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RELATIVE STRENGTH OF MALITZ QUANTIFIERS

STEVEN GARAVAGLIA

In this paper I will solve a problem concerning Malitz quantifiers
which was posed in [1]. Before stating this problem I will introduce some
notation which will be used in the proof. If X is a set then c¢(X) is the
cardinality of X and [X]” is the set of n-element subsets of X. S, is the set
of permutations of {1, 2, ..., n} If % is a structure |A| denotes the
domain of M. If L is a first-order language, .L(|A]) is the result of
adjoining to . one constant symbol for each element of [%|. No distinction
will be made between elements of || and the constant symbols denoting
them. Variables will be denoted x,, X,, . . ., ¥i, Y3, « . ..

Now let L be any first-order language. For each # and each infinite
cardinal @ a language [} is obtained from . by adjoining the quantifier Q}
with the following interpretation: WEQLX: . . . %,@(xy, . . ., x,) if and only
if there is a set X C || such that ¢(X) = @ and for all distinct a,, . . ., @, in
X, AE¢la, ..., a,). Malitz and Magidor [2] and Badger [1] have estab-
lished many deep and interesting results concerning these languages. In
[1], page 91, Badger gave a list of unsolved problems about the languages
L. There he raised the question whether £ is a proper extension of .7
In this paper I answer this question affirmatively for allz =1 and all @ > w
by exhibiting two structures U and B of the same similarity type such that
AU and B satisfy the same sentences in L, but do not satisfy the same
sentences in L27.}

Let » be any fixed positive integer and let a be any fixed uncountable
cardinal. £ will be a first-order language with equality whose only
nonlogical symbol is an (# + 1)-ary predicate symbol R.

Definition 1: If % is an .L-structure, y is a finite subset of ||, o€ S,,,, and

by oo bpm€eyUdxy, ooy X Y, o .., Yt then o(dy, .. o, £,y,) is the (n + 1)-
tuple (Zqy, « -« o by(p41)) and oR(f, . . ., t,41) is the L(|A)-formula R(t,,
.y ta(n+1))- ‘

1. Fora = w;, this result was obtained independently by Andreas Baudisch under the assumption
Oy
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Definition 2: Suppose A is an J[-structure, y is a finite subset of |2/, and
1<m<n An m-type p over y is a set of .L(|%u])-formulas such that

(1) all elements of p are of the form TR(X5(1), « + «, Xo(j)s G1y « + +» Gypojitr)

where 1<j<m, geS,, 7€S,4;, and @, ..., 4, ;4 are distinct elements
of v,

(2) if 1<j<m, T€Sy4, 0€S,, T'€S,4, 0'€S,, and TRy, « . «, Xo(j),
@iy v ooy Quojyy) €D then T'R(XG 1y, « . o, Koy » A1y o o o Ay jt1) €D,

Definition 3: Suppose W is an [-structure, y is a finite subset of [/ and
1<m <n. A proper m-type p over y is a set of L(|%|)-formulas such that

(1) all elements of p are of the form TR(xy, . . ., %,, @, . . ., Qy_py,) Where
T€S,4 and a,, . . ., @,_, 4+, are distinct elements of y,

(2) ifre Sn+1y T' € Sn+1) and TR(xly ey Xmy A1y 0 eey an-m+1) Ep then T'R(xly e
Xmy A1y o o o an-m+1) Gp.

Clearly, a proper m-type p is just an m-type in which all of the
variables x,, . . ., X, occur in every formula in p.

Definition 4: If % is an L-structure, y is a finite subset of ||, p is an
m-type over y, and b,, ..., b,e || then (b, ..., b,) realizes p if and
only if

u FTR(ba(l)a ey ba(j), A1y oeoy an—j+l)<_) TR(xa(l)) eeey Xo(j)y Qrs o v ey an—j+1) €p
forall1<j<m, T€S,y, 0€Sy, and ay, ..., Gy jp €.

These notions are all borrowed from the customary model-theoretic
definitions of type, realization, etc. It can be shown that types as they have
been defined here correspond exactly to quantifier-free types in the usual
sense with respect to a certain first-order theory. But it does not seem to
simplify the exposition to use this fact so I will just ignore it.

