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THREE SUBSTITUTION-INSTANCE INTERPRETATIONS

JOHN T. KEARNS

1 Abandoning nominalism The substitution-instance interpretation of
quantifiers is often associated with some form of nominalism. Lesniewski,
who developed his logical systems with a substitution-instance interpreta-
tion in mind, was a nominalist. (The connection between Lesniewski's
philosophical views and his logical systems is explained in [10].) And when
Henkin discussed the relation between the substitution-instance interpreta-
tion and his completeness proof for quantificational logic, his paper had the
title "Some Notes on Nominalism." This association is unfortunate. I
know of no view which might be called nominalistic which seems plausible
to me. Yet I find myself "taken" with the substitution-instance interpreta-
tion of quantifiers. When the substitution-instance interpretation is sepa-
rated from a nominalistic outlook, we can see that there are different
substitution-instance interpretations of quantifiers. In this paper I will
discuss three important interpretations. Not all of them are compatible
with nominalism (perhaps none of them is), but each is ontologically less
committing than the usual (referential) interpretation.

The initial motivation that I can offer for accepting substitution-
instance interpretations is connected with certain purposes that a formal
language can be used to achieve. If a formal language is to be used for
studying the logical structure of a natural language, or of some sublanguage
of a natural language, it must have certain similarities with the language(s)
it will be used to study. But it is also helpful to treat the formal language
(in certain respects) as one would treat the natural language. Think of that
part of a natural language which consists of sentences composed of names
and predicating expressions, and of (nearly truth-functional) compound
sentences formed from these. This sublanguage is part of a going concern
which exists before we can study it. In this sublanguage, some sentences
are true and others are false. And the sentences of the sublanguage
exemplify certain forms. Some forms are such that every sentence
exemplifying them is true, while others are exemplified by both true and
false sentences. In a formal language that corresponds to this natural
sublanguage, substitution-instance quantifiers can be used to indicate facts
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about logical forms. And these quantifiers are well suited for treating the
formal language as if it too were a going concern.

Initially, I want to justify substitution-instance quantifiers as a useful
device for dealing with the logical structure of a realistic language (a
useful device that can be incorporated in that very language). But I also
want to make a stronger claim about these interpretations. I believe that
substitution-instance interpretations of quantifiers are more natural than
the ordinary (referential) interpretation. They are more natural in this
sense: Quantification as it has been developed is better suited to
substitution-instance than referential interpretations. We can see this by
considering some important theorems about quantificational languages.
Some results that were (and are) surprising for the referential interpreta-
tion are not so surprising for substitution-instance interpretations. In
general, the theorems about quantificational languages "make more sense"
for substitution-instance interpretations than they do for the referential
interpretation. Of course, I can support this claim only by appealing to the
intuitions of the reader. But I will try to make it convincing.

2 Leblanc valuations In order to discuss the different interpretations, we
need a formal language to talk about. Let L be the first-order language
with the following features:

L has denumerably many individual constants: a0, au . . .
denumerably many individual variables: x0, xl9 . . .
denumerably many monadic predicates: FQ, F[, . . .
denumerably many n-adic predicates: F%, F", . . .
quantifiers: (V ), (3 )
sentential connectives: ~, v, &, ^ , =

Overlapping quantifiers with the same quantified variable are allowed, but
vacuous quantification is not allowed. A quasi-well-formed-formula is
either a sentence or a formula like a sentence except for containing free
occurrences of individual variables.

I will first define a standard, referential valuation for L. For a given
nonempty domain 0, function If (defined for the individual variables,
individual constants, and predicates of L) is a referential interpreting
function of L for 0 iff If assigns an element of 0 to each individual variable
and constant of L, and If assigns a set of ordered n-tuples of individuals of
0 to each rc-adic predicate of L. For a given referential interpreting
function V of L for some nonempty domain 0, a valuation of the quasi-wffs
of L is as follows:

(i) If («!, . . ., On) is an n-tuple of individual expressions of L and φn is an
w-adic predicate of L, then φn(a1, . . ., an) has value T for the valuation
determined by If if <^(θi), . . ., Ίf(an))e 1f(φn). Otherwise it has value F
for the valuation determined by If.
(ii) If (Vα)A is a quasi-wff, and A has value T for every referential
interpreting function Ίff of L for 0 that is like If except possibly for the
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value assigned a, then (Va)A has value T for the valuation determined by If.
Otherwise it has F for this valuation,
(iii)-(viii) are as one would expect.

When If is an interpreting function, I will sometimes call V a
(referential) valuation of L for 0. We shall also have use for the following
definitions :

A sentence A of L is a referential logical truth iff A has value T for
every referential valuation If for every nonempty domain 0.

A set X of sentences of L has sentence A (of L) as a referential logical
consequence (in symbols: X\Y^A) iff, for every nonempty domain 0 and
referential valuation If of L for θ for which all members of X have value T,
A also has value T.

Now let us consider the first sort of substitution-instance interpreta-
tion of the quantifiers. The valuations involved are Leblanc valuations.1

We need these definitions:

For A a quasi-wff containing free occurrences of distinct individual
variables al9 . . ., an and no others, A* is a substitution instance of A iff A1

is a sentence obtained from A by replacing the free occurrences of
α?i, . . ., an by occurrences of individual constants.

A function V (defined for the atomic sentences of L) is a Leblanc
interpreting function of L iff If assigns (exactly) one of T, F to each atomic
sentence of L.

For a given Leblanc interpreting function If of L, a Leblanc valuation
of the sentences of L is as follows:

(i) An atomic sentence of L has the value assigned it by If.
(ii) If (Va)A is a sentence of L, and every substitution instance Ar of A in L
has value T for the valuation determined by V, then (Va)A has value T for
this valuation. Otherwise it has value F for the valuation determined by If.
(iii)-(viii) Etc.

If Ίf is a Leblanc interpreting function of L, I will also call If a
Leblanc valuation of L. In the definition of 'Leblanc valuation/ no values
are assigned to quasi-wffs which are not sentences. The definition could be
changed to include them, but nothing would be gained thereby.

A sentence A of L is a Leblanc logical truth iff A has value T for every
Leblanc valuation of L. A set X of sentences of L has sentence A (of L) as
a Leblanc logical consequence (X\\-^A) iff every Leblanc valuation for
which all members of X have value T is one for which A also has value T.

By virtue of the Lowenheim-Skolem Theorem for referential valua-
tions, we have the following results:

(1) If A is a sentence of L, then A is a referential logical truth iff A is a
Leblanc logical truth.
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(2) If X is a finite set of sentences of L and A is a sentence of L, then

XWJCATII XW^A.

This second result cannot be extended to infinite sets. For some monadic
predicate φ, we might have X= {φ(a0), φ(aι), φ(a2), . . .}. Then we would
have X\br(Vχo)φ(xo), but not X\bR-(Vxo)φ(xo). (A discussion of this lack of
equivalence is found in [2].)

The concept of Leblanc logical consequence is not the only sort of
logical consequence that can be considered with respect to Leblanc
valuations. In fact, Hugues Leblanc himself (in [9]) has given a different
definition of 'logical consequence' for Leblanc valuations. And his defini-
tion yields a concept which coincides (i.e., it relates the same sets and
sentences) with that of referential logical consequence. However, in this
paper I am taking substitution-instance interpretations as autonomous, or
primary. And I am interested in concepts, and results, that would be
natural if these interpretations are taken as primary. I think my definition
of 'Leblanc logical consequence' yields such a concept.2

3 Henkin valuations Leblanc valuations are not well suited for a realistic
formal language. These valuations require us to regard L as fixed and
final, since quantified statements are construed with respect to (are
evaluated in terms of) the constants in L. If L were extended by adding new
constants (and sentences which contain them), a Leblanc interpreting
function for L would fail to provide for the new sentences. And if the
interpreting function were extended to cover the new sentences, statements
which had been true might become false, and conversely. But a natural
language is never fixed and final; it is open to new expressions, and can
always be extended.3 Because Leblanc valuations treat L as fixed and final,
they can prevent us from using quantifiers to make statements with truly
universal force. A universally quantified statement is only "concerned"
with the names in L; so we can make statements only about those
individuals which have names. But something might be true of all named
individuals, yet false for some unnamed individual. Of course, by adopting
a substitution-instance interpretation, we have separated matters of
reference from our valuations. But we have not lost sight of the fact that
(at least some) names refer to real individuals. Nor should we lose sight
of the desirability of having L suitable for talking about whatever
individuals there are. If there is some individual which is not named by a
constant of L, that individual will be named in some extension of L.

