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A NOTE ON THE Q-TOPOLOGY

ROBERT WARREN BUTTON

1 Preliminaries In this note we study Abraham Robinson’s Q-topology
and consider it as a means of constructing counter examples in topology.
We shall be interested almost exclusively with separation and discon-
nectedness conditions in the Q-topology. For instance, we shall show that
the Q-topology for a non-discrete completely regular space is a non-
discrete zero-dimensional space in every enlargement. The reader is
assumed to know what is meant by an enlargement in the sense of Robinson,
what is meant by an ultraproduct enlargement, and to be familiar with the
rudiments of non-standard analysis. A good short introduction is sections
1-6 of [6]. We generalize the Q-topology somewhat by introducing the
notion of a *topological space and the Q-topology for a *topological space.
This will help in dealing with subspaces and will give a slightly simpler
notation.

Definition 1: A *topological space in a non-standard model * is a pair
(X,2), where X is an internal set in *M and ® CP(X) is an internal family
of sets closed under *finite intersections and internal unions, and which
contains @ and X.

If (X,®) is a topological space in a model M, then *(X, ) = (XX, *RQ) is
a (standard) *topological space in any enlargement *M of M. If @ is an
infinite collection of topological spaces in a model M, then *@ contains a
non-standard *topological space for any enlargement *I of M.

Definition 2: For any *topological space (X,®) the topology on X for which
2 is a base is called the Q-topology and is denoted by Z.

Let us consider some of the basic relationships between ¥ and T for
any *topological space (X,¥). Abraham Robinson showed that for any
topological space (X,®) and arbitrary enlargement *(X,%), each internal
subset of *X is *open iff it is Q-open and *closed iff it is Q-closed, and
that for any internal U C *X, the *closure of U coincides with its Q-closure,
the *interior of U coincides with its Q-interior, and so on. The proof of
these facts relies in no way upon the fact that *(X,®) is a standard
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*topological space in an enlargement, and these results hold in general.
Also, if (X,®) is a *topological space and UC X is internal, then the
Q-topology on U for the *subspace topology is the subspace topology on U
generated by the Q-topology on X. An internal function between *topological
spaces is *continuous iff it is Q-continuous, a *homeomorphism iff it is a
Q-homeomorphism, *closed iff it is Q-closed, and *open iff it is Q-open
when the *topological spaces are given their respective Q-topologies.

2 Separation axioms The major relationships between the separation
properties for ¥ and T are laid out in this section. There are still
interesting unsolved problems in this area and we will indicate some.

Theorem 1 A *topological space (X,%) is a *T,-space iff (X,T) is a T,-
space.

Proof: A *topological space (X,®) is a *T,-space iff for each xe X, {x}is
*closed. For each xe¢ X, {x} is internal, so (X,2®) is a *T,-space iff for each
xe X, {x} is Q-closed, or iff (X,2) is a T,-space.

Theorem 2 A *fopological space (X,R) is a *T,-space iff (X,T) is a
T,-space.

Proof: Suppose that (X,) is a *T,-space and let x and vy be two points in
X. Then there exist disjoint *open (and hence Q-open) *neighborhoods of x
and y. Conversely, suppose that (X,®) is a T,-space. Then for any two
points x, ye X there exist disjoint Q-neighborhoods U and V of x and y
respectively containing *open *neighborhoods of x and y respectively.

A topological space (X,2) is said to be completely Hausdorff iff for any
two points x, ye X there exist neighborhoods U of x and V of y such that
unvs=go.

We omit the proofs of the following three theorems.

Theorem 3 A *topological space (X,R) is a *completely Hausdorff space iff
(X,R) is completely Hausdorff.

Theorem 4 If (X,R) is a *semivegular space, then (X,T) is semivegular.

Theorem 5 A *topological space (X,T) is a *Ts-space iff (X,2) is a
Ts-space.

There are examples of ultraproduct enlargements of normal spaces for
which the Q-topology is not normal, but it is not known whether the
normality of (*X,*X) implies the normality of (X,%). We shall show later
that the perfect normality of (X,2) does not imply that (*X, *T) is perfectly
normal. We also remark that a *topological space (X,®) is *discrete iff
(X,®) is discrete. Beyond this point the *separation properties of (X,%)
are interwoven with the disconnectedness properties of (X, %).