Now I proceed to construct two L-structures U = (A, R") and B =
(B, R®). First, for each B < a a structure U, = (AB, R™) will be constructed.
Let Ag={1,2, ... n+1}, R%={0(1,2, ..., n+1)|ceS,y}. If 8isa limit

ordinal let AB = U 4;, RY —BUR'NS. If 8= 5 + 1 where 0 is even, then let g4
<p <B

be any element such that az¢ A and let Ag = AgU {ap}and

8 =R™My {ola, . . ., a,, ag)|o€Spss, @1, . . ., ay€As S/#\t as # ai).

1<s,t<n

Now suppose that 3 =05 + 1 where 6 is odd. For each finite subset y of Ay
and each n—type b over 'y let Xy,, be a set of cardlnahty a such that
JoNAs=@ and if y#y' or p#p' then X} ,N X, = D. Let Ag= As U

U/ Xy »- For each n-tuple (b, . . ., b,) of distinct elements of Xy » let

p(bh ) bn) = {T(bo(l)a LECIRS) ba(])9 iy o oy aﬂ-i+1)|
TR(X5 (1), + + +» Xo(j)» Q1y « + +» Cpojtr) €ph

Let
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=R uUU s, ... 500, .. 0aexf, N boz0.
Vb 1<s,t<n

Finally, let % = (4, B*) where A = U 4, R*= UR™.
g<a Bla

B is constructed in a similar manner. For each m < w a structure B,
B, = (B, R® will be constructed as follows. Set By={1,2,...,n+
1}R%={o(1,2,... n+1)|oeS,.}. If B, has been constructed, then for
each finite y C B, and each n-type p over y pick a set X}, of cardinality @
such that By NX}%' =@ and if y #y' or p # p' then X)H N X = @, Let

Bpy = BpU H)?;,’f;f’. Define p(b,, . . ., b,) as before and let
rR¥ =r® sUU{p@, ..., 8)l0, ..., beXI /\ bs # i}
124 1<§?€tsn
Finally, define 8 = (B, R®) where B = lZJaBm, R® = l<J R,
m m<w

It is important to make four simple observations about these struc-
tures:

(1*) if 8 < B < a thenUs C Mg and if m < k < w then B,, C By,
(2%) if WER@,, . . ., Gye) then Ak /), a5+ a, and if BER(D,, . . ., bpe)

1<s, I<n+1
then B S/*\t bs # by;

1<, 1 <l

(3*¥) if B<a,B=06+1 where b is odd, y is a finite subset of As and p is an
n-type ovev y then each n-tuple of distinct elements of X}’f_ p vealizes p, and
an analogous statement holds for B;

(4*) both R™ and R® are symmetric, i.e., if 0€ S,p, and U ER(a,, . . ., Gy
then Wi oR(a,, . . ., G,4+,) and if BER(b,, . . ., b,4,) then BEOoR(b,, ..., b,4,).

These statements are all proved by quite simple inductive arguments.
Using these facts, I can now prove the following lemma which contains the
easy half of the main result of this paper.

Lemma 1 AEQL" %, ... % R(X1, « v+, Xp) and BETIQL™ %, . . . %4, R(%,,
LIRS xn+1)-

Proof: By construction of A, if B=06 + 1 where 6 < a is even then Ag=
As U {ag}. Let X={a3|p<a, B=5+1,65 even}. Thenc(X)=a. Any (n+ 1)-
tuple of distinct elements of X has the form O'(aﬁl, ... @, ) where B, <
e o< PBpy1, B;i=0;+1,0; even for ¢=1,...,n+1, and g€ S,;,. The set
{ag,, . . ., ag,} is contained in A, since B, <...< B, < 8,4, so by con-
struction of o(ag, . . ., aﬁn“)eR'u. This proves that UEQ !« . . .
Tt R(%1, « 0 o) Xpg).

