + b c a + dj for each
dj, whence since *(α + dy) + *0 (= *α + *dy + *0) € K% a + dy covers a + b and
hence *(α + dj) + *0 is one of the (*e + *0)'s. For 3.4 α + δ covers both α
and b and hence *(α + b) + *0 is among the (*c + *0)'s and among the
(*rf + *0)'s. Thus ((*Ci + *0) x . . . x (*cm + *0)) + ((*rf! + *0) x . . . x (*dk +
*0)) + *0 c *(α + b) + *0. For the converse each a covers a and each dj
covers b so (a + b) c (c, + d ; ) whence *(<z + 6) c *(c, + dy) + *0, whence by
2.2 *(« + b) c *c t + *6?y + *0 for each c, , <iy. For 3.5 α + δ covers δ and so
*(α + b) + *0 is among the (*d + *0)'s and by 2.2 *α c *( α + b) + *0 whence
*α + ((*^! + *0) x . . . x (*4 + *0)) c *( α + b) + *0. For the converse each
a +dj covers a +b and so *(α + b) c (*α + *rf; + *0) for each rfy. For 3.7
since *aeK', *beK' then by 2.2 *(α + b) + *0eK' and α + b covers itself and
so is one of the e's. Thus by 2.2 {{^eι + *0) x . . . x (*eh + *0)) c *α + *δ +
*0. Further since each e, covers a + 6 it therefore covers both α and 6 and
hence *α + *δ c * ^ + *0 for every eit Whence % + *δ + * 0 c ((*ex + *0) x
. . . x (*eh + *0)). Thus (Kr x f - ' *') satisfies 2.2.

2.3 First suppose that one of *α, *bftKr say *α, then * f α = ((*c2 + *0) x . . .
x (*cw + *0)). In this case clearly *0 c * ' α . And if * δ / # f then *0 c *'ft. If
*α, *beKr then * f ^ = *α and * f6 = *δ. In all three cases 2.3 is satisfied.

2.4 Suppose *'a c *0. Then *α c *0 for if not then *afK* and *'« = ((*cx +
*0) x . . . x (*cw + *0)). Now since each c, covers α, *α c (*c, + *0), whence
since * fα c *0 then *α c *05 whence α = 0.

Given a formula of SI if a is not a theorem then for some modal assign-
ment V in the characteristic SI-algebra V(a)fίD. Where βl9 . . . , βn are
the n wf parts of a then in the finite subalgebra generated by {V (j3χ), . . . ,
V(ft,), *0}, V(o:)/i)f (since V(α) and -*0eKr and -*0 φ- V(α)). I.e. α will be
falsified in a finite Sl-algebra. SI thus has the finite model property and is
decidable. QED

4 Semantic models. We shall use the terminology of [6, pp. 274-276] where
S2-models are described.3 We can consider an S2-model to be an ordered
quadruple (WN R V) where W = fyux, . . . , W{, . . .} is a set of 'worlds',
N Q W, RQN x W being reflexive over N and for each WJ ̂ N having some
Wi eN such that WΪRWJ and V is an assignment from wff and members of W
to {l, 0} satisfying the usual truth-functional conditions and for M having,
where a is any wff and wt e W;

4.1 If w{eN then V(Mα, w'i) = 1 iff for some wje W such that W{RWJ V(α,
WJ) = 1.
4.2 If Wi ffN then V(Mα, wj) = 1.

In the case of SI 4.2 requires modification. What we have now to say
is that although in any model V(Ma, wj) may be 1 for w{ ^N it can under
some circumstances be 0, i.e. it may, though it need not, be 0 provided:

4.3 If V(α, wi) = 1 then V(Mα, wϊ) = 1.
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4.4 If for any wff a and β V((a . β), Wj) = 0 for every WJ e W then either
V(Ma, Wi) = 1 or V(Mβ, w{) = 1.

It is a consequence of 4.4 that if V(α, Wj) = 0 for every Wjβ W then
V(Ma, w^ = 1 for every w{ / N . But except in the case of such formulae 4.4
does not give a definite rule for evaluating Ma in non-normal worlds. We
have to build into the model a way of doing this.

An Sl-model is a quintuple (WN R Rf V) where W,N and R are as in
an S2-model and Rf c W x P W (i.e. a relation between members of W and
subsets of W) such that for no disjoint subsets A and B of W do we have
WiRΆ and WiR'B for any W{eW, and V is an assignment satisfying the
truth-functional conditions and:

4.5 If w{eN then V(Ma, w, ) = 1 iff V(α, w, ) = 1 for some w; e.W such that
WiRwj.

4.6 If «;,- fίN then V(Mα, wf ) = 0 provided that V(α, w, ) = 0 and ^ Rf {^e W:

V(α, w) = 1}. Otherwise V(Mα, wf ) = 1.