3 Disconnectedness properties in geneval enlavgements One of the
greatest differences between T and T for enlargements lies in the area of
disconnectedness properties. In[1] we showed that for any family Wt of open
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sets in any topological space (X ,t),n{*U: Ueu} is Q-open. We also
showed that any topological space is regular iff the monad of each point is
Q-closed and normal iff the monad of each closed set is Q-closed. While
these statements do not apply to non-standard *topological spaces, they
show that (*X,*Z) can be very badly disconnected whether or not (X,2) is
connected. We remind the reader of the following definitions.

A topological space (X,%) is said to be totally separated iff any two
points in X can be separated by a clopen set.

A topological space (X,®) is said to be zero-dimensional iff each point
in X has a neighborhood base of clopen sets.

Theorem 6 Let (X,®) be a *Urysohn space in an enlavgement *M. Then
(X,®) is totally separated.

Proof: Let (X,®) be a *Urysohn space, let x and y be any two points in X,
and let f: X — *R be a *continuous function such that fix) = 1 and f(y) = 0.
The regularity of R implies that u(0) is Q-clopen and f is Q-continuous, so
£ *(1(0)) is Q-clopen and separates x and y.

Note that if (X,®) is a *topological space in an enlargement *3 and if
(X,%) is totally separated, then (X,T) is completely Hausdorff, so (X,2) is
*completely Hausdorff.

Theorem 7 Let (X,%) be a *completely vegular space in any enlargement
*M. Then (X,R) is zevo-dimensional.

Proof: Let (X,®) be *completely regular, let F C X be Q-closed and let
x€X - F. Then there is a *closed G D F such that x¢ G and a *continuous
function f: X — *R such that f(x) = 0 and f(y) = 1 for each ye G. As before,
F Hu(0)) € X - F is a Q-clopen neighborhood of x, so there is a neighbor-
hood base at x composed of Q-clopen sets.

Similarly, we have the following:

Theorem 8 Let (X,2) be a *T,-space in an enlargement *IM. Then any two
disjoint *closed subsets of X can be sepavated by a Q-clopen set.

If (X,2) is a *topological space such that (X,2) is zero-dimensional,
then (X,2) is a Ts-space, so (X,®) is a *T,-space. We shall show in the
next section that every T,-space (X,®) has an enlargement * for which
(*X, *T) is zero-dimensional.

Note that if (X,®) is a *totally separated space, then (X,%) is totally
separated, and if (X,®) is *totally disconnected, then (X,%) is totally
disconnected. Also, if (X,%) is extremally disconnected, then (X,%) is
*extremally disconnected, and if (X,®) is scattered, then (X,2) is
*scattered. The converses of these four statements can fail. We shall see
later how the first three converses can fail and the failure of the latter is
shown by the following example. Unfortunately we do not know of an
example of a scattered Hausdorff space whose Q-topology in some enlarge-
ment is not scattered, but regard this as an interesting question.
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Example 1: Let X = {xe Z*|x > 2} together with the topology ¥ generated
by sets of the form U,={xe X|x divides n}. This topology, called the
divisor topology, is scattered because each non-empty U C X has a least
element %, which is an isolated point in U[7]. Note that for each point p in
X, Up is the smallest neighborhood of p in X. Let (*X, *Q).be any enlarge-
ment of (X,2), let U ={2"|ie Z* is infinite}, and let # = 2’ be an arbitrary
element of U. Then 27"'¢ U,, and (Up-{E) N U= P, so (*X,*T) is not
scattered.

We can now give some counterexamples in topology.

Counterexample 1: If (X,¥) is a Urysohn space which is not regular, then
(*X, *?) in any enlargement is an example of a totally separated space
which is not zero-dimensional. For instance, let X be the set of real

numbers, let A = {%ln =123, .. .}and let *={G|G=U-B, where BC A

and U is an open set in the Euclidean topology on X}. 2 is called the
Smirnov topology on X, and (X,3®) is a connected Urysohn space which is
not regular [7]. Hence, (*X,*%) is *connected and (*X,*ZT) cannot be
scattered or extremally disconnected, so (*X,*ZT) is an example of a
topological space which is totally separated but not zero-dimensional,
extremally disconnected or scattered.

Counterexample 2: Any enlargement of the real numbers with the Euclidean
topology is an example of a totally separated zero-dimensional space which
is not extremally disconnected or scattered when given the Q-topology. We
shall see in the next section that this counterexample can be improved by
considering enlargements with special properties.