Now suppose that X C B, ¢(X) = @, and for all distinct by, . . ., b € X
BER(b, ..., b4). Since w < a there must be some m such that XN
(B4 - By) is infinite. Let by, . . ., b,,, be distinct elements of XN (B4, -
B,). By our assumption 8ER(b,, . . ., b,4,). Suppose that (b, . . ., by €
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RQ’""“. Then there must be some y C B,, an n-type p over vy, and distinct

elements c,, . . ., ¢, in Xj;" such that R(by, . . ., byy) €p(cy, « . ., C4). But
if R(t,, ..., t,p)ep(cy, ..., Cn) then at least one of the # must be an
element of y. This is an immediate consequence of the definition of an
n-type. Sincey N{d,, ..., b,un}=9, it must be that (b, . . ., b,,+1)£RE'”+1.
But by observation (1*), 8,4, €8 so (by, ..., b,4.) R, i.e., BE1R(,, . . .,
b,+1). This is a contradiction. Therefore no such X can exist, i.e.,
BEIQY X, . X Ry, v oy Xpg). Q.E.D.

Now we move on to the more difficult part of the proof: showing that
A and B satisfy the same sentences in L;. I adjoin two O-ary predicates
T (“true’’) and F (‘“‘false’’) to .L and give them the obvious interpretation in
any structure. They can be regarded as defined terms with the defini-
tions T =Vx,(x, =x,) and F =3x,(x, #x,). This expanded language is
called L(T, F).

Lemma 2 To each formula ¢(y,, ..., yp) of L(T, F); with free variables
among y,, ... Y, one can effectively associate a quantifiev-free formula
vy, ..., W) of L(T,F)with free variables among y,, . . ., ¥, such that

9”=V3’1 LR Vyk [¢(y1’ LIS yk)ew(yly o oy yk)]

and

$|=Vy1 L vyk[(p(yly o o oy yla)<_9 ’P@l, o o oy yk)]‘

Proof: By using induction on the length of the formula, the proof can be
reduced to the consideration of two special cases.

Case 1: Suppose ¢(¥y, . .., %) = 3xm(x,, y,, . . ., ) where  is a conjunc-
tion of atomic formulas and negations of atomic formulas in L(T, F).

(a) If x, = y; or y; = x, is a conjunct inn for any j then it is easy to see that

UEVY, .V By, ¥y, e M)/, Y, - e 9]

and

$FVyl * .. Vyk[axln(xly yl) LS ] yk)en(xl/yp yl’ L] yk)]

where n(x,/9;, ¥, . . ., %) is the result of substituting y; for every occur-
rence of x, in n(x,, ., . . ., V).

(b) Suppose that there is no j such that y; = x, or x, = y; is a conjunct in 7.
Let A be the smallest set of quantifier-free formulas of .L(T, F) satisfying
the following rules:

(1) Tea

(2) p(»y, . .., yp)eA where p(¥y,, ..., ¥) is the conjunction of all the
conjuncts in n which do not contain x,

(3) if 0€Sp4y, =1, and OR(%y, . . o, X1, ¥iy - o yin_i) is a conjunct in 7, or
if x; # x, is a conjunct in 1, then Fe A

(4) if 0€Sp4 and oR(xy, ¥iy, - . ., ¥i,) iS a conjunct in 7, then s/#\t Vig #
ISs, t<n

Vi, €A
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(5) if T, € Sy, T2€ Sy anezl bo’il:h T\ R(Xy, ¥iys v vy 9iy) and 1TR(x,, Vips =+ Vin)
are conjuncts in n, then \_/ A Yig # ¥j,) €A