An S2-model will be an Sl-model in which Rf is empty. Since we have
already defined Sl-validity in terms of Sl-algebras we shall say that a wff
a is SI-model-valid iff V(α, Wi) = 1 for every wι eN in every Sl-model. We
shall show that Sl-validity and SI-model-validity coincide.

This semantics is somewhat messy and it would be nice to have a
simpler condition to replace 4.6 but it is extremely difficult to see how
otherwise the almost completely random nature of the assignment to Ma in
non-normal worlds can be precisely expressed.4 It should be clear that an
Sl-model satisfies 4.3 and 4.4.

At this point it might be worth exhibiting the 4-valued matrix (Group V
[12, p. 494]) used by Lewis to distinguish S2 from SI as an Sl-model which
is not an S2 model. W = {wί9 wz}, R = {(wl9 w^, (wλ, w^}, Rr = {(w2, {«Ί})}.

V(p, wx) = 1, V(/>, w2) = V(q, wx) = V(q, wa) = ° w i t h t n i s assignment we
have w2R' {we W: V(p, w) = l}but not w2R' {we W: V((p . q),w) = l}. Whence
since w2^N and V(/>, w2) = 0 then V(M(p . q), w2) = 1 and V(Mp, w2) = 0, thus
V{(M(p . q) => Mp), w2) = 0 and V(L(M(p . q) D Mp), wγ) = 0 whence since
wλeN, L(M(p . q) ^ Mp) is not SI-model-valid. This model becomes the
4-valued matrix if we let;

V(a) = 1 iff V(αf, wx) = 1, V(α, w2) = 1
V(a) = 2 iff v(α, wx) = 1, V(α, ^ 2) = 0
Via) = 3 iff Via, wλ) = 0, Via, w2) = 1
V(αf) = 4 iff V(α, ^i) = 0, Via, w2) = 0

The table for M then works out as

p Mp_

1 1

2 2
3 1
4 3
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We wish now to show that each Sl-model corresponds to an Sl-algebra
together with a modal assignment and vice versa. It is convenient to
distinguish the assignment from the rest of the model and call the rest a
'model structure' (m.s.) as Lemmon, following Kripke, does. This part of
the paper will follow Lemmon in spirit (particularly [10, pp. 56-62]) and
therefore only as much detail will be given as necessary.

Given an SI m.s. (W N R R') we construct an algebra on it as follows:
K = P W and the Boolean operations x and - are the set theoretic operations
of intersection and complementation with respect to W. For A c W we
define *A as:

4.7 {we W: {weN. (lx)(xeA. wRx))w{w^N. (w e A v ~ wRΆ))}

i.e.

4.8 we *Aiff (weN. (lx)(xeA. wRx)) or (wfίN. (weAv~wRΆ))

Theorem 5. The algebra on an SI model structure is an Sl-algebra.

This is in effect Lemmon's theorem 15 [10, p. 57]. Sl-algebras are of
course more complicated than modal algebras but it is a simple matter to
check that using 4.7 2.1-2.4 can all be verified. And it should be clear that
any assignment V within a m.s. gives rise to a modal assignment Vf in the
corresponding algebra such that Vf(α) = {we W: V(α, w) = 1} (and conversly).
A wff a will therefore be Sl-model valid iff for every modal assignment V'
in the algebra on any SI m.s. V'(α) e D (for N = -*0 by 4.8)

Given a finite Sl-algebra (Kx - *) we may define an SI m.s. (WN R Rf)
such that the algebra on (wN R R') is isomorphic to (Kx - *). The general
pattern follows [10, p. 57f] (Lemmon's theorem 17) with appropriate
modifications. Since (Kx -) is a finite Boolean algebra then it is iso-
morphic to the algebra of all subsets of a given finite set W. Let 0 be the
isomorphism. Each atom of the original algebra will thus be φ{wi\ for some
wie W. We define (WN R Rf> as follows:

4.9 WieNiίί φ{wi}<£ *0
4.10 WίRwj iff φ{wi\ £ *0 and φ{wι} c *φ{wj]

4.11 WiRΆ (AQW) iff φ{wt] c *0 and φ{wt] <fi *0A

(Note that since φ{w{] is an atom if φ{wi\ φ- a then φ{w;] x a = 0)