4 Disconnectedness properties in special enlargements We shall now
consider the disconnectedness properties of the Q-topology for comprehen-
sive and ®,-saturated enlargements. Briefly, an enlargement *3 of M is
comprehensive iff for each set C ¢ M and internal set D¢ *M, each function
f: C — D has an internal extension g: *C — D. An enlargement *3 of M is
a-saturated, where a is an infinite cardinal, if whenever b is an internal
binary relation in *I concurrent on a subset A of its domain and card(4) <
a, then there exists an entity y in the range of b such that b(x, y) holds for
all xe A. Note that A need not be internal and that b is only required to be
concurrent on A and need not be concurrent on its entire domain. Note also
that by the definition of a concurrent relation, every model is 8,-saturated.
It has been shown that an a-saturated model *M exists for every model M
and infinite cardinal @. We will use Luxemburg’s notation and write
M = M(Z, M), where Z is the set of individuals in M and M is the set of
entities in M. If *IM is an a-saturated model of M = M(Z, M), where a is a
cardinal greater than card (M), then *IM is an enlargement of M in the sense
of Robinson.

A completely regular space (X,%) is said to be strongly zero-
dimensional if any two disjoint zero-sets can be separated by a clopen set.
A completely regular space is said to be a P-space if every prime ideal in



A NOTE ON THE Q-TOPOLOGY 683

the ring of continuous real-valued functions is maximal. A convenient
characterization for our purposes is that a completely regular space is a
P-space iff every Gs-set is open [3]. For this reason we shall assume that
the models which we deal with in this section contain a countably infinite
well-ordered set which we identify with the natural numbers.

Theorem 9 If (X,R) is a *T;-space in a comprehensive enlavgement *M,
then (X,Z) is a P-space.

Proof: We shall show first that each Gs-set in (X, X) is open. Let F C X be
a Gs-set, say F = n G;, where each G; is Q-open, and let p be any point in

F. Also, let § = {U € zlpe U} so that &, the *neighborhood filter at p, is an
internal collection of sets in *. Then we can find a sequence s: N — § of
*open *neighborhoods of p such that G; D s(i) O s(i + 1) for each ieN. Let
s’: *N — § be any internal extension of s in *I.

If for some €N, s'(¢) 2 s'(4 + 1), then let n be the least *natural
number j such that s'(j) 2 s'(j+ 1). If s'(¢) D s'(i + 1) for each i€ *N, then
let #» be an arbitrary infinite *natural number. Now, for each m e *N with
m < n, s'(m) O s'(n), and for each finite ie *N, G; D s(i) = s'(i) D s'(n), or

L G; D s'(n), so s'(n) is a Q-open neighborhood of p contained in F.
1€

Finally, we show that (X,%) is completely regular. If FC X is
Q-closed and xe¢ X - F, then there is a sequence {U,lz'e N} of Q-open
neighborhoods of x such that xe U;; © U; € X - F, and [} U; = [} Ui is Q-

clopen, so is a zero-set separating x and F. ieN ieN

Theorem 10 If (X,®) is a *Ts-space in an R,-saturated enlargement *M,
then (X,) is a P-space.

Proof: We need only show that the intersection of a countably infinite
collection of *open sets is Q-open. Again let F = ﬂu‘, where W is a
countably infinite collection of *open sets, and let pe F. Then for each
finite subset W of U there is an *open *neighborhood V of p contained in
n%. We have in internal relation concurrent on M, so there is an *open
*neighborhood V of p contained in ﬂu.

Similarly, if *I is an a-saturated model and (X,%) is a *topological
space in 9, then for each family W of Q-open subsets of X with cardinal less
than a, nu is Q-open.

A completely regular space X is said to be basically disconnected iff
the closure of every cozero-set is open. Every P-space is basically
disconnected and every basically disconnected space is zero-dimensional.

Corollary 1 Let *M be a comprehensive ov R¥,-saturated model of the
model M, and let (X,T) be a *topological space in *M. Then the following
conditions ave equivalent:

(i) (X,R) is a *T;-space.
(ii) (X,T) is completely regular.
(iii) (X, X) is zevo-dimensional.
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(iv) (X,R) is strongly zevo-dimensional.
(v) (X,%) is basically disconnected.
(vi) (X,®) is a P-space.

Returning to our second counterexample, we now see that any com-
prehensive or ¥,-saturated enlargement of the real numbers with the
Euclidean topology is an example of a totally separated P-space which is
not extremally disconnected or scattered when given the Q-topology.

Corollary 2 Let *IM be a comprehensive or R¥,-saturated enlargement of the
model M, and let (X,T) be a *topological space in *M. Then (X, ) is
totally separated iff it is Urysohn.