Let ¢(3y, . .., W) = /\u(yl, ... %). Then I claim that UEVy, ..
Yy [Fxm (s, Yy« IDES YO, « - o 3] and BEVy, . .. Yy, [FTan(a, m,
co, V<> Yy, ..., ¥)]. The proofs for A and B are essentially identical,
so I will confine my attention to W. So suppose that (a,, ..., @) is any
k-tuple of elements of A, and suppose that ¥ F3Ixn(x, a,, ..., a;). Then
for some acA, UEn(a, a, ... a). For each upeA I will show that
Akpla, ..., a). Any pin A must be placed there according to one of the
rules (1)-(5). So I consider each rule in turn. If y = T then there is nothing
to prove since WET is always valid. If u(y,, ..., %) =p(¥,, . . ., ¥) then
since p is a conjunction of conjuncts inn and AkEn(a, a,, . . ., @) we have
AEepla, ..., a). ucannot be put into A according to rule (3) since in that
case either x, # x, or something of the form oR(x,, . . ., %, Vipp o v o yin_i)
(0€S,41,7 =1) would be a conjunct in n. It would follow that either Wk a #
a, which is impossible or ¥ FoR(a, .. ., a, a;, . . ., ) which is im-
possible by observation (2*). Next suppose | arises Vla rule (4). Then
w= I\ v # 9 and for some o€ S,y,, OR(x,, Vi v oo ¥i,) is a conjunct in
1<s,t<n
n. Therefore A FoR(a, a; g Gy ) and by observation (2*), this implies
that A = a; #* a;,. Fmally suppose u arises from rule (5). Then u is

S#t
1Ss,t<n

n n
of the form \_/(t/\l Vi # y,-,) and for some T1,€S,4,, Tp€ S,y both 1 R(x,, Vi,
s=1 =

.« 9i,) and 17, R(x,, 9j,, . . ., 9;,) are conjuncts inn. Hence A =T R(a, a;,
.., @,) and A ET.R(a, aj, . . ., @,). By observation (4%), R¥ is sym-
metric, so {a;, ..., a,}#{aj, ..., a,}. By observation (2*) a;, .. .,a,
are distinct, so in fact {a;, . . a,”}SZ {aj, ..., a} Therefore there is

some s such that a;_¢{a;, . . ., @;,}. This implies that 2H=V A ai, * aj,).

Conversely, suppose Uk /\ ulay, ..., a). I will show that ¥ E3xn(x,,
a, ... a). Let y={a, ... ak} Pick some 5 < @ such that § is odd and
y C As. Let p={rR(%q), @i, .+ +, &,)|0€S,, T€S,;,, and for some t'e
Sp1 T'R(%1, yij, « . ., ¥i,) is a conjunct in n}. I claim that p is an n-type
over y. First, if 7R(X,(y, iy o vy ain)e p for some Te€ S,4,, €S, then by
definition of p 7'R(x,, Vi oo ¥i,) is a conjunct in n for some 7'€ S,4, and
hence, again by definition of p, 7"R(%o11(y), @i}, - - ., @,) € p for any 7" € Sy
and o' € S,. This shows that p satisfies the second condition in the definition
of an n-type. Now suppose again that TR(%,), @i, « . ., @i,) € p. Then for
some 71'€e S,4, T'R(x,, Vi o+ o ¥;,) is a conjunct in 1. Hence I\ vig #

N 1<s, t<n

9i, €A. Then since AF Au(dl, ..., @) we have Uk A a;, # a;,. This

s#t
1<s,t<n

proves that p satisfies the first condition in the definition of an n-type.
Take any n-tuple (ci, . . ., c,) of distinct elements of Xéys'",,1 By observa-
tion (3*), (cy, ... cp) realizes p. I claim that WEn(c,. a, .. ., a).
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I consider each conjunct in n separately. For conjuncts in n which do not
contain x, it is sufficient to note that they are also conjuncts in p, and since
pe A we have by assumption, ¥k pla,, . . ., @). Also, by hypothesis, n has
no conjunct of the form x, = y; or y; = x,. If x, # y; or y; # x, is a conjunct
inn, thenAkc, # a; (WEa; # c,) since c, € Asy, - A but aj € As. Nothing of
the form oR(xy, ..., %1, ¥;, - - -, Yi,-;) Where o€S,,, and j>1 can be a
conjunct in n since if it were then FeA and so we could not have AkE
ulay, . .., ). For the same reason x, # x, is not a conjunct in . A

ped
conjunct of the form x, = x, is trivially satisfied. If TR(x,, Vi oo o Vi) 18

