
165
Notre Dame Journal of Formal Logic
Volume XIX, Number 1, January 1978
NDJFAM

THE INTENSIONALITY OF THE PREDICATE < IS RECURSIVE'

CHARLES F. KIELKOPF

G. Lee Bowie's "An Argument Against Church's Thesis" provides an
opportunity to clarify some points about our concepts of recursive and
computable. In [1], G. Lee Bowie argued that there is a noncomputable
recursive function and that there are computable functions which are very
likely nonrecursive. Against his first claim, I shall argue, primarily, that
Bowie has instead exposed the intensional character of the predicate ' is
recursive.' Against his second claim, I shall argue that he has used an
eccentric sense of 'computable/

Bowie does not want to identify functions with rules of correspondence
or descriptions of correspondences so he uses Church's λ-operator. So,
before beginning my rebuttal, I will show how I will use this operator as
well as settle some terminological points. A set Sis a non-negative integer
correspondence, or alternatively: a sequence, if S is a set of ordered pairs
of non-negative integers (x, y) such that for every x there is exactly one y
such that (x, y) is in S. Let us call non-negative integer correspondences
simply 'correspondences,' and call these correspondences 'functions.' We
can here identify functions with such correspondences because we will
restrict our attention to function descriptions of one argument place whose
domain is the non-negative integers and whose range is a subset of the
non-negative integers. By regarding functions as sets such as these
correspondences we follow usual mathematical practice and Church in
section 03 of [2] where he writes on p. 16: "In other words, we take the
word 'function' to mean what may otherwise be called a function in
extension." However, some authors such as Church himself in [3] and
Yasuhara in [4] do not identify functions with extensions such as corre-
spondences; they identify functions with rules for generating correspon-
dences. When he identified functions with rules, Church wrote on p. 3 of
[3]: "we shall say we are dealing with functions in intension." Although we
will not deal with functions in intension, we will talk of the intensions of
functions.

The λ-operator provides notation for presenting an intension of a

Received September 5, 1973

166 CHARLES F. KIELKOPF

function as well as providing terms for denoting or referring to functions.
Let us use expressions with one free variable to express intensions of
functions. These expressions will officially be of the form: The non-
negative integer f(x) correlated with non-negative integer x by following
procedure P. These expressions give the form of a term for denoting
values of a function as well as present a rule for generating, or trying to
generate, a correspondence. Of course, these expressions are usually
abbreviated to the f(x) formula. For instance, x2 abbreviates: The non-
negative integer x2 correlated with non-negative integer x by multiplying x
by itself. These abbreviations are given because usually the f(x) is a
formula which conventionally represents or encodes the procedure P, as
does x2. These abbreviations are used in at least three ways. When x is
replaced by a numeral k, f{k) is used to denote a particular number. The
formula f(x) may be used to talk about some-value-or-other of a function,
-the so-called ambiguous value. A1SO/(ΛΓ) may be used to present a rule for
generating a correspondence. Two abbreviations we shall use are Z(x) for:
The non-negative integer Z(x) correlated with non-negative integer x by
correlating 0 with x, and C1(ΛΓ) for: The non-negative integer C1(#)
correlated with non-negative integer x by correlating 1 with x. A fourth use
for these f(x) expressions is to form terms for denoting functions. When
f(x) is one of these expressions, the term λx[f(x)] denotes, i.e., when used
conventionally is used to refer to, the correspondence or function whose
value at x is f(x). Thus X#[Z(#)] denotes the function whose value is always
0 and λ#[C1(#)] the function whose value is always 1.

Bowie's example of an allegedly recursive but noncomputable function
has as an intension: The non-negative integer b(x) correlated with x by
making b(x) be 1 if R and b(x) be 0 if not-R. Here R will be some sentence,
such as 'Caesar thought of the moon at the moment of his death/ whose
truth value we cannot determine. Let us abbreviate the expression of this
intension to b(x). Thus λ#[b(#)] denotes Bowie's allegedly recursive but
noncomputable function. In this paper, I concede that A#[b(#)] denotes a
correspondence. I shall not investigate a suggestion that the definite
description λΛr[b(Λr)] can be used only attributively and not referentially in
Donnellan's sense of these terms. See [5], The suggestion would be that we
cannot use λ#[b(#)] referentially because we cannot use it to pick out from
λx[Z(x)] and λ#[C1(#)] which one we are talking about.

Let me present a reconstruction of Bowie's argument that X#[b(#)] is
recursive but not computable. He assumes (1) through (4) to be uncon-
troversial.

(1) X#[C1(#)] is recursive.
(2) λx[Z(x)] is recursive.
(3) λ#[C1 (x)] is computable.
(4) λx[Z(x)] is computable.