What is wanted is a substitution-instance interpretation which makes
quantifiers "cover" an extension of L. So that a sentence (Vα)A is not
made true just by substitution instances in L, but is instead construed with
respect to some suitable extension of L. Given such an interpretation,
universally quantified statements function (within L) primarily as inference
warrants. They "license" us to assert substitution instances of the
quantified formula, but the quantifiers are not used to make claims
evaluated in terms of the "fixed totality" of names in L. (Although the user
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of L does not know what are the new expressions of Us extension, he may
still be in a position to make true universally quantified statements.)

Let L+ be a language obtained by adding zero or more new individual
constants to L (at most denumerably many), and zero or more new predi-
cates (at most denumerably many). Then L+ is an extension of L. (For the
discussion in the remainder of this section, it would not be necessary to
consider extensions with new predicates. But it does not cost anything to
allow them, and they will be useful later in the paper.)

Let L+ be an extension of L, and let V be a Leblanc valuation of L+.
Let Vr be a function which assigns to the sentences of L the values they
receive from V in L+. Then ^ r is a Herikin valuation of L.4 We define
Ήenkin logical truth' and Ήenkin logical consequence' (Ihpr) along the lines
of earlier definitions. The relation between referential valuations and
Henkin valuations is interesting. The Lowenheim-Skolem Theorem for
referential valuations can be stated in this form:

(LS) Let θ be a nonempty domain of individuals, and let V be a referential
interpreting function of L for θ. Then there is a nonempty domain θ' which
is at most denumerable and a referential interpreting function tfr of L for
θr such that the values of the sentences of L are exactly the same for Ίfr as
for V.

This version makes it easy to establish the following theorem.

Theorem 1 If θ is a nonempty domain, and 1/ is a referential interpreting
function of L for θ, then there is a Henkin valuation Ίf' for which the
sentences of L have the same values as they have for V. Conversely, we
can start with W and find a suitable θ and referential valuation If of L
ford.

The following is an immediate consequence of Theorem 1.

Theorem 2 (a) If A is a sentence of L, then A is a referential logical truth
iff A is a Henkin logical truth.
(b) If X is a set of sentences of L and A is a sentence of L, then X\V^;A iff

So the Lowenheim-Skolem Theorem for referential valuations has the effect
of establishing the adequacy of Henkin valuations. An analogue of the
Lowenheim-Skolem Theorem can be stated for Henkin valuations, but it is
completely trivial. To state it we need this definition:

If L+ is an extension of L and V is a Henkin valuation of L+, then the
ordered pair (L+, V) is instantially complete iff for every sentence (Vα)A
of L+ that receives F for V, there is a substitution instance Af of A (in L+)
that receives F for If. And for every sentence (Ξ\a)A of L+ that receives T
for V there is a substitution instance A1 of A that receives T for V.

The Lowenheim-Skolem analogue states that for every Henkin valuation
y of L, there is an extension L+ of L and a Henkin valuation V of L+ that
agrees with V for sentences of L and is such that (L+, V) is instantially
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complete. This is trivial because every Leblanc valuation is a Henkin
valuation, so any Leblanc valuation W of an L+ which V "generates" V
will give an instantially complete <L+, V).

Although the Lowenheim-Skolem analogue is trivial for Henkin valua-
tions, we might ask if there is some nontrivial result for Henkin valuations
that is in some respects a counterpart to the Lowenheim-Skolem Theorem
for referential valuations. To obtain one such result we need a formal
system. Let 3 be some standard formal system for L that is complete with
respect to logical truth and logical consequence for referential valuations.
But suppose that we do not know this about 3, that 3 was developed with
Henkin valuations in mind. In that case, it would be easy to establish that 3
is sound for Henkin valuations. But we might think (or just suspect) that 3
could be used to generate a new kind of valuation, unlike Henkin valuations.
For X a set of sentences of L and A a sentence of L, let (X\-A' indicate
that A is deducible from X by means of 3. Then we need the following
definitions:

Let I b e a set of sentences of L. A partial ^-valuation of L induced by
X is as follows: If X\-A, then A is assigned T; if X\-~A, then A is
assigned F.

A set X of sentences of L is consistent iff in the partial 3-valuation of
L induced by X there is no sentence A which is assigned both T, F.

Let X be a consistent set of sentences of L. In some enumeration of
sentences of L, let A be the first sentence which does not receive a value in
the partial 3-valuation induced by X. If A is consistent with X, take the
partial 3-valuation of L induced by I U {A}, and consider the first sentence
B in the enumeration which does not receive a value in the partial
3-valuation induced by X U {A}. If A is not consistent with X, take the next
sentence in the enumeration which has no value. And so on. Ultimately,
every sentence of L will have a value, and the whole valuation is an
3- valuation ofL.

We might think that an 3-valuation could be different from a Henkin
valuation. And that there could be 3-valuations for which it is not possible
to extend L and extend the valuation to produce an instantially complete
ordered pair. The construction in Henkin's Completeness Theorem (given
in [3]) shows that this conjecture is not true. That construction shows that
3-valuations coincide with Henkin valuations; this coincidence is what
makes Henkin's proof a completeness result. Note that, given Henkin
valuations, and given 3, his approach is the most natural one to take in
order to establish the completeness of 3. But from the standpoint of
referential valuations, Henkin's procedure has a somewhat artificial
character.

4 Gδdel valuations Henkin valuations of L provide a good "fit" for
customary first-order formal systems. But these valuations are not
entirely satisfactory for treating the formal language in a realistic manner.
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For with a natural language in use at a given time, many extensions are
possible. But only some of these will actually be realized. A Henkin
valuation of L is determined by a particular extension L+ of L and a
particular valuation of L+. (Even though the same Henkin valuation can be
generated by lots of different extensions of L, and by lots of different
valuations for each extension, in a given case we think of it as determined
by a specific extension and valuation.) Dealing with such valuations is like
considering only the extensions of a natural language that will actually be
realized. But we may very well want our universal statements to be true
for every (possible) extension of the language. If universally quantified
statements are to have a truly universal force, they must be evaluated with
respect to more than one extension of L.

Since quantified sentences in a Henkin valuation are evaluated in terms
of a particular Leblanc valuation of a particular extension L+, the
quantifiers "cover" only denumerably many constants. Such quantified
sentences are not adequate for talking about "situations" where there are
nondenumerably many individuals. We could avoid this shortcoming if we
construed our quantifiers with respect to every evaluated extension of L.
For there are nondenumerably many of these.

Let If be a Leblanc interpreting function for L. Let L+ be an extension
of L, and If* be a Leblanc interpreting function for L+ that agrees with If
on the (atomic) sentences of L. Then (L+, V) is an extension pair of
<L, V). If L+ is different from L, then <L+, If1) is a proper extension pair.