a conjunct in n where t¢€S,,, then TR(x, @iy o ooy a;,) ep and since
(¢, . .., c,) realizes p, we have U= TR(Cy, @iy, . . ., @;,). If T€Sph, j>1
and 1TR(x, . . ., %1, ¥iy, - - -, Yip-;) is @ conjunct in 7, then A FI1TR(cy, . . .,
C1, Qipy v ey ain-;') by observation (2*). Finally suppose 1TR(¥, i), - - -, Yi,)
is a conjunct in . I claim that TR(x,, @iy o ooy ai");(p. If it were in p, then
there would have to be some oe€¢S,,, 7'€S,4;, and j,, ..., j, such that
oR(%1, ¥j,, - - -, ¥j,) 1S a conjunct in n and TR(%, g;, . . ., a;,) is identical
with TR(x,, @i, . . ., @;,). That would imply {a;,, . . ., @,}={ai, . . ., a;,}-
But since both oR(x,, ¥j,, . . ., ¥j,) and 1TR(x,, ¥;,, . . ., ¥i,) are conjuncts

n n n n
in n, we would have \/1<t/\1 Vis * yit> € A and hence 2[|=\/1<A aj, # “i:> . That
s= = s= =

means that {a;, ..., @} #{ai, . .., ai,;. This contradiction proves that
TR(%, @i, . . ., @;,) £p. Then since (c,, ..., ¢,) realizes p, we have Ak
17R(cy, @iy, - . ., ai,). This covers all possibilities, so we have proved
UEn(cy, ay, . . ., @) and therefore U EIxn(x,, ay, . . ., a). .,

Case 2: Suppose @(¥, . .., %) is of the form Qux, . . . %, V1 i (%1, « v vy X,
i

Y1, - « «, Y¢) Wwhere each n; is a conjunction of atomic formulas and nega-
tions of atomic formulas in JL(T,F). For each 1<i<m I define A; to be
the smallest set of quantifier-free formulas in (T, F) satisfying the
following rules:

(1) Te A,‘
(2) p;eA; where p; is the conjunction of all the conjuncts in n; which do not
contain any of the variables x,, . . ., x,
(3) if OR(Xj, v v oy Xjy Xipy o v oy Xigy Vigyrs » v o y,«n_h) is a conjunct in n; for
any j, 0€S,y, and 2 > 1, or if anything of the following forms: x; = xj (j # k),
Yi = %, Xp = ¥j, %; # X; is a conjunct in 7;, then FeA;
(4) if T€S,41,0€S,, 1<h<nand TR(Xs(), « « o Xo(h)y Vipy » + o Vip_pqs) iS 2
conjunct in n; then
§/#\t Vi # Vi, €84

1<s, t<n-h+1
(5) if T€Sy41, 0€Sy, T'€Spt1, 0'€S, 1 < h<n and both TR(Xg(1), « « «» Xo(h),
Vigy + o o y,-n_h_H) and 1T'R(Xg1(1), « « +» Xa'(h)s Vi + » o yin_h+1) are conjuncts
in n; then

n-h+1/n-h+1
VA 5vn) o
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Now I claim that
m
n
?":vyl O Vyk[anl L) xﬂ<¥1 ni(xly e Xy Y1y ey yk))

¥ (Astn )]
=1 \ped;

and

B F\v,yl . Vyk[Q:xl .. x"<y ni(xly e Xy Y1y e ey yk))

Again I give the proof only for % since the proof for 8 is virtually identical.
Take any Fk-tuple (a,, ..., @) of elements of A and suppose first that
m

AEQX, .« .« .« %n \_/1 N:(X1, « v 0y Xy G1y v - oy ak)>. Then there is a set XC A
1= m
such that c¢(X) = a and for all distinct ¢y, . . ., coin X, Ak Y (i(cy, - - -, Cn
i=1
a, ... a). Lety={a, ... @} For each proper n-type p over v let

X, ={{er, . . ., cite[X]"] for all 7€ S,4, and all
acy UETR(Cy, . . ., Coy <>TR(X,, . . ., Xn, @) € D).