He has us observe that we cannot use b{x) qua rule to compute the
correspondence, whatever it may be, denoted by λ#[b(#)]. He expresses
this observation, misleadingly I think, as (5).

THE INTENSIONALITY OF THE PREDICATE 167

(5) X#[b(#)] is not computable.

By accepting the law of excluded middle for R he concludes (6).

(6) λx[b(x)] = λ#[C1(#)] or λx[b(x)] = λx[Z(x)].

From (1), (2), and (6) he concludes (7).

(7) λ#[b(ar)] is recursive.

He does not use (3), (4), and (6) to show that (1) through (6) are incon-
sistent. Instead he concludes that (1) through (6) show ' is computable'
is an intensional context because sentences formed from it can change truth
value upon substitution of co-referential terms. But notice that in (3), (4),
and (5) ' is computable' stands for a property of sets.

My rebuttal will be arguments that if 'recursive' is used in its primary
sense (1), (2), and (7) should be written as the alternatives below and that
(7a) is false. Then I shall argue that when 'recursive' is used in a
secondary sense to stand for a property of functions, then, although (1), (2),
and (7) are true, it is reasonable to interpret (5) as false. In its primary
sense 'recursive' is used to stand for a property of abbreviations of
expressions which occur within the square brackets of λx[] terms, i.e.,
fix) forms. When used this way, 'recursive' stands for an intensional
property of functions in the sense that it stands for a property of expres-
sions of intensions of functions. When 'recursive' is used this way (1), (2),
and (7) should be as in the a-versions below, where you may use 'function
form,' 'ambigious value denoter,' or 'rule' instead of 'expression.'

(la) C1.(Λ) is a recursive expression.
(2a) Z(ΛΓ) is a recursive expression.
(7a) b(#) is a recursive expression.

Some reasons for holding that 'recursive' is primarily applied to function
forms are (A), (B), and (C) below.

(A) A standard way to define 'recursive function' is to give a syntactical
definition. A function is said to be recursive if and only if it is one of the
specified initial forms or is obtained from initial forms and previously
defined forms by use of some specified definition schemata. See pp. 220
and 279 of [6] and p. 121 of [7]. Except for those who identify functions with
forms of functions qua rules, this syntactical definition should properly be
regarded as a definition of 'recursive function form,' because it is forms,
and not sets, which have syntactical properties. (B) If we are asked to
show that a function is recursive, we are, in effect, asked to show that a
function form is recursive. We are presented with forms as on pp. 222-223
of [6] and pp. 122-123 of [7]. We are certainly not presented with a
denumerable list of ordered pairs and asked to show that it is recursive.
Remember we are identifying functions with correspondences. (C) Argu-
ments that there are only denumerably many recursive functions proceed
by showing that there are only denumerably many recursive function forms.

168 CHARLES F. KIELKOPF

See Kleene's [6] sections 56, 57, and especially p. 283. This indicates that
'recursive' is applied primarily to forms. If it applied primarily to
correspondences there should be some procedure for inspecting the 2̂ °
correspondences and selecting out the denumerable subset of the recursive
ones.

For these reasons my inclination is to refrain from applying 'recur-
sive' or 'nonrecursive' to functions qua correspondences, just as we apply
'Turing program'only to forms and never to correspondences. I will admit,
though, that in a secondary sense of 'recursive' correspondences may be
called recursive. But first let us note that we have blocked Bowie's alleged
counterexample to the half of Church's thesis that runs: If it is recursive
it is computable. In this statement of Church's thesis the 'it' in the
antecedent must refer to the same thing as the 'it' in the consequent. Thus,
even if both (7a) and (5) were true we would not have a counterexample
because (7a) says a form is recursive while (5) says that a correspondence
is not computable. Furthermore, we still do not get a counterexample if we
rewrite (5) as (5a) and establish (5a) with Bowie's observation that b(x) is
not computable because if it were we could, contrary to our assumptions,
establish the truth of R.

(5a) b(x) is not a computable expression.

'Computable expression' will be precisely defined below. For the moment
our interest is with the falsity of (7a). We would not get a counterexample
to: If it is recursive it is computable, from (7a) and (5a) because (7a) is
false.

Why do I say that (7a) is false, i.e., that b(x) is not a recursive
expression? The fact that I cannot conceive of how to start to give a proof
of the recursiveness of b(x) persuades me that b(x) is not a recursive form.
Also I can give the following argument. Bowie has not argued that there is
a recursively defined function form f(x) which is noncomputable, where
'noncomputable' would mean that for some numeral k we cannot determine
in finitely many steps, following the procedure encoded in f(x), the numeral
f{x). So, without begging the question of whether or not there are
noncomputable recursive correspondences, I can use the inuitive principle
that all recursive function forms are computable in the sense that for any
numeral k we can in a finite number of steps determine which numeral f{k)
is. With this intuitive principle, I can use Bowie's observation that b(x) is
not computable to conclude that b(x) is not a recursive function form, i.e.,
not a recursive expression.

In a secondary sense, 'recursive' can be applied to functions qua
correspondences. I submit that this secondary sense is given by Dl. Dl is
in agreement with Bowie's remark on p. 71: "it is recursive since there
are recursive equations which generate it."

Dl: λx[f(x)] is recursive =df There is an expressiong(x), g{x) is a recur-
sive expression, and λx[f(x)] = λx[g(x)].

With Dl and (6), I have to accept (1), (2), and (7). But now do not I have

THE INTENSIONALITY OF THE PREDICATE 169

a counterexample to: If it is recursive it is computable? Do not (5) and (7)
give such a counterexample? No. Just as we distinguished the application
of 'recursive' to expressions from its application to correspondences, we
can distinguish the application of 'computable' to expressions from its
application to correspondences. When 'computable' is applied to cor-
respondences as in (3), (4), and (5) it is quite reasonable to believe that (5)
is false. Bowie himself grants that there are these two uses of 'com-
putable' by specifying in his (I) on p. 69, in effect, that λx[f(x)] is
computable if and only if there is an algorithm A such that A computes f(x)
for appropriate input for x. Also ordinary use reveals that we would say
that the formula x2 is computable as well as saying that the sequence of
squares is computable. I shall define these two senses of 'computable,'
observe that under them (5) is false, and defend the definition of 'com-
putable' for functions.

D2: Function form f(x) is a computable expression =df
There is a process P, an algorithm, such that given any
numeral k use of P leads in a finite number of steps to
production of numeral f(k).

D2 is taken from Bowie's (III) of p. 69. For an elaboration of this idea
of computable, see section 40 of S. C. Kleene's [8]. In the sense of D2,
'computable' stands for an intensional property in the sense that it applies
to expressions of intensions. However, to get this result that ' is
computable' is an intensional predicate, there is no need to admit that there
is any predicate of set terms for which the principle of substitutivity of
co-referential terms fails. In D3 below, I use (3u) because the values of
the bound variable are sets and I want to suggest that in D3 the quantifier
cannot be interpreted substitutionally as it can in Dl and D2.

D3: λx[f(x)] is computable =df (3u) {u = λx[g(x)] and λx[f(x)] = λx[g(x)],
and g(x) is a computable expression.}

I think that D3 captures the intent of Kleene's stipulation on p. 228 of [8]:
"if there is a computation procedure for a function, we call the function
computable."

We have the trivial procedures of producing C1(&) as 1 for all k and
Z(k) as 0 for all k. So we have (8) and (9).

(8) Function form C1 (x) is a computable expression.
(9) Function form Z(x) is a computable expression.

From D3, (6), (8), and (9), we get not only (3) and (4) but also, and of more
significance, (10), i.e., that (5) is false.

(10) λx [b(x)] is computable.

Thus again we have blocked an alleged counterexample to: If it is recursive
it is computable, if D2 and D3 are acceptable in principle even if not in
detail.

170 CHARLES F. KIELKOPF

D2 is difficult to defend because of vagueness about what processes P
are legitimate. At the end of the paper, however, I give some negative
conditions for legitimate computing processes. So I fear I have to let
defense of D2 rest primarily on our intuitions of what is necessary and
sufficient for a formula to be computable. D3 differs from Bowie's
definition of 'computable' for functions. In my terminology, Bowie's (I) of
p. 67 is: λx[f(x)] is computable if and only if f(x) is a computable expres-
sion. Bowie's (I) blurs any distinction between computable expression, i.e.,
computable function form, and computable function. Instead, D3 presents an
alternative definition of 'computable function' suggested by Bowie himself
when he wrote on p. 72 from the point of view of an imaginary opponent:
"Alternatively, put in your philosophical terminology, I can say that a
function is computable simpliciter if it is computable under some descrip-
tion." Bowie seems to concede that this alternative is the definition that a
careful mathematician would give. Curiously, though, in the last paragraph
of Part II of his paper, Bowie seems to reject this alternative, viz., D3, on
the basis of the following weak argument. If Church's thesis is put as: "a
function is recursive if and only if it is computable under some descrip-
tion," Church's thesis can be refuted by the fact that it is highly probable
that there is a nonrecursive function which is computable under some
description. So, the argument goes, there is no point in defining 'com-
putable function' as in D3. Of course, D3 could be the proper kind of
definition even if it allowed counterexamples to Church's thesis. Also the
question at issue here is about the more obvious half of Church's thesis,
viz., can there be recursive noncomputable functions? So it is irrelevant
to show someone who introduces D3 to block counterexamples to: If a
function is recursive it is computable, that D3 