A NOTE ON TURING MACHINE REGULARITY
 AND PRIMITIVE RECURSION

NICHOLAS J. de LILLO

1 Introduction The purpose of this paper is to present an explicit Turing machine \mathbf{Z} which computes any function which is defined by means of primitive recursion from two given computable functions. The formulation of \mathbf{Z} uses results of Davis [1] and Mal'cev [3], with the added feature that \mathbf{Z} yields outputs in a standard form, such outputs usable as inputs in subsequent Turing machines which can be activated after \mathbf{Z} has completed its computation. Such machines as \mathbf{Z} are defined as n-regular, for a positive integer n. The course of a computation in \mathbf{Z} follows along lines suggested by Davis [2], for a similar computation using abstract programs instead of Turing machines.

2 Preliminary concepts We will assume a general familiarity with [1], explicitly defining only those concepts which are absolutely necessary for the continuity of this discussion. A Turing machine ${ }^{1}$ is any non-empty and finite set of quadruples, any one of which assumes the form (i) $q_{i} s_{j} s_{k} q_{l}$, or (ii) $q_{i} S_{j} R q_{l}$, or (iii) $q_{i} S_{j} \mathrm{~L} q_{l}$, where i, j, k, l are positive integers. The symbols q_{i}, q_{l} are elements of a finite set Q, called the internal states of the machine; the symbols $\mathrm{S}_{j}, \mathrm{~S}_{k}$ are elements of the set $A=\{1, B\}$ disjoint from Q and called the alphabet of the machine; the symbols L and R are distinct symbols not in $Q \cup A$. It is understood that no two distinct quadruples of a given Turing machine begin with the same first two symbols. The usual meanings are attached to the quadruples: (i) is the instruction which, when the state of the machine is q_{i} and the symbol S_{j} is being scanned, erases S_{j} and prints S_{k} in its place, the machine then moving to state q_{l}; (ii) instructs the machine to move one square to the right and change to state q_{l} when the machine is in state q_{i} and scans a square with s_{j} printed there; (iii) is the instruction similar to (ii), except the machine moves one square to the left.

[^0]Let \mathbf{T} be a fixed Turing machine. Then $\theta(\mathbf{T})$ will denote the largest subscript of an internal state symbol appearing in T. Furthermore, for any natural number $m, \mathbf{T}^{(m)}$ will denote the Turing machine obtained from \mathbf{T} by adding m to the value of each subscript of an internal state symbol of \mathbf{T}. By an instantaneous description of \mathbf{T} we mean any finite string of symbols from $Q \cup A$ containing exactly one element of Q, and where this element of Q is not permitted to be the rightmost member of the string. In any instantaneous description α, we regard the symbol appearing immediately to the right of the internal state symbol q_{i} of α as the symbol being scanned by \mathbf{T} when T is in state q_{i}. If α, β are instantaneous descriptions of T, we write $\alpha \rightarrow \beta(\mathbf{T})$ (or simply $\alpha \rightarrow \beta$ when \mathbf{T} is understood) to signify that β is the result of an application to α of a single quadruple of T. If, for a given instantaneous description β of \mathbf{T}, there is no instantaneous description γ of \mathbf{T} such that $\beta \rightarrow \gamma(\mathbf{T})$, we say that β is final with respect to \mathbf{T}. Any finite sequence $\alpha_{1}, \ldots, \alpha_{n}$ of instantaneous descriptions of T such that $\alpha_{i} \rightarrow$ $\alpha_{i+1}(\mathrm{~T})$ for $1 \leqslant i<n$, and such that α_{n} is final with respect to T , is called a computation in \mathbf{T} with resultant (or output) α_{n}. We denote this by $\operatorname{Res} \mathbf{T}\left(\alpha_{1}\right)=\alpha_{n}$.

The set of natural numbers will be denoted by N, and N^{n} will denote the set of all n-tuples of elements of N. If $x>0$, we define 1^{x} (respectively B^{x}) to be string of length x of the symbol 1 (respectively B) of A. We also define 1^{0} and B^{0} to be the empty string. If $n \in N$, we define \bar{n} to be 1^{n+1}, and if $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in N^{n}$, we define $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ to be the string $1^{a_{1}+1} B 1^{a_{2}+1} B \ldots$. $B 1^{a_{n}+1}$. We will consider instantaneous descriptions of \mathbf{T} of the form $q_{1}\left\langle a_{1}, \ldots, a_{n}\right\rangle$ as usable inputs of T . For any instantaneous description α of T, we define $[\alpha]$ to be the number of occurrences of the symbol 1 in α.

If n is a fixed positive integer, then T is called n-regular if (1) there is a positive integer p such that

$$
\operatorname{Res}_{\mathbf{T}}\left(q_{1} \overline{\left\langle a_{1}, \ldots, a_{n}\right\rangle}\right)=q_{\theta(\mathbf{T})} \overline{\left\langle b_{1}, \ldots, b_{p}\right\rangle}
$$

whenever $\operatorname{Res}_{\mathrm{T}}\left(q_{1} \overline{\left\langle a_{1}, \ldots, a_{n}\right\rangle}\right)$ is defined, and if (2) T has no quadruple beginning with $q_{\theta(\mathrm{T})}$.

A function F whose domain is a subset of N^{n} and having values in N is called partially computable if there is some Turing machine \mathbf{T} such that for any $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ in the domain of F, it is the case that

$$
F\left(a_{1}, \ldots, a_{n}\right)=\left[\operatorname{Res}_{\mathrm{T}}\left(q_{1}\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)\right]
$$

Thus, for an input of the form $\alpha=q_{1} \overline{\left.a_{1}, \ldots, a_{n}\right\rangle}, \mathrm{T}$ will yield an output for just those n-tuples $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ which happen to be members of the domain of F; otherwise, \mathbf{T} will hot yield an output for the input α. Furthermore, F is called a total function if its domain is all of N^{n}, and is called computable if it is partially computable and is total. If F is (partially) computable via the Turing machine \mathbf{T}, then we say that \mathbf{T} (partially) computes F.
3 Main result We prove the following
Theorem Let n be a positive integer. If f is a total function of $n+1$
variables, and is defined by primitive recursion in terms of the computable functions g, h, of n and $n+2$ variables, respectively, i.e., if for any $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in N^{n}$ and $t \in N$,

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{n}, 0\right)=g\left(x_{1}, \ldots, x_{n}\right), \\
f\left(x_{1}, \ldots, x_{n}, t+1\right)=h\left(x_{1}, \ldots, x_{n}, t, f\left(x_{1}, \ldots, x_{n}, t\right)\right),
\end{gathered}
$$

then there is an $(n+1)$-regular Turing machine \mathbf{Z} which computes f. More precisely, for any $\left\langle x_{1}, \ldots, x_{n}, y\right\rangle \in N^{n+1}$.

$$
\operatorname{Res} \mathbf{Z}\left(q_{1} \overline{\left\langle x_{1}, \ldots, x_{n}, y\right\rangle}\right)=q_{\theta(\mathbf{Z})} \overline{f\left(x_{1}, \ldots, x_{n}, y\right)} .
$$

Proof: Suppose G is a Turing machine which computes g, and \mathbf{H} is a Turing machine which computes h. By results of [1], we may assume that \mathbf{G} is n-regular, and that H is $(n+2)$-regular. Indeed, using results of [1], there then exists an $(n+1)$-regular Turing machine \mathbf{V}_{1} such that, for any $\left\langle x_{1}, \ldots, x_{n}, y\right\rangle \in N^{n+1}$,

$$
\begin{aligned}
\operatorname{Res}_{\mathbf{v}_{1}}\left(q_{1} \overline{\left\langle x_{1}, \ldots, x_{n}, y\right\rangle}\right) & =q_{p} \overline{\left\langle g\left(x_{1}, \ldots, x_{n}\right), y, x_{1}, \ldots, x_{n}\right\rangle} \\
& =q_{p} \overline{\left\langle f\left(x_{1}, \ldots, x_{n}, 0\right), y, x_{1}, \ldots, x_{n}\right\rangle .}
\end{aligned}
$$

where $p=\theta\left(\mathbf{V}_{1}\right)$. Similarly, using the fact that \mathbf{H} is $(n+2)$-regular, there is an $(n+2)$-regular Turing machine $\overline{\mathbf{H}}$ such that, for all $t, y, x_{1}, \ldots, x_{n} \in N$,

$$
\begin{aligned}
& \operatorname{Res}_{\overline{\mathbf{H}}}\left(q_{1} \overline{\left\langle f\left(x_{1}, \ldots, x_{n}, t\right), y, x_{1}, \ldots, x_{n}\right\rangle}\right) \\
& =q_{\theta(\overline{\mathbf{H}})}^{\left\langle\frac{\left.h\left(x_{1}, \ldots, x_{n}, t, f\left(x_{1}, \ldots, x_{n}, t\right)\right), y, x_{1}, \ldots, x_{n}\right\rangle}{\langle h},\right.} \\
& =q_{\theta(\overline{\mathbf{H}})}\left\langle\frac{\left\langle f\left(x_{1}, \ldots, x_{n}, t+1\right), y, x_{1}, \ldots, x_{n}\right\rangle}{}\right.
\end{aligned}
$$

In addition, there is a Turing machine $\overline{\overline{\mathbf{H}}}$ such that, for every $t, y, x_{1}, \ldots, x_{n} \in N$,

$$
\begin{aligned}
& \operatorname{Res} \overline{\overline{\mathbf{H}}}\left(1 B^{2} q_{1} \overline{\left\langle f\left(x_{1}, \ldots, x_{n}, t\right), y, x_{1}, \ldots, x_{n}\right\rangle}\right) \\
& =1 B^{2} q_{\theta(\overline{\mathbf{H}})} \overline{\left\langle f\left(x_{1}, \ldots, x_{n}, t+1\right), y, x_{1}, \ldots, x_{n}\right\rangle} .
\end{aligned}
$$

In particular, $\overline{\overline{\mathrm{H}}}$ may be regarded as the Turing machine which first moves left to erase the leftmost 1 of the input $1 B^{2} q_{1} \overline{\left\langle f\left(x_{1}, \ldots, x_{n}, t\right)\right.}$, $\left.y, x_{1}, \ldots, x_{n}\right\rangle$, then moves right until a 1 is found. $\overline{\bar{H}}$ then performs the identical computation which $\overline{\mathbf{H}}$ performs on $q_{1} \overline{\left\langle f\left(x_{1}, \ldots, x_{n}, t\right), y, x_{1}, \ldots, x_{n}\right\rangle}$. After this last computation has been completed, $\overline{\overline{\boldsymbol{H}}}$ then moves left to reprint a 1 three squares to the left of the leftmost 1 of the resultant β of the $\overline{\mathbf{H}}$-computation. Finally, $\overline{\overline{\mathbf{H}}}$ moves right until it scans the leftmost 1 of β.

Now set $k=\theta\left(\overline{\overline{\mathbf{H}}}^{(u+3)}\right)$, where $u=p+10+2 n$, and let \mathbf{W} be the following set of quadruples:

$$
\left.\begin{array}{ll}
q_{p} 1 \mathrm{~L} q_{p} & q_{p+9} B q_{p+10} \\
q_{p} B \mathrm{~L} q_{p+1} & q_{p+10} B R q_{p+9} \\
q_{p+1} B \mathrm{~L} q_{p+1} & q_{p+7+2 i} B R q_{p+7+2(i+1)} \\
q_{p+1} 1 R q_{p+2} & q_{p+7+2(i+1)} 1 B q_{p+7+2(i+1)+1} \\
q_{p+2} B R q_{p+3} & q_{p+7+2(i+1)+1} B R q_{p+7+2(i+1)} \\
q_{p+3} 1 B q_{p+4} & q_{p+1} 1 \mathrm{~L} q_{u+1} \\
q_{p+4} B R q_{p+5} & q_{u+1} B \mathrm{~L} q_{u+2}
\end{array}\right\} \text { each } i \leqslant i \leqslant n,
$$

$q_{p+5} 1 R q_{p+5}$	$q_{u+2} B 1 q_{u+3}$
$q_{p+5} B R q_{p+6}$	$q_{u+3} 1 \mathrm{~L} q_{u+3}$
$q_{p+6} 1 B q_{p+7}$	$q_{u+3} B R q_{u+4}$
$q_{p+7} B R q_{p+8}$	$q_{u-1} B B q_{k+1}$
$q_{p+8} B R q_{p+9}$	

Let E be the following set of quadruples:

$$
\begin{array}{ll}
q_{k+1} B L q_{k+1} & q_{k+4} B R q_{k+7} \\
q_{k+1} 1 L q_{k+2} & q_{k+5} B R q_{k+5} \\
q_{k+2} 1 \mathrm{~L} q_{k+2} & q_{k+5} 1 \mathrm{~L} q_{k+6} \\
q_{k+2} B\left\llcorner q_{k+3}\right. & q_{k+6} B 1 q_{k+7} \\
q_{k+3} B\left\llcorner q_{k+4}\right. & q_{k+7} B R q_{k+7} \\
q_{k+4} 1 B q_{k+5} & q_{k+7} 11 q_{k+8}
\end{array}
$$

Finally, let $\mathbf{Z}=\mathbf{V}_{1} \cup \overline{\mathbf{H}}^{(u+3)} \cup \mathbf{W} \cup \mathbf{E} \cup\left\{q_{k} 11 q_{p}\right\}$. We claim that \mathbf{Z} is a Turing machine which computes f. Note first that $\theta(\mathbf{Z})=k+8$, and that there is no quadruple of \mathbf{Z} beginning with $\theta(\mathbf{Z})$. Hence the second property of ($n+1$)-regularity is satisfied by \mathbf{Z}. The, first property of $(n+1)$ regularity will be verified if we can show that for any $\left\langle x_{1}, \ldots, x_{n} y\right\rangle \in N^{n+1}$,

$$
\operatorname{Res}_{\mathbf{Z}}\left(q_{1}\left(\overline{\left.x_{1}, \ldots, x_{n}, y\right\rangle}\right)=q_{\theta(\mathbf{Z})} \overline{f\left(x_{1}, \ldots, x_{n}, y\right)} .\right.
$$

This will be done by tracing a computation in \mathbf{Z} beginning with an input of the form $q_{1}\left\langle x_{1}, \ldots, x_{n}, y\right\rangle$. First of all,

$$
q_{1} \overline{\left\langle x_{1}, \ldots, x_{n}, y\right\rangle} \rightarrow \ldots \rightarrow q_{p} \overline{\left\langle f\left(x_{1}, \ldots, x_{n}, 0\right), y, x_{1}, \ldots, x_{n}\right\rangle}
$$

(using \mathbf{V}_{1}).
(i) Suppose that $y=0$. Then
$q_{p} \overline{\left\langle f\left(x_{1}, \ldots, x_{n}, 0\right), 0, x_{1}, \ldots, x_{n}\right\rangle} \rightarrow \ldots$
$\rightarrow 1 B^{2} 1^{f\left(x_{1}, \ldots x_{n}{ }^{0}\right)} B^{3} B^{x_{1}+1} B \ldots B B^{x_{n}+1} q_{k+1} B=\alpha_{1}$, (using W).
Applying E to α_{1}, either of two possibilities exist as the resultant of a computation in E beginning with α_{1}; namely,

$$
\operatorname{Res}_{\mathbf{E}}\left(\alpha_{1}\right)=\left\{\begin{array}{r}
B^{2} q_{k+8} f\left(x_{1}, \ldots, x_{n}, 0\right) B^{3} B^{x_{1}+1} B \ldots B B^{x_{n}+1} B, \text { in case } \\
\left.B^{3} q_{k+8} f\left(x_{1}, \ldots, x_{n}, 0\right) B^{5} B^{x_{1}+1} B \ldots, x_{1}, \ldots x_{n}\right)>0 \\
f\left(x_{1}, \ldots, x_{n}\right)=0 .
\end{array}\right.
$$

Each of these resultants is final with respect to Z. Hence, if we disregard initial and terminal blocks of 1's, we get

$$
\operatorname{Res}_{\mathbf{Z}}\left(q_{1} \overline{\left(x_{1}, \ldots, x_{n}, 0\right\rangle}\right)=q_{\theta(\mathbf{Z})} \overline{f\left(x_{1}, \ldots, x_{n}, 0\right)}
$$

which is the desired result when $y=0$. Note that, in this case, the machine $\overline{\bar{H}}^{(u+3)}$ was never activated. Indeed, $\overline{\bar{H}}^{(u+3)}$ would not be activated unless the function h were used in evaluating f, which is not the case if $y=0$.
(ii) Now suppose $y>0$. Then, after V_{1} has completed its computation,
$q_{p} \overline{\left\langle f\left(x_{1}, \ldots, x_{n}, 0\right), y, x_{1}, \ldots, x_{n}\right\rangle} \rightarrow \ldots$
$\rightarrow 1 B^{2} q_{u+4}\left\langle f\left(x_{1}, \ldots, x_{n}, 0\right), y-1, x_{1}, \ldots, x_{n}\right\rangle$ (using W),
$\rightarrow \ldots \rightarrow 1 B^{2} q_{k} \overline{\left\langle f\left(x_{1}, \ldots, x_{n}, 1\right), y-1, x_{1}, \ldots, x_{n}\right\rangle}$ (using $\overline{\overline{\mathbf{H}}}^{(u+3)}$),
$\rightarrow \ldots \rightarrow 1 B^{2} q_{p}\left\langle f\left(x_{1}, \ldots, x_{n}, 1\right), y-1, x_{1}, \ldots, x_{n}\right\rangle$ (using $q_{k} 11 q_{p}$),
$\rightarrow \ldots \rightarrow 1 B^{2} 1^{f\left(x_{1}, \ldots, x_{n}, y\right)} B^{3} B^{x_{1}+1} B \ldots B B^{x_{n}+1} q_{k+1} B$,
iterating the sequence, $\mathbf{W}, \overline{\overline{\mathbf{H}}^{(u+3)}}, q_{k} 11 q_{p}$, until $y=0$.
Let $\bar{\beta}=1 B^{2} 1^{f\left(x_{1}, \ldots, x_{n}, y\right)} B^{3} B^{x_{1}+1} B \ldots B B^{x_{n}+1} q_{k+1} B$. Then, using the quadruple $q_{k+1} B L q_{k+1}$ as many times as is applicable, we get either

$$
\bar{\beta} \rightarrow q_{k+1} 1 B^{5} B^{x_{1}+1} B \ldots B B^{x_{n}+1} B=\beta_{1},
$$

if $f\left(x_{1}, \ldots, x_{n}, y\right)=0$, or

$$
\bar{\beta} \rightarrow 1 B^{2} 1^{f\left(x_{1}, \ldots, x_{n}, y\right)-1} q_{k+1} 1 B^{3} B^{x_{1}+1} B \ldots B B^{x_{n}+1} B=\beta_{2},
$$

if $f\left(x_{1}, \ldots, x_{n}, y\right)>0$.
(a) Suppose $f\left(x_{1}, \ldots, x_{n}, y\right)=0$; then, using the remaining quadruples of E ,
$\beta_{1} \rightarrow \ldots \rightarrow B^{3} q_{k+8} 1 B^{5} B^{x_{1}+1} B \ldots B B^{x_{n}+1} B$
$=B^{3} q_{k+8} \overline{f\left(x_{1}, \ldots, x_{n}, y\right)} B^{5} B^{x_{1}+1} B \ldots B B^{x_{n}+1} B$.
(b) Suppose $f\left(x_{1}, \ldots, x_{n}, y\right)>0$; then, using the remaining quadruples of E ,

$$
\beta_{2} \rightarrow \ldots \rightarrow B^{2} q_{k+8} \overline{f\left(x_{1}, \ldots, x_{n}, y\right)} B^{3} B^{x_{1}+1} B \ldots B B^{x_{n}+1} B .
$$

The resultants obtained in (a) and (b) above are each final with respect to \mathbf{Z}. Thus, omitting initial and terminal block's of B 's, we get

$$
\operatorname{Res}_{\mathbf{Z}}\left(q_{1} \overline{\left\langle x_{1}, \ldots, x_{n}, y\right\rangle}\right)=q_{\theta(\mathbf{Z})} \overline{f\left(x_{1}, \ldots, x_{n}, y\right)}
$$

whenever $y>0$.
This completes the proof of (ii), and thus the proof of the Theorem is complete.

4 Additional notes In case $y>0$, the machine \mathbf{Z} decreases the value of y by 1 whenever W is activated. The quadruple $q_{k} 11 q_{p}$ acts as a recycling instruction, demanding a repetition of the sequence $\mathbf{W}, \overline{\mathbf{H}}^{(u+3)}$ as many times as is necessary to obtain $y=0$. When $y=0$, the machine E acts as an exiting mechanism, yielding an output in the standard form $q_{\theta(\mathbf{Z})} \overline{f\left(x_{1}, \ldots\right.}$, x_{n}, y).

The leftmost 1 in the instantaneous descriptions $\alpha_{1}, \beta_{1}, \beta_{2}$ plays the role of a marker'", in the sense that it prevents an infinite leftward movement of \mathbf{Z} via the quadruple $q_{k+1} B \mathrm{~L} q_{k+1}$, in case $y>0$ and $f\left(x_{1}, \ldots\right.$, $\left.x_{n}, y\right)=0$. This 1 is then erased by E as part of its computation.

Finally, if \mathbf{Z} is augmented by the single quadruple $q_{k+8} 1 B q_{k+9}$, then the resulting machine Z^{\prime} has the property of $(n+1)$-regularity, and, in addition

$$
\left[\operatorname{Res}_{\mathbf{Z}},\left(q_{1}\left\langle\overline{\left\langle x_{1}, \ldots, x_{n}, y\right\rangle}\right)\right]=f\left(x_{1}, \ldots, x_{n}, y\right),\right.
$$

for every $\left\langle x_{1}, \ldots, x_{n}, y\right\rangle \in N^{n+1}$.

REFERENCES

[1] Davis, M., Computability and Unsolvability, McGraw-Hill Book Company, New York (1958).
[2] Davis, M., Computability, Courant Institute of Mathematical Sciences, New York University, New York (1974).
[3] Mal'cev, A. I., Algorithms and Recursive Functions, Walters-Nordhoff Publishing, Groningen (1970).

Manhattan College
New York, New York

[^0]: 1. Using the terminology of [1], this paper will deal only with simple Turing machines, but these results can easily be generalized to the case of relative computability.