Xp is well-defined since R™ is symmetric, and p is closed under permuta-
tions. Furthermore, for any {c, ..., cite[X]" if p = {rR(x, .. ., %, @I
T€S,41, acy, and UWETR(cy, . . ., Cp, a)} then p is a proper n-type over y
and {c,, . . ., ca}€ X,. Therefore, {X,|p is a proper n-type over } is a finite
partition of [X]" and so by Ramsey’s theorem there is an infinite set X, C X
and a proper n-type p over y such that for all {c,, . . ., c,}e[X, 1" {cy, . . .,
c,,}e X,. Now for any proper (z - 1)-type p over y let

X)), ={eu, « o oy cpate[X, ] for all T€ S,y and all a; , a;, €y
UETR(Cy, o v oy Cooyy @iy Q1) <> TR(XY, oo o X,my, @4, @4y) € D}
Then as above we obtain an infinite set X, C X, and a proper (z - 1)-type p

over vy such that [X,]"™ C (X,),. Continuing in this fashion we finally obtain
an infinite set Y < X and a sequence p,, ..., P, such that each p; is a

proper j-type over y and for all distinct ¢, ..., ¢; in Yandalla,, ...,
a,-n_]._H in y and all 7€ S,4,
UETR(C,, .. ., ¢, a;, . . ., ”in-,'-u) <> TR(Xy, o0y X, i, e ‘n-7+1) pi.
This implies that for any 1<j<x and any two j-tuples (ci, ..., ¢;),
(b, ..., b;) of distinct elements of Y, any o€ S,4, and any a; , ..., Ty iy €
UEGR(Cy, o .\, Cjy iy o ey ,n_1+1)<—>‘ll|=oR(b1, cen by a, ., ain-i+1)'
,}l\low take any » distinct elements ¢, .. ., ¢, from Y - y. Since Y C X,
‘lll=i\_/1 n;(cy, v v vy Cpy @, . .., @). Pick some ¢ such that WEn;(cy, . . ., Cp

@, ..., a). I claim that AE /} ulay, ..., a). I consider in turn each of
ped;
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the rules according to which y may be put into A;. If u =T or u = p; then
just as in Case 1, Wk u(a, ..., @). u cannot be put into A; according to
rule (3) since otherwise n; would have a conjunct of the form x; = x;(j # 4),
Xj = Y, Vp=%j, Xj#Xj, OF OR(Xj, .. o, Xj, Xijy o ooy Xigy Migy)y + v o yin_h)(cre
Sp41, k> 1). Hence, it would be true that Akc; =c, (j+ k), UEC; = @,
AUFEa,=cj, UEC; +cj, or WEOR(C), .. ., Cjy Ciyy v vvy Cigy @iy v v oy G 4)
(k=1). The first is impossible since ¢y, . . ., ¢, are chosen to be distinct,
the second and third are impossible since cjeY - y, the fourth is always
impossible, and the fifth cannot be true because of observation (2*). If u
gets in A; by way of rule (4) then u has the form A Yig #3i, Where
1ss,is’étt-h+1

1<h <n, and for some T €Sy41, 0€Ss, TR(Wo(1), + + + Xo(h)s Viys = « +» Vip_psr)
is a conjunct in n;. Therefore Wk TR(C,(1), « - -5 Co(h), @iy ooy @ 4. ) SO
by observation (2*) A E /\ a;, # a;,. Finally, suppose.y is put into A;

lSS,tES#;l’-IZ-I-I n-h+1/n-h+1
according to rule (5). Then u has the form ) ( {_\1 Vig # y,-,) where

l<h<n, and for some 7, 7'€S,41, 0, 0'€S, both TR(X5(y, . . «, Xo(h), Vi,
e o Vip_pyr) @A VT'R(XG1(1), « « o, X6'(R), Vjys - + -5 Viy_py,) T€ conjuncts in n;.
Hence

=1

UETR(Co(1)s « « -5 Coth)s Qigs « « +» G 4 .))