Example 2: We now give an example of an extremally disconnected space
(X, ) such that (*X, *T) is not extremally disconnected.

Let X = Z*U{g}, where § is a free ultrafilter on Z+ and let T be the
topology on X generated by all the subsets of Z* together with sets of the
form AU {g§}, where Ae@. This is called the single ultrafilter topology,
and (X,®) is an extremally disconnected space, for the only possible limit
point of any set A is §, but § is a limit point of A iff A¢F, and then A U {F}
is open. The single ultrafilter topology is also perfectly normal [7], so
(*X, *T) is a P-space in each comprehensive enlargement. (X,®) is not
discrete, so (*X,*%) is not discrete in any enlargement.

Let M = M(X, M) be the standard model for X, where M denotes the set
of all entities of M, so card(M) = 8,. If | = P;(P(8})) is the family of finite
subsets of #(8)), then there is an ultrafilter W on | such that the ultra-
product *3M = N-prod M is an enlargement of M, and *M is comprehensive
because it is an ultraproduct [4]. For *X in *M, card(*X) < card (1:[ X) =

card (I), which is non-measurable, so card(*X) is non-measurable. Every
extremally disconnected P-space of non-measurable cardinal is discrete,
(*X, *T) is not extremally disconnected [3].

This is essentially a cardinality argument, and can be used for
extremally disconnected spaces -other than the single ultrafilter topology,
which was picked for its simplicity and small cardinality. If we assume
that there are no measurable cardinals, then in every comprehensive
enlargement the Q-topology for a non-discrete regular space is not
extremally disconnected.

Counterexample 3: We begin with the rational extension in the plane, which
is the plane given the topology € gotten by adding to the Euclidean topology
each subset of Qx Q and each set of the form {x}U ((Q xQ) NU), where
xe U and U is open in the Euclidean topology on R?. This topology is
Urysohn and completely Hausdorff but is not regular [7]. Since *(Q x Q) is
*discrete, it is a discrete subset of (*RZ, *T), and any dense-in-itself
subset must be contained in *R® - *(Q x Q); but each point p € *R* - (Qx Q)
has a neighborhood contained in {p} U *(Q x Q), so no nonempty subset can
be dense-in-itself. Correspondingly, (*R?, *X) is an example of a scattered,
basically disconnected and totally separated space which is not extremally
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disconnected or zero-dimensional in comprehensive or ¥,-saturated en-
largements.

We note that if (X,¥) is a *topological space in a comprehensive or
¥,-saturated enlargement and (X, f) is perfectly normal, then every *closed
subset of X is a Gs-set and is *open, so (X,¥) is *perfectly normal.
Obviously the converse fails unless every *closed set is also *open.

5 Net convergence properties In view of the disconnectedness prop-
erties of Q-topologies for Urysohn and T;-spaces it is not surprising that
these spaces have weak net convergence properties. It is more surprising
to find that the nature of the enlargement involved is at least as important
as the separation properties. This is illustrated by the following:

Theorem 11 Let M be a model, D be a divected set in M, and let *IM be an
a-saturated model of M, wheve a is an infinite cavdinal grveatev than
card (D). Then for each *T,-space (X, ) in *M every net (x;lde D) in X is
convergent in (X, ) iff it is constant on a tail.

Proof: If (x;|de D) is constant on a tail then it is convergent. Suppose that
(x4lde D) is convergent to zeX but is not constant on a tail. Set D'=
{de Dlx, # 2z} and consider the internal binary relation b C X x ¥ defined by:
b(y,U) iff U is a *neighborhood of z and x ¢ U. Clearly b is concurrent on
D' and card(D') < @, so there is a *neighborhood U of z such that if x,; # z,
then x,; ¢ U for each de D, a contradiction.

Similarly, we have:

Theorem 12 Let M be a model, let D be a divected set in M and let *M be
an a-satuvated model of M, wheve a is an infinite cavdinal greatev than
card(D). Then fov each *T,-space in *IM every net (x;|de D) clusters to
z € X in the Q-topology iff x; = z frequently.

We believe that the Q-topology can be useful not only as a stenographic
space as in [1], but as a tool for constructing counterexamples in topology.
We also believe that its value can be enhanced by further work in model
theory. For instance, we must look to an enlargement which is neither
comprehensive nor §,-saturated to find an example of a Q-topology which is
zero-dimensional but not strongly zero-dimensional. We do not know of an
example of such an enlargement and consider the question of its existence
to be interesting.
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