If <L+1, V,), <L+2, Ψ2) are distinct extension pairs of <L, Ψ), I will
adopt the convention that any new symbols common to L+1, L+2 (but not
found in L) need not be regarded as having the "same meaning." This is
because each extension pair is considered as one possible direction in
which (L, If) can be extended. From the standpoint of (L, If), a certain
symbol not found in L does not need to have any particular meaning
attached to it. Choosing one meaning rather than another is a purely
conventional matter, which does not affect the truths that were waiting to be
expressed. The provision that the same new name (or predicate) can have
different meanings in different extension pairs is also necessary if we are
to use denumerably many names (or predicates) to talk about non-
denumerably many things.

To define 'Gόdel valuation,' I will first stipulate what is a Godel Tree.
In doing this, I will frequently speak of positions in such a tree rather than
elements of the tree, for the same element can occupy more than one
position. The top node of a Godel Tree is of level 0, and its position is 1.
The immediate successors of the top node are members of a sequence.
Their positions are first-level positions. If this sequence has a σ'th
element (an index σ), then the σ'th element of this sequence has position 1,
σ in the Godel Tree. The second-level positions are the immediate
successors of first-level positions. Each first-level position has a
sequence of immediate successors. The sequence of immediate successors
of a position 1, σ has the order type of the sequence which results from the
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first-level sequence by deleting the σ'th element. Each immediate succes-
sor of position 1, σ corresponds to an index of the first-level sequence (but
nothing corresponds to the σ'th position), and this index is used to give its
position in the Gόdel Tree. -For example, the immediate successor of
position 1, σ that occupies a place in its sequence corresponding to the p'th
position of the first-level sequence has position 1, σ, p in the Gδdel Tree.
So that in the sequence of immediate successors of position 1, σ, the σ'th
element (if there is one) occupies position 1, σ, σ + 1 in the Gδdel Tree.

The immediate successors of each n'th-level position are n+ Vst-level
positions. Each w'th-level position has a sequence of immediate succes-
sors. The sequence of immediate successors of an w'th-level position 1,
σi, . . ., σn has the order type of the sequence which results from the first-
level sequence by deleting the σx'th, . . ., σw'th elements of that sequence.
Each immediate successor of the position 1, σ1? . . ., σn corresponds to an
index p (a nondeleted index) of the first-level sequence, so that the succes-
sor has position 1, σ1? . . ., σn, p in the Gόdel Tree. A single item is a
degenerate case of a Gδdel Tree, having no immediate successors. If a
Gδdel Tree has any first-level positions, then it "continues" until all the
first-level indices are "used up." A Gδdel Tree with n (n finite) first-level
positions has the w'th-level as its lowest level. A Gδdel Tree with infinitely
many first-level positions has denumerably many levels.

A Gδdel Structure is a Gδdel Tree whose elements are ordered pairs
of languages and (Leblanc) valuations. To construct a Godel Structure, a
stock of predicates and individual constants will be required. Let r be a
predicate or individual constant of L. Then nr {n ^ 1) is a new expression
of level n. And «τ, *τ, lτ, . . . are old expressions of level n.

The O'th-level of a Gδdel Structure contains an ordered pair (L, V),
where V is a Leblanc valuation of L. The first-level elements of the Gδdel
Structure are proper extension pairs (L*? Va) of (L, V). The expressions
that are new to the first-level pairs are new expressions of level one.

We must be able to establish a connection between terms (both
predicates and individual constants) occurring in pairs in different posi-
tions of the Gδdel Structure. I will speak of terms as "expressing the same
(predicative and individual) concepts." For every first-level pair (L+a, Va)
at a position 1, σ in the Gδdel Structure, each predicate or individual
constant in (L, V) at position 1 expresses the same concept as the same
expression in (L+σ, Ίfa) at position 1, σ. Any predicate or individual con-
stant in a pair at a position in a Gδdel Structure expresses the same
concept as itself in that pair at that position. Expressing the same concept
is a symmetric and transitive relation. The new terms in each first-level
extension pair at a position express new concepts, and there is no provision
for identifying a new concept in one first-level pair at a certain position
with a new concept in a first-level pair at a different position.

Not only must we connect predicates and individual constants occurring
in pairs at different positions in the Gδdel Structure, we must also connect
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atomic sentences. Let φ{aγ, . . ., an) be an atomic sentence of (L+ α, Va) at
position 1, σi, . . ., σs of the Gδdel Structure, and let ψ(β1} . . ., βn) be an
atomic sentence of (L+β, Vβ) at position 1, pu . . ., ρr of that same Struc-
ture. Let φ in (L+a, Va) at 1, a1 ? . . ., σs express the same concept as ψ in
<L+/3, Vβ) at 1, pu . . . , pr. Similarly, let each on in <L+α, Va) at 1, σ l 5 . . . , σs

express the same concept as βi in (L+/3, Vβ) at 1, p 1 ? . . ., p r . Then the
sentence φ(au . . ., an) in (L+Cί, Va) at position 1, ax, . . ., σs is synonymous
with ψ(βi, . . ., βn) in (L+β, Vβ) at position 1, p 1 ? . . ., ρr.

The immediate successors of a first-level pair (L+α, Va) at position 1,
σ are proper extension pairs (L+β, Vβ) of (L+a, Va). The new terms of these
successors are new and old second-level expressions. The new second-
level expressions express new concepts, not expressed at the first level;
the old second-level expressions express concepts expressed previously,
but not expressed in (L+a, Va) at 1, σ. There is a function Φ2 defined for
second-level pairs (at their positions) which does the following for each
pair (L+β, Vβ) at a position 1, σ, p:

(i) Φ2 associates (some) predicates and individual constants in (L+/3, Vβ) in
1, σ, p with predicates and constants in (L+a, Vά) at 1, σ, which express the
same (respective) concepts. If r is a predicate or constant of L+α, then Φ2

associates r in (L+β, Vβ) at 1, σ, p with r in <L+α, Va) at 1, σ.
(ii) Φ2 associates the old second-level predicates and constants of L+& with
those (new first-level) expressions of (L+y, Vγ) at 1, p which do not express
the same concepts as terms in (L+a, Va) at 1, σ. These old second-level
expressions in (L+0, Vβ) at 1, σ, p express the same concepts as the
corresponding expressions in <L+y, Vγ) at 1, p.
(Hi) Φ2 associates the new second-level expressions of (L+<3, Ίfβ) at 1, σ, p
with the same second-level expressions in (L+δ, Ίf§) at 1, p, σ. (So the
same new second-level expressions must occur in both L+/3 and L+δ.) These
new second-level expressions in (L+^, Vβ) at 1, σ, p express the same
concepts as the same new expressions in (L+δ, #§) at 1, p, σ.

Any atomic sentence in (L+<3, Vβ) at 1, σ, p is assigned the same value
by Vβ as synonymous sentences in (L+a, Va) at 1, σ, or in (L+γ, Vy) at 1, p,
or in <L+δ, V^ at 1, p, σ are assigned by Va, Vγ, or V8, respectively.

If a Gδdel Structure does not terminate at the w'th level, it is fairly
easy to see what the n + l'st level will be like. But, for the record, I will
describe it. The immediate successors of an tt'th-level pair (L+a, Va) at
position 1, σ1? . . ., σn are proper extension pairs (L+β, Vβ) of (L+o!, ̂ α>.
The new terms of these successors are new and old n + Γst-level expres-
sions. There is a function Φw+1 defined for n + Γst-level pairs which does
the following for each pair (L+β, Vβ) at a position 1, σl9 . . ., σ», p:
(i) For the predicates and individual constants in <L+Qί, Va) at 1, σί9 . . . , σn,
the function Φw+1 associates these expressions in (L+β, Vβ) at 1, σ1? . . ., σn,
p with the same expressions in {L+a, Va) at 1, σi, . . ., σn. These terms in
one pair at its position express the same concepts as they do in the other
pair at its position,
(ii) Consider each n'th-level pair <L+y, Vy) at a position 1, μi, . . ., μw in
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the Structure where each μf is the same as one of σ1? . . ., σn, p. Each
expression in such a pair at its location that does not express the same
concept as a term in (L+α, Ίf^ at 1, σi, . . . , cr« requires an old n + l'st-level
expression in (L+β, Ίfβ) at L> σx, . . ., σn, p that corresponds to it. Φn+1

relates each old n + Γst-level expression in (L+/3, 1fβ) to an expression in
some (L+y, 1fγ) at 1, μx, . . ., μw in such a way that no term in one of those
pairs expresses a concept not expressed by a term in (L+/3, Ίfβ) at 1,
σi, . . ., σw, p. (And, of course, the old n + l'st-level expressions in
(L+β, Ίfβ) at 1, σi, . . ., σw, p express the same concepts as the terms to
which they are related by Φw+i in the various pairs at their respective
positions.)