Theorem 6. ( WN R Rf) is an Sl-model structure.
R is reflexive over N since by 2.1 φ{wj} c *φ{wj}. For WifίN then φ{wi] c *0
and so by 4.10 ~%Rw7 . Further for any WjfίN there is some Wi e N such
that WiRwj for if not then where A is the set of all w{ such that WiRwj then
φA (= *0{^7 })c *o. Whence by 2.4 φ{wj} = 0 contrary to the fact that φ{wj]
is an atom. For R' suppose that for some wieW, WiRΆ and WiR'B and
Ax B = 0. Then since φ is a Boolean isomorphism φA x φB = 0 and so by
2.3 *0 c *0A x *φB. Whence by 4.11 0{wf } c *0A x *φB. But φ{w{} is an
atom and so either φ{wt]^ *0A or φ{wi\^ *φB, i.e. (by 4.11) either ~WiRfA
or ~WiR'B. QED
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Theorem 7. The algebra on (WN R Rf) is isomorphic to (Kx - *).

We already have the isomorphism for the Boolean operations. All that is
necessary is to extend it to *. I.e. where *' is defined in (W N R Rf)
according to 4.7 we must show:

4.12 0*Ά = *0A

Suppose we *'A, i.e. φ{w] c 0*Ά. Then by 4.8-4.11

4.13 (φ{w} φ. *0. (lx)(x is an atom, x c 0A. 0{^} c *#)) V

(0{wf c *0. (φ{w} c 0A v 0{w;} c *0A)

Now either 0{<w} c *0 or not. If the former then the first disjunct of 4.13 is
false and so the second must be true. If φ{w} c φA then by 2.1 φ{w] c *0A
and so if the second disjunct is true then φ{w\ c *0A. Suppose that 0{&/f £ *0
then the first disjunct of 4.13 must be true. Whence by lemma 1 (3ΛΓ)(*Λ;C
(*0A + *0) . φ{w] c *ΛΓ), whence 0{w} c *0A + *0. But φ{w} φ- *0 and φ{w] is
an atom so φ{w] c *0A. Thus *0A contains as atoms every 0{w} such that
we *fA, i.e. since 0 is a Boolean isomorphism 0*fA c *0A.

For the converse suppose φ{w\ c *0A. Then either 0{^} c *0 or not. If
so then since φ{w} c *0A the second disjunct of 4.13 will be true. If φ{w] f.
*0 then if there is no atom x of 0A such that φ{w} c *χ then where xu . . . , xn

are all the atoms of φA, φ{w\, being an atom, f. (*xλ + . . . + *Xn), i.e. since

φ{w}x *0 = 0, φ{w}£ (*ΛΓi + . . . % ) + *0 = *(AΓχ + . . . + # J + *0 = *0A + *0.
Whence since φ{w}x *0 = 0 0{^} jί *0A contrary to hypothesis. So if
φ{w}e *0A then 4.13 holds. I.e. by 4.7 *0A c 0'A. Whence 4.12 holds.

With theorems 3 and 4 these last three theorems (4, 5 and 6) show that
SI-model-valid formulae are precisely the theorems of SI.

5 Other systems. We can if we wish impose the conditions of transitivity
and symmetry on the relation R in an Sl-model. The corresponding condi-
tions for the algebras are;

5.1 *(*α x -*0) c *α + *o
5.2 a c -*-*α + *0

With 2.6 (and using 2.1) 5.1 reduces to *(*α x -*0) = *α which is Lemmon's
condition for a transitive epistemic algebra [11, p. 196] and 5.2 is his
condition for a symmetric algebra. To 5.1 and 5.2 correspond the axioms:

5.4 Lp^> ((p^p)^Lp)
5.5 p D LMp

(1.3 is not to apply to these axioms.)
If we add the strict form of 5.5 to SI we obtain the Brouwerian system

so we may call SI + 5.5 S1(B)5. It is of course strictly weaker than B (the
Brouwerian system). We shall call SI + 5.4, Sl(4) and SI + 5.4 + 5.5, Sl(5).
In the presence of 5.4 5.5 is interchangeable with Mp => LMp. Sl(5) is
contained in Aqvist's S3.5 [1, p. 82], [6, p. 284f]. The following relations
hold between these systems and known systems:
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S 3 . 5 ^ \ ^ ^ ^ Q 9
^ S 2 ( B ) m \—- " S 2

[= S2 + 5.5] Sl(4)

^r\r SI + 5.4]

S l ( 5 ) ^ ^ ^ ^ ^ S l
[= SI + 5.4+ 5.5] ^ ^ " ^ ^

^ ^ S 1 ( B ) - ^ ^
[= SI + 5.5]

Sl(4) is a proper subsystem of Canty's Rl.6 Sl(4), S1(B) and Sl(5) all
have an infinite number of distinct modalities7 and would not appear to be
very interesting. A proof that they all have the finite model property can
be given by adapting Lemmon's proofs [11, pp. 196f, 210] in the way we
have done for SI in theorem 4.