and
A EIT'R(Cor 1y, « + oy Col(h)y Bjyy + + = Gy

Since R¥ is symmetric, we also have Y ET'R(¢,q), -« - +, Co(h), @iy oveny
“in-h+1)‘ But (¢ (), « -+ Co(n) and (G, « « +, Co’(h) are both k-tuples of
distinct elements of Y, and consequently W = 7'R(Co (1), - « +, Col(h)s @iys + » o
@, 1,)- Therefore {a;, ..., & , }#{aj,... @,,, }. But by observa-
tion (2%) a;, ..., @; ,  aredistinct, so{a;, ..., 4 , t¢{a, ..., q , }

n-h+1/n-h+1
Therefore, Ak SV=1 < é\l a;  # ai’) .
Suppose that, for some i, Uk /\ u(a, ..., a). Then I will show that
n €l; ’ n
ﬂhgaxl e X%, o . ., %, a,' ., @) and consequently U EQY, . . .

xﬂ(x ni(xl: ey Xy Gy e ey ak))' Let

P={TR(Xoy, « + + Xa(h) @ify + « + ain-h+1)| 1<hs<mn T€S,4;, 0€S, and for
some T'€S,41, 0'€S, T'R(%51(1)s « + o Xo'(R)s Vijp + + » Yip_psd) 1S @ conjunct
in n;}.

Let y ={a, . .., @}. Then just as in Case 1 it can be proved that p is an
n-type over y. Pick 6§ < @ such that § is odd and y C As. Then by construc-
tion of MW there is a set X T A such that XN As5=9, c(X) = a, and all
n-tuples of distinct elements of X realize p. Just set X = yf'pl and recall
observation (3*). Now I claim that if (¢, ..., ¢,) is any mn-tuple of
distinct elements of X then ¥ En;(cy, .. ., €, @y, . . ., &). I consider each
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possible conjunct in n;. First, any conjunct in ; which does not contain any
of the variables x,, .. ., ¥, is satisfied by (cy, . . ., ¢, @y, - . ., @) since
p;€A; and hence Ykp;(a,, ..., @). Any conjunct of the form x; =x; is
trivially satisfied. Conjuncts of the forms x; # x, (j # k), y, # X, %j # y; are
satisfied since k=c; # ¢, (§ # h) and U FEc; # a4, the first being true because
¢y, . - ., Cy are distinct by hypothesis, and the second because ¢y, . . ., che X
and XNy =@. n; cannot have any conjuncts of the forms x; = x; (j # k),
Xj = Yp, Yh = Xj, Xj # X;j, Or

OR(Xj, o oy Xj, Xify o o oy Kigr Vigyp + + o yin_h)(oes,m, h=1)

because in those cases we would have F € A; and hence % ¥ A w@ay, . .. a).
ped;
Finally, conjuncts in n; of the forms
ATR(xj, . . ., X, Kipy o 0wy Xigy Vigpry » + o Vi) T €Sy, 2 1)
TR(xO'(l) s o v e Xo(h) yil’ LECERY) yin-h+1)(1 <hs n, TE Sn+1y g€ Sn)

and
1TR(x0(1) y o o oy Xo(h), yip LEERES) yin-h+1)(1 <hs< n, TeSn-H, e Sn)

can be proved to be satisfied by (cy, . . ., ¢y, @y, . . ., &) in almost exactly
the same way as in Case 1. Therefore UWkEn;(cy, .. ., Cp, @, « . ., @) and
UEQLX, . . . ;i (X, o v oy Xny @1y .« ., Q). Q.E.D.

Corollary 1 U and B satisfy the same sentences in L.

Proof: If ¢ is a sentence in Li then ¢ e L(T, F), so there is a quantifier-
free ¢ e L(T, F)p such that AE@ <>y and B E@<>yY. Since ¢ has no free
variables, neither does y and therefore y is just a Boolean combination of
T and F. So clearly either both Ay <>T and By «<>T or both Ak
Y «>F and By <> F. In the first case, both A= ¢ and B F ¢, and in the
second case both A =1¢ and B F1o. Q.E.D.

By putting together Lemma 1 and Corollary 1 we obtain

Theorem 1 Fov each n =1 and each uncountable cardinal a theve .are
L-structures W and B such that W and B satisfy the same sentences of La,
but for some sentence ¢ ¢ Lo, U =@ and B E1¢.
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