(iii) Let 1, vu . . ., vn+1 be the next index in alphabetic order after 1,
σ1? . . ., σw, p which is such that each Vi is the same as one of ax, . . ., σ», p.
If 1, σi, . . ., σw, p is the last such index in alphabetic order, then 1,
v\) . . ., vn+\ is the first such index in alphabetic order (i.e., v\ < . . . <
Vn+iί- Then Φw+1 associates the new n + l'st-level expressions of (L+β, Ίfβ)
at 1, σi, . . ., σw, p with the same new n + l'st-level expressions of (L+δ, Ίf8)
at 1, vu . . ., vn+ι. These new n + Γst-level expressions in (L+β, Ίfβ) at 1,
σi, . . ., σn, p express the same concepts as the same new terms in
(L+δ, 1f$) 1, vι, . . ., vn+ι. (Since expressing the same concept is a transi-
tive relation, all the n+ l'st-level pairs whose position markers contain
the same indices will contain the same new n+ l'st-level expressions
which express the same concepts at each position.)

Any atomic sentence in (L+/3, Vβ) at 1, σi, . . ., σn, p is assigned the
same value by Ίfβ as synonymous sentences in (L+a, Ί/a) at 1, σu . . ., σw, or
in any <L+y, Vγ) at a position 1, μ1? . . ., μn where each μ̂  is the same as
one of σx, . . . , σn, p, or in (L+δ, V8) at position 1, &Ί, . . ., vn+1 (as described
above in (iii)) are assigned by their (respective) interpreting functions. To
refer to elements in a Gδdel Structure S, we can attach an index to the
ordered pair notation. So that if (L, V) is the O'th-level pair of Gδdel
Structure S, we can write that (L, Ίf)x is an element of S. And to say that
(L+Oί, %<)i,σ1,...,<rwis an element of S means that <L+Q!, Ίfa) occurs at position
1, σ i, . . . , σn in S. If <L, ίΊί)ι is an element of S, then S is a Gδdel Structure
headed by (L, V).

A Gδdel Structure can be regarded as representing the possible
developments of an evaluated language (L, If). Each first-level pair
(L+a, Va) at a position 1, σ represents one possible extension of (L, If).
These possibilities are thought of as determined by an "independent
reality" which is unaffected by the choice of an extension of (L, If), for no
matter which first-level pair is chosen, all the other possibilities remain.
(Recall that each first-level pair (L+a, Va)1 σ is extended by every other
first-level pair (L+(3, Vβ)ι9P to o b t a i n the immediate successors of
(L+a, yα)i>σ.) A branch through a Gδdel Structure represents a possible
history of the language. Such a language is incapable of commenting on its
own development, for at every stage exactly the same expressive possi-
bilities are open to all languages introduced at that stage. (A Gδdel
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Structure represents a classical conception of the relation of language (and
language users) to the world rather than a "quantum-theoretical" concep-
tion. But the Gδdel Structure can accommodate entirely new expressions,
new concepts, at every stage.)

In order to define a Gδdel valuation, we must redefine 'substitution
instance.' Let A be a quasi-wff of (L+a, Ίfa) at position ε in Gδdel Structure
£. And let A contain free occurrences of distinct individual variables
δi, . . ., δ« and no others. Then sentence Ar in (L+β, Yβ) at ε f in S is a
substitution instance of A in (L+a, Ίfa) at ε iff A' can be obtained from A by
replacing δi, . . ., δ« by constants from L+<3, and ε' is a (possibly null)
extension of ε.

Let S be a Gδdel Structure headed by <L, If). Then a Gδdel valuation
for S is given by:

(i) The atomic sentences of a pair (L+a, Va) located at ε in <£ receive the
values assigned them by 1fa.
(ii) Let (Va)A be a sentence of (L+β, Vβ) located at ε in S. If every
substitution instance of A in (L+β, Ίfβ) at ε has value T (at its proper
location), then (Va)A has value T in (L+β, Vβ) at ε. Otherwise it has value
F in<L+0, Vβ) at ε.
(iii)-(viii) Etc.

It is easy to see that Leblanc and Henkin valuations are Gδdel valua-
tions given by very simple Gδdel Structures. The definitions of 'Gδdel
logical truth' and 'Gδdel logical consequence' (\\-Q-) can be constructed along
the lines of earlier definitions. We shall now establish the equivalence
between Gδdel valuations and referential valuations.

Theorem 3 Let S be a Godel Structure headed by (L, V). Then there is a
nonempty domain 0 and a referential valuation Vr of L for θ which assigns
to sentences of L the same values they receive in the Godel valuation for £.

Proof: For each individual constant δ of <L+α, Va) located at ε, the pair
(δ, ε) is a located individual constant of £. Let 0 consist of equivalence
classes of located individual constants of S that express the same concepts.
The construction of Ύ1 is straightforward.

Theorem 4 Let θ be a nonempty domain and let V be a referential valuation
of L for 0. Then there is a Gδdel Structure £ for which there are at least
as many distinct individual concepts as there are distinct individuals in 0,
and for which the sentences of L have the same values as for If.

Proof: If only a finite number of individuals of 0 are not named by
constants of L (as evaluated by V), this theorem is trivial. Suppose an
infinite number of individuals of θ fail to be named by constants of L. Let
θr be the set of all unnamed individuals in θ, and let Rι be a well-ordering
relation for 0'. Let η be the set of all finite, nonempty subsets of 0f (the
set of all unordered n-tuples of individuals of 0', for n > 0), and let Rη be a
well-ordering relation for η. Let Ί/' be the Leblanc interpreting function
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for L which assigns to atomic sentences the same values they receive for
V. Then (L, V) is the head of the Gδdel Structure being constructed.

For each n > 0, let L+n be obtained from L by adding individual
constants i«i, . . ., xaw. For a set {kl9 . . ., kn}oί individuals of 0', ordered
by Riy let V(k1,...9kn) ^ e t n e Leblanc interpreting function of L+n which
agrees with V' on the atomic sentences of L and which assigns to atomic
sentences containing i«i, . . ., \dn the values that corresponding quasi-wffs
of L would receive from If for the values kl9 . . ., k,n of their free variables.
The first-level pairs of the Gδdel Structure are pairs <L+W, V(k1,...9kn))
ordered by the obvious relation obtained from Rη. For each m, n (both >0),
let L+W'"*be obtained from L+w by adding individual constants \al9 . . ., \am.
For each two distinct first-level positions 1, p and 1, σ of pairs (L+m,
V{k[,...,k'm)) and (L+n, ^(k1,...fkn)), let Vσ,p be the Leblanc interpreting func-
tion of C+n>m which assigns atomic sentences common to L+n the same
values they receive from ^(kυ...,kn), and which " t reat s " the constants
2<Zi, . . ., \am as if they were names of &', . . ,,km. The immediate succes-
sors of a pair (L+n, ^(kl9...,kn)) at position 1, σ are the pairs (L+n*m, Vσφ) at
1, σ, p obtained from every other first-level pair (L+m, 1f(k[,...,kin)) at a
position 1, p (p must be different from σ). The immediate successors of the
second-level pairs are obtained in the same manner as the second-level
pairs were obtained from the first-level pairs. And so on. This is a
relatively simple Gδdel Structure, because new predicates are never
introduced, and new individual constants are not introduced after the first
level.

Now Theorem 4 is a consequence of the following lemma, which is
proved by induction on the length of A:

Let A be a quasi-wff of L containing free occurrences of distinct individual
variables γl9 . . ., γn and no others. Let ku . . ., kn be individuals ofθ for
which, when assigned as values to γί9 . . ., γn, 1/ would assign value W to A.
Then in every (L+0!, Va) at position δ which has constants βl9 . . ., βn

S
Yl- -Ύn

r Ό , ..„, # βi...β«A| has value W.

(The notation for substitution is from [l]; it means that free occurrences of
γu . . ., γn are replaced by βl9 . . ., βn.)

The statement of Theorem 4 says that S has at least as many individual
concepts because in <£ more than one concept corresponds to the same
individual of θ. This is because each new constant in each first-level pair
is regarded as expressing a concept distinct from that expressed by the
new constants in every other first-level pair. But constants in different
first-level pairs correspond to the same individual in θr. This situation
could be remedied if we provided for identifying concepts by some adapta-
tion of Leibniz's criterion. These theorems establish that referential
logical truths coincide with Gδdel logical truths, and similarly for the two
kinds of logical consequence. The analogue of the Lowenheim-Skolem
Theorem for Gδdel valuations says that for every Gδdel valuation for a
Gδdel Structure headed by (L, V), there is a Henkin valuation which gives
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the same values to the sentences of L. This has roughly the same intuitive
force for Gδdel valuations that the Lowenheim-Skolem Theorem has for
referential valuations. But it is less surprising for Gδdel valuations.
Because as far as the sentences of L go (there are just denumerably many),
their values clearly depend on what happens in (at most) denumerably many
first-level pairs (L+Qf, Va) or their successors. We can modify the Gδdel
Structure by dropping all predicates not found in L, and then consider a
branch determined by some denumerable set of pairs that "suffices'' for
the values given sentences of L. This branch can then be consolidated into
one Gδdel Structure {<L, η/)u (L+, V')lfl], where L+ is the union of all the
L+a on the denumerable branch, and V is the union of the corresponding
functions.

5 Some incompleteness results So far we have considered three substitu-
tion-instance interpretations of quantifiers; Leblanc interpreting functions
are fundamental to each interpretation. Leblanc valuations are least well
suited to treating L as if it were a natural language. And for Leblanc
valuations, customary first-order formal systems are sound but not
complete (they are complete with respect to logical truth but not with
respect to logical consequence). Henkin valuations make possible a more
realistic treatment of L, and the customary formal systems seem tailor-
made for these valuations. Gδdel valuations provide the most realistic
treatment for L, and they most closely parallel referential valuations. But
I find Gbdel valuations simpler than referential valuations in this respect:
Gδdel valuations enable us to make clear sense of quantification without
bringing in the "auxiliary" notion of reference. Substitution-instance
interpretations have given us a different perspective on completeness
results and on the Lowenheim-Skolem Theorem. We must now consider
incompleteness results, for these are also easier to make sense of from a
substitution-instance standpoint than from a referential one. We shall begin
with our first-order L, because the strategy used in GόdeFs Incomplete-
ness Theorem does not require that we be dealing with higher-order
languages. We need the following definitions:

Let A(ciι9 . . ., an) be a quasi-wff of L which contains free occur-
rences of n distinct individual variables aly . . ., an and no others. Then
A(al9 . . ., an) is an n-adic predicative expression of L. (This use of
'predicative' is unrelated to RusselΓs use of the same word for what he
called predicative functions.)

Let Φ be a 1-1 function mapping a subset of the individual constants of
L onto the expressions and (finite) sequences of expressions of L. Then Φ
assigns the expressions and sequences of expressions of L to some of the
constants of L. If a is an individual constant of L for which Φ is defined,
then a names Φ(α) with respect to Φ.

Let y b e a Leblanc, Henkin, or Gδdel valuation of the sentences of L
(to be entirely precise, we should specify a Godel Structure if V is to be a
Gδdel valuation). Let Φ be an assignment of the expressions and sequences
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of expressions of L to some of the constants of L. Let ψ be a property
(relation) of w-tuples of expressions and sequences of expressions of L.
Then A(al9 . . ., an) represents ψ with respect to Φ under Ίί if for rc-tuples
of individual constants βu . . ., β; for which Φ(β ) is defined, A(βl9 . . ., βn)
has value T for V iff ψ(φ(β1), . . ., Φ(β«)). And A (ft, . . ., βn) has value F if
there is some βi for which Φ(β;) is undefined.

Now, for Leblanc valuations, we can obtain the following result.

Theorem 5 Let V be a Leblanc valuation of L. Let Φ assign the expres-
sions and sequences of expressions of L to some of the constants of L. Let
Q(oίι, oί2) be a binary predicative expression which represents Φ{a^ = a2

with respect to Φ under V. (I.e., Q(βi, β2) represents that the constant βx

names the constant β2 with respect to Φ.) Let S(a1, a2, α3, α4) be a quadratic
predicative expression which represents the following relation: Φ(α4) is an
expression obtained from an expression Φia^ by substituting Φ(α2) for all
occurrences of Φfe) in Φ(oίι). And let B(oiι) be a monadic predicative
expression. Then there is a sentence A of L, named by a constant a {with
respect to Φ) such that A has value T for Ίf iff B(a) has value T for If.

Proof: Let constant βx name the variable % ' with respect to Φ. Let
constant β2 name ζ(Vx2){Vx3)[s(x1, x2, βl9 x3) & Q(x2, xx) => B(x3)].' Let the
constant β3 name the constant β2. And let constant β4 name

'(V^aXV ŝ) [S(β2, X2, βu *3) & Q(xz, β2) => B(x3)}.>

Now the sentence A is the one named by the constant β4, and a is the
constant β4. For suppose A has value T; i.e., suppose that

1 (Vx2)(Vx3) [S(β2, x29βl9 x3) & Q(x2, β2) => B(x3)]

Then we can obtain the following:

2 S(β2, β3, βi, β4) & Q(β3, β2) => B{βA) From 1

! nh' βn\ β u These were given in the statement of the theorem.
4 VvP3> P2> )

5 i?(β4) From 2, 3, 4, by modus ponens

Now suppose £(β4) has value T for V. Then for any constants γ, δ, if
'S(β2, γ, βi, δ) & Q(γ, β2)' has value T for V, then γ is the constant β3 and δ
is the constant β4 (because Φ is 1-1 and substitution has a unique result).
So B(δ) will have value T for V. Hence,

'(V#2)(V#3) [5(β2, *2, βi, ^3) & Q(x2, β2) ^ B(x3)]9 has value T for V.

Theorem 5 is not true for Henkin and Gόdel valuations. We can
understand why it is not if we consider the second half of the proof of
Theorem 5. For Henkin and Gδdel valuations, we would not have that γ is
the constant β3 and δ is the constant β4. Both sorts of valuation consider L
as subject to being extended. The fact that a Henkin or Gόdel valuation of L
satisfies the conditions of Theorem 5 is not sufficient to guarantee that
S(al9 a2, a3, α4) and Q(al9 a2) will represent what they are supposed to in
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extensions of L. In some extension we might have 'S(j32, y, βu ϋ) & Q(γ, β2y
being true for new constants y, δ that are different from β3, β4. But then we
cannot argue that if B(β4) has value T, so does A.

In order to get Theorem 5 for Henkin and Gδdel valuations, we can
enrich L with identity to produce LΛ Leblanc interpreting functions for L'
must "respect" the values assigned to atomic identity statements. And
extension pairs (L'+, Ύ+) of <Lf, If) must also "respect" the true identities
of (I.', Ίf) when new predicates are added.5 We can find valuations of
language Lf which place sufficient restrictions on extensions (and their
valuations) to give us the following result.

Theorem 5a Let V be a valuation of V (V can be a Leblanc, Henkin, or
Gδdel valuation). Let Φ, Q{aua2), S(al9 a2, α3, α4), B{ax) be as in Theorem 5.
In addition, let the following sentences of Lf have value T for If:

(VtfiKVtfaKVtfs) [Q(* i , Xz) & Q(Xi, X3) ^ *2 = X3]

(>fχι)(yχ2)(^χs)[Q(χi9 χ3) & Q(χ2, X3) D χi = X2]

(V#i)(V#2)(V#3)(V^(V#5)[S(*i, X2, *3, xύ & S(xu x2, x3, x5) => # 4 = * 5]

Then there is a sentence A, named by a constant a (with respect to Φ), such
that A has value T for If iff B(a) has value T for I/.6

For Theorems 5 and 5a, there are corollaries related to Tar ski's results
in [11].

Corollary Let the conditions be as in Theorem 1 (la). Let T(a^) be a
monadic predicative expression such that if constant β names a false
sentence {with respect to Φ), then T(β) has value F for If. Then there is a
sentence A named by a constant a which has value T for V but for which
T(a) has value F for 1/.

Let us move back to L, and consider just Leblanc valuations of L. Let
Φ be as before, and let Q(al9 a2), S(al9 a2, a3, α4), C$κ(α!i) be predicative
expressions with the number of free variables indicated. Consider how we
would construct a set SFJ of sentences of L such that for every Leblanc
valuation V which makes all>sentences of 9W true,

Q(al} a2) represents Φ(cίi) = a2 with respect to Φ under If9

S(al9 a2, a39 a4) represents substitution as before,

Cgw(ffi) represents 3W i-Φ(αi).

To construct this Wi we could begin with Q: If Φ(βJ = β2, then 'Q(βl9 β2)' is
in Wi; otherwise '~Q(βu β2Y is in 9W. We could similarly put in the " t r u e "
instances of S(a1, a2, a39 α4), and put in the negations of the rest. We would
also need other predicative expressions to characterize expressions and
sequences of expressions of L, and they could be treated in the same way.
Finally we would need a monadic predicative expression MioQ to represent
membership in Wl. And we -could again put in the true instances and the
negations of all the rest. Given all this apparatus, we could construct a
suitable C^. But then, by Theorem 5, there is a-sentence A of L, named by
a constant a (with respect to Φ), such that for every Leblanc valuation V
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which makes all sentences of 9W true, A has value T iff ~ Cgw(α) has value T.
But A must have value T. So we have awlfη̂ A, but it is false that 9WI-A.
This result is not paradoxical. For we already know that the formal system
3 is not complete with respect to Leblanc logical consequence. The truth
of A depends essentially on the truth of the members of infinite set 3W, and
not on the truth of the members of any finite subset of 3W.

We might try to replace L by Lf, and construct a similar set 9W for
Henkin and Gόdel valuations of Lf. Such an 9W must contain more than is
required for Leblanc valuations. For we must put some sentences in 9W to
insure that in extensions of Lf, the various predicative expressions
continue to represent what they are supposed to. Failing this, quantified
sentences could be true (or false) for the wrong reasons. If we had a list of
names (with respect to Φ) of the members of 9W, we might try to put in 9W a
sentence which has this effect:

(VtfJ [M(xι) ^ there is one of those names such that it = xx].

But we cannot do this with identity statements alone, for we are limited to
finite conjunctions and disjunctions of them. So we might think of putting
arithmetic axioms in 9W, "identifying" the integers with the constants of
L', and giving a numerical characterization of the members of 9W. But this
will not work. Nothing will work, for we can easily prove the following
theorem.

Theorem 6 Let Φ be an assignment of the expressions and sequences of
expression of L' to some of the constants of L'. Then there is no set 9W
such as that described above for Henkin or Gόdel valuations of Lr.

GodeΓs Incompleteness Theorem shows that we can form a set 9W for
which we have certain intentions, but that if these intentions were realized
we would have a paradoxical result. (I.e., aWll-ppA and 9WlhfA, but not
9W h A.) There is no set 3D! that places enough restrictions on extensions
of L' to make them fully conform to our intentions. This is an incomplete-
ness result for Lf, but the incompleteness it shows is an incompleteness of
"expressive power."

6 Higher-order languages Let us consider what happens to the substitu-
tion-instance interpretations of quantifiers when we add predicate variables
and put them in quantifiers. To understand this, it is sufficient to consider
second-order languages. Let L2 be the language obtained from L by adding:

monadic predicate variables: fl,f\,fl, . . .;
binary predicate variables: fl,fl,fl, . . .; etc.

And allowing quantification of predicate variables. As far as valuations go,
we can just extend our earlier definitions of Leblanc valuations, Henkin
valuations, and Gόdel valuations in the obvious ways.

However, there are certain complications in the higher-order case. In
the customary formal systems that contain predicate variables and a rule
of substitution for them, it is not just predicates (or predicate variables)
that can replace predicate variables. Instead these variables are replaced
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by predicative expressions or formulas having the right number of distinct
free variables. (This is the same use of 'predicative' as in the preceding
section. A predicative expression has free occurrences of individual
variables, and so acts like a predicate. Predicative expressions have
nothing to do with Russell's predicative functions; a predicative expression
may contain quantified predicate variables.) So it would seem appropriate
to regard predicate variables as symbolizing predicative expressions. But
we cannot do this, for it would prevent us from giving recursive (inductive)
definitions of the various kinds of valuations (because the sentences that
can be obtained by substitution are frequently longer than the quantified
formula). On the other hand, if we regard predicate variables as ranging
over just predicates, customary formal systems for higher-order languages
are not sound.

We could easily construct new formal systems to accommodate our
new approach to quantified predicate variables. But this would not lead to
very interesting results; for a language without a predicate to match every
predicative expression will be weak in expressive power. To resolve this
dilemma, we will consider predicate variables as ranging over just
predicates, and then restrict our attention to those evaluated languages
which are complete with respect to predicates. These are the languages
which have a predicate φ for every predicative expression A(aly . . ., an).

More specifically, let V be a Leblanc interpreting function of L2. The
Leblanc valuation of L2 for V is complete with respect to predicates iff for
every rc-adic predicative expression A(al9 . . ., an) in L2, there is an n-adic
predicate φ of L2 such that (V#i) . . . (V#») [A(xl9 . . ., xn) = φ(xu . . ., Xn)]
has value T for the Leblanc valuation of L2 for Ίf.

A Henkin valuation Ίf of L2 is complete with respect to predicates iff
there is an extension L* of L2 and a Leblanc valuation Ίf' of L^ which is
complete with respect to predicates, and which agrees with Ίf on the
sentences of L2.

We can show that for every pair (L2, Ίf), where ^ is a Leblanc
interpreting function of L2, there is an extension pair (Lί, V) of (L2, If)
such that the Leblanc valuation Ίf1 of L^ is complete with respect to
predicates. So for every Leblanc interpreting function Ίf of L2, there is a
Henkin valuation Ίf* of L2 that agrees with Ίf on the atomic sentences of L2

and that is complete with respect to predicates. This result suggests the
use of a formal system with a restricted rule of substitution (only predi-
cates or predicate variables for predicate variables) and a rule of defini-
tion for predicates. Lesniewski's formal systems were of this sort, and in
[6] Henkin suggests using such systems.

Let ^ be a Gδdel Structure headed by <L2, 1/). S is complete
with respect to predicates iff for every rc-adic predicative expression
A(aly . . ., an) in (Ltβ, Vβ) at ε in S, there is an rc-adic predicate φ in
(Lίy, Ίfy) at ε' in S, where ε' is either ε or an extension of ε, such that

(V#i) . . . (VΛΓJ [A(XU . . ., xn) = φ(xu - •> χn)] has value T in (Ltγ, Ίfy) at εf
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for the Gδdel valuation of S. We will also say that the Gδdel valuation of S
is complete with respect to predicates.

Let 3 2 be a formal system for L2 obtained by adapting 3 (as in [l]).
3 2 is clearly sound for Leblanc, Henkin, and Gδdel valuations that are
complete with respect to predicates. 3 2 is not complete with respect to
Leblanc logical consequence, because the set {lή>(a0), Fι

0(a^, . . .} still
implies (VΛΓ0) FQ(X0) without our being able to prove it. But 3 2 is complete
for Henkin logical consequence for Henkin valuations that are complete with
respect to predicates. Since Henkin valuations of L2 "amount" to Gδdel
valuations given by a Gδdel Structure with a single first-level pair, 3 2 must
also be complete for Gδdel valuations that are complete with respect to
predicates. But what does this do to Gδdel's Incompleteness Theorem? To
get that result we must consider a restricted class of Gδdel Structures; and
we need the following definitions:

If δ, γ are individual constants of (L*0, Va) at ε in Gδdel Structure S,
then located individual constant (δ, ε) is distinguishable from located
individual constant (γ, ε) if there is a sentence A of L^α which contains δ
and which has value T in (L£a, Va) , which yields a sentence with value F
when the occurrences of δ are replaced by occurrences of y. (The defini-
tion of 'located individual constant' is given in the proof of Theorem 3 of
section 4.)

If δ is an individual constant of (\-£a, Va) at ε in £, and γ is an individual
constant of (L£β, Ifβ) at ε f, then (δ, ε) is distinguishable from (y, εf) if there
are constants p, σ of (L£μ, Vμ) at ε" which are such that p at ε" expresses
the same concept as δ at ε, constant σ at ε" expresses the same concept as
γ at ε f, and (p, ε") is distinguishable from (σ, εff).

Let φ be a predicate in (L£a, Va) at location ε of Gδdel Structure S.
Then (φ, ε) is a located predicate of S.

Let φ, ψ be rc-adic predicates in (L£a, Va)ε in Gbdel Structure £. And
let (VtfJ . . . (Vxn) [ψ(xi, . . ., Xn) = Ψ(xi, . . . ,#«)] have value T in (L.ta, Va)c
Then (φ, ε) is extensionally equivalent to (ψ, ε).

Let φ be an w-adic predicate in (L£a, Va)€9 and let ψ be an n-adic
predicate in (L^ , 1fβ)t, of <£. Let φ in (L£a, Va)c express the same concept
as w-adic predicate θ in (L.£Ύ, 1fγ)ε,,, and let ψ in (L^, 1/rβ)ε, express the
same concept as n-adic predicate Ξ in (L£Ύ, Vγ)clt. Let (θ, ε") be exten-
sionally equivalent to (Ξ, εff). Then (φ, ε) is extensionally equivalent to
<Ψ, ε f ) .

Let θ be the set of equivalence classes of nondistinguishable located
individual constants of £. And let Pn be the set of located (w-adic)
predicates that are extensionally equivalent to some located w-adic
predicate (φ, ε). We can talk about Pn as if it were a predicate, and
consider its value for a given w-tuple of elements of θ. So we will say,
informally, that Pw is an w-adic predicate of (w-tuples of) elements of θ.
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A Strong Godel Structure is one which contains every rc-adic predicate
Pn of elements of θ for every finite n > 0. (I.e., it is a Gδdel Structure for
which every such Pnis nonempty.)

3 2 is not complete for Strong Gδdel Structures and their valuations.
For consider the set X with these sentences in it (the identity symbol is
defined by Leibniz's definition)7:

~(3#O)^O0*O> «o)

F2

0(a0, ai), F2

0(au a2), . . .

(Vxo)(V*i)(V*2) [F2

0(x0, xd & F2

0(x0, x2) => xγ = x2]

(V*0)(V*i)(V*2) [F&X0, X2) & F&xl9 x2) => x0 = Xi]

Fι

0(a0), (V*o)(V*i) [Fj(*0) & ̂ o(*o, *i) => F&xJ]

(V/J)[/ί(βo) & (V*o)(V*i)[/i(*o) & ̂ o(*o, *i) =>/J(*i)l ^ (V*o) [F£(* 0) =>/J(*o)]]

This set has (VΛ:0) [ F J W D (3ΛΓ1)FO(^O> ^ I ) ] as a Strong Gδdel consequence
( IhsG )> but ^ e sentence cannot be deduced from the set by means of 3 2 .
(The induction sentence is required, for without it the set would not keep
other constants—in extensions of L2—from having 'FQ* truly applied to
them.) This incompleteness of 3 2 is very much akin to the incompleteness
of 3 for Leblanc valuations of L.

Now consider the set Fwith these sentences in it:

~(Bxo)F%(xo, do)

Fι

0{a0)

(VXo)ίFo(Xo) => (BXi)[Fo(xo, *i) & ^o(^i)]]

(V^o)(V^i)(V^2)[i^(A?o, Xi) & F2o(xo, X2) 3 XX = x2]

( V ^ O ) ( V ^ ) ( V A ; 2 ) [ ^ U O , X2) & F$(xu x2) ^ x0 = Xi]

(V/i)[/J(αb) & (V*o)(V^)[/JW & F2

0(x0, xx) 3 / i U J ] ^ (V^tJPίW =>/J(*o)]]

This set guarantees the existence of a numerical structure. We could use
the procedure of Godel's Incompleteness Theorem to show that there is a
sentence A which is a Strong Gδdel consequence of Y, but which cannot be
deduced from F by 3 2 . (Doing this would be much more complicated than
Gδdel's own proof, because the set Y does not identify any numerals except
ΌQ.' And all the numerals may not be found in L2, or even in any one
first-level extension pair of (L2, V). A more manageable set with F's
effect would be possible if L2 were enriched with functional expressions.
Then we could use a finite set to identify the numerals with a0, a'o, a'ά, etc.)
Since Y is finite, there is a sentence which is a Strong Gδdel logical truth,
but which is not deducible by S2. So S 2 turns out to be doubly incomplete
for Strong Gδdel Structures and their valuations.

If we try to describe carefully what is going on, we can say that a finite
set (or a single sentence) is used to "generate" an infinite set (the
numerical structure). We can then construct a predicative expression
which forms a true sentence when its free variable is replaced by any
member of the set. This predicative expression signifies that the sub-
stituted (numerical) constant is not the name of a proof of the unprovable
sentence. So there is a predicative expression true for all members of the
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infinite set (if 3 2 is consistent of course), but this truth cannot be proved by
induction. The truth of the unprovable quantified consequence depends
essentially on the truth of its infinitely many instances. By restricting
Gδdel Structures to Strong Gδdel Structures we have increased the
expressive power of the language L2. This expressive power now outstrips
deducibility, for there are logical truths and logical consequences which
cannot be established with our formal system. We cannot similarly
strengthen the formal system, so long as we stick to rules (procedures)
that people might actually be able to use.

7 Existence For every nonempty domain θ and referential valuation of L
or L2 for 0, there is a substitution-instance valuation which awards the
same values to sentences of L (or L2). And there are substitution-instance
valuations whose quantifiers "cover as much territory" as the quantifiers
of referential valuations. This raises questions about the existential sig-
nificance of the existential quantifier. For substitution-instance quantifiers
do not have existential import, but they "coincide" with referential quanti-
fiers which are alleged to have such import. If we proceed semantically
with referential valuations, we really settle questions of existence by our
choice of a domain—not by using a quantifier. (Consider the difference
between choosing a domain whose members are astronomical objects,
and choosing the domain of real numbers.) If we proceed logistically (in
Church's sense, as explained in [1]), we cannot distinguish a referential
from a substitution-instance interpretation. For with both interpretations
we will have the same axioms and rules of inference. And in both cases we
will find the same sentences coming out true. Existential considerations
fall outside the scope of the formalisms of our formal languages.

We could impose restrictions on substitution-instance valuations to
make them more existential. If we suppose that we have some independent
criteria for distinguishing the names of existents from names of non-
existents, we could limit the names in L (or L2) and its extensions to the
names of existents. Then, even in substitution-instance valuations, the
"existential" quantifier would indicate existence when individual variables
were quantified. And existentially quantified predicate variables would
correspond to sets of ^-tuples of existing things. However, this seems
pointless. The equivalence of the two sorts of valuations shows that
quantification is not well-suited for distinguishing between what exists and
what does not. And we do not increase our understanding of this difference
by imposing external restrictions on the languages. Instead, with substitu-
tion-instance valuations in mind, we can consider formal languages that,
like natural languages, contain both empty and nonempty names. Perhaps
this can serve as a first step towards getting clear about reference, and all
that it involves. For the banishing of empty names from standard logical
languages, or giving them a treatment which makes the difference between
empty and nonempty names depend on their relation to referential
quantifiers (as in [7]), has blocked a satisfactory account of reference.
(Frege and Russell have so strongly influenced subsequent philosophers
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that it is very difficult to recognize that speakers of natural languages use
empty and nonempty names in the same way.)

8 Speculations Russell once thought that there is a difference between the
meanings of 'all' and 'any' that is important for logic and mathematics. He
claimed that this difference corresponds to the difference between bound
and free occurrences of variables (between apparent and real variables). If
this difference is overlooked, contradictions will result. In the Preface to
the second edition of Principia Mathematical Russell gave up his claims
about 'all' and 'any.' (Of course, there is a difference between them, but it
is not what he had thought.) This was because he recognized that free
occurrences of variables could be construed as bound by initially placed
universal quantifiers.

Even though Russell did not succeed in expressing, or understanding,
the difference he was after, I think there is a genuine difference at stake.
It is primarily a difference between two kinds of generality—between two
kinds of general statements. The first kind I will call schematic generality.
This generality is expressed by quantifiers when these are given a
substitution-instance interpretation; for such valuations construe variables
as schematic letters (in Quine's sense). The second kind of generality is
total generality. Totally general statements involve a totality (a set
perhaps) that is something over and above its elements. Total generality is
part of the subject matter of set theory; a totally general statement
indicates set inclusion or some other relation between sets.

The two kinds of general statements are distinct, and confusing them
might lead to contradiction (since not every statable general condition
determines a set). There is an important connection between schematic
generality and the open character of a natural language. Such a language is
never closed or complete; there are always new expressions that might be
added. (Even a Godel Structure may distort the essential openness of a
natural language, since we regard such a Structure as completed.) Henkin
and Godel substitution-instance quantifiers, and the customary formal
systems for quantification, are well suited to this openness. Note that from
the perspective of a user of L or L2 (with its atomic sentences evaluated),
the extensions of the language are not yet available. He knows that exten-
sions are possible, though none has yet been realized. And he may even be
justified in making some universally quantified statements. Customary
formal systems codify the inferences it is legitimate for him to make.
Quantification is a logical (or linguistic) device suited to express schematic
generality. Such generality is pretty well understood, since quantification
theory is well developed. When schematic generality is involved, so-called
impredicative definitions are permissible. For schematic generality does
not (necessarily) involve a completed totality. Although total generality is
studied in set theory, it is not so well understood. For there is no complete
account of the conditions that determine a totality.

If one grants that there are these two kinds of generality, and accepts
my claim that quantification is best suited to express schematic generality,
then it can seem inappropriate to use set-theoretic structures to evaluate
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Jformal languages. For this amounts to "cutting,.;down" schematic gen-
erality to those cases where it is equivalent to total generality. But there
must be true schematically general sentences for which there are no
equivalent totally general sentences. {Even when we talk about referential
valuations, we make general statements which "outstrip'' totally general
statements. For we talk about sentences true for all valuations of all
nonempty domains. But there is no set which contains all these domains as
its elements.)

But set-theoretic structures are not so inadequate as they may seem.
Recall the aim of treating formal languages like natural ones. Substitution-
instance quantifiers are used in a language regarded as being already a
going concern. So that its nonlogical expressions are (supposed to be)
already meaningful; its individual constants already either denote or fail to
denote real objects. But with respect to a natural language, there are
always things without names. If all the things waiting to be named cannot
be contained in a single set, then the possible extensions to our language
will not all fit in a set-theoretic structure. But no matter how our
language is extended, it seems plausible to claim that it will never contain
more than denumerably many expressions. It also seems plausible that
there are at most denumerably many candidates (shapes or sounds) for new
expressions of our language. If these are really limitations on our language
and its extensions, and if from the viewpoint of logic we are only concerned
with the truth values of atomic sentences in the various extensions (and not
with the different meanings these sentences have in the different extensions
that happen to agree about the truth values of those sentences), then set-
theoretic structures will be adequate for logical purposes. There is a
sense in which a set-theoretic structure furnishes only a kind of "scale
model" of an interpreted language whose quantifiers are understood in the
substitution-instance way. But this is sufficient to convince us that
substitution-instance interpretations are consistent.

NOTES

1. Hugues Leblanc deals with such valuations in [9], among other places.

2. In [9], Leblanc was concerned to show that a substitution-instance interpretation
can give the same results as a referential interpretation. He succeeded, and his
success has some philosophical significance, since a substitution-instance inter-
pretation is ontologically less committing than the referential variety. But he was
clearly not developing the substitution-instance interpretation "on its own
terms."

3. In [1], Alonzo Church stipulates that he uses the term 'language' in such a way
that, if a new expression is introduced into a given language, the result is a new
language (p. 48, note i l l ) . And this usage seems to be the most common in logic.
However, it must not be thought that his use of 'language' is the (only) correct
use. For the ordinary way of talking about languages has it that a language can be
the same language even though it changes in various ways—we might say, for
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example, that residents of the United States spoke English in 1850, and that res i-
dents of the U.S. continue to speak English today, though the language has changed
considerably during that time. This manner of using the term language' is just
as legitimate as Church's. The difference between the two uses really amounts to
the difference between two systems of classification. But alternative systems of
classification are not right or wrong, they are only more or less useful for a
given purpose.

4. The terms 'Henkin' and 'Gbdel' have not been chosen because either Henkin or
Gbdel investigated the valuations named for them. I have chosen these names
because Henkin valuations lead naturally to Henkin's Completeness Theorem, and
Gbdel valuations lead to GbdeΓs Incompleteness Theorem.

5. For Henkin valuations, it is sufficient to respect true identities (a{ = ajf by making
sure that α, and cij are everywhere interchangeable. We do not have to require that
for false identities there must be a schema A{aχ) which is true for aι and false for
a,y But for Gbdel valuations, it would be reasonable to impose this requirement,
i.e., that such a schema ^(o!!) be located someplace in the Gbdel Structure. How-
ever, I will not bother to give a precise formulation of this requirement.

6. Theorems 5 and 5a are simpler to state (and prove) in a language which has func-
tional expressions, so that an expression with places for names is well-formed
when these places are occupied by functional expressions. In such a language,
sentence A can turn out to be B{a); but a will be a functional expression, not a
simple constant.

7. The sentences in the set can obviously be regarded as numerical axioms. But I
would not say that they are axioms for the natural numbers; there are no such
things as the natural numbers. Instead there is a characteristic natural number
structure, which has many exemplifications. In the set in question, it is exempli-
fied by the constants a0, a±, a2, • . - as ordered by FQ.
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