Turning to systems weaker than SI we may obtain algebras and models
for Feys' Sl° by dropping 2.1. The omission of 2.2 and 2.3 gives the system
SI' of [7]. In this system many of the characteristically SI theorems are
provable only as rules of inference. The omission of 2.3 and the replace-
ment of 2.1 by a c % + *0 gives the system obtained by removing the
clumsy 'or axiom' clause from 1.3. If we choose to take D = {1} in an
Sl-algebra we get a system which it would be nice to be able to call El
(after the model of E2, E3 etc.) viz 1.1, 1.2, 1.3, 1.4, 1.5 and

5.6 If a is PC-valid then \-a

5.7 Substitution of proved material equivalents in any theorem.

The system Lemmon calls El is unfortunately a subsystem of his SO.5
[9, p. 183] and therefore does not have 5.7.8 There would also be E-
systems corresponding to Sl(4), S1(B) and Sl(5).

Of the questions remaining open there is one whose solution might be
facilitated by the algebraic and semantic treatment of SI, viz whether 1.2
can be replaced by

5.8 L(p-D q) Ώ (LpZ) Lq)

Lemmon calls this system SO.9 and in 1957 [9, p. 180] had no proof that it
was weaker than SI and I have seen none since. Although as Lemmon
suggests it would be rather good if 1.2 could be replaced by 5.8 my feeling
is that the corresponding algebraic condition viz

5.9 *a - *(αx -6) + *b

is not sufficiently powerful to derive 2.3.
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NOTES

1. We are using the notation of [6], Moreover we give the version of Lemmon's SI
basis found in [6, p. 246f].

2. An introductory account of the relation between Boolean algebra and modal logic
will be found in chapter 17 of [6]. Our terminology comes essentially from
McKinsey's [13]. The fullest account of the algebraic approach to modal logic is
found in Lemmon's two papers [10] and [11],

3. S2-models are due to Kripke [8]. It is possible to define N in terms of R but the
advantage is theoretical only.

4. As far as interpretation of Sl-models goes it is difficult to see anything remotely
sensible coming out even along the lines of [3] though it would be rash to predict.
What can be said is that Lewis' reasons for arriving at SI have only an accidental
connection with its formal structure.

5. [ 14. p. 59]. Sobociήski and Thomas have done a certain amount of work on adding
Brouwerian axioms to sub-systems of SI (for fuller details v. [5, p. 123]). We
make one or two remarks infra about algebraic and semantic characterizations
of subsystems of SI and it may be that dealing with their Brouwerian extensions
is not difficult.

6. Canty's Rl [2, p. 312] is in effect SI +L{pDq) D(L(#D p) Z) L{Lp ~DLq)) though
Canty axiomatizes it with a finite number of schemata and modus ponens as the
only rule of inference. The derivation of 5.4 in Rl is straightforward. As far as
the converse goes it is possible to obtain a transitive Sl-model which rejects
L{pΏq)Ό(L(qΌp)ΌL(Lp^>Lq)).

7. The following Sl-model (WNRR'V) will reject LMnp^LMn^p :W= {wo»wlt

. . . > Wn}> N = {wo}> (wi> WJ) ε R iff i = 1, <w, , A) ε R' iff i & 2 and A = {w0, w1%

. . . , WJ} for some < /-2, V{p,w0) = 1, V(p, W{) = 0 {i > 0). This will show that
the series of modalities LMnp(n = 1,2,...) is infinite. Since R is both sym-
metrical (over N) and transitive this result holds for SI (5) which is therefore
unlike S3.5 in having no reduction to a normal form of specified degree [4] .

8. Lemmon seems to think that El has replacement for tautologous equivalents but

El is a subsystem of SO.5 and it is known [6, p. 388] that SO.5 does not admit

this rule. Lemmon considers it a consequence in SO.5 of 1.2 and 5.11 but of

course this combination is not sufficient to prove e.g. LLp D LL ~~ p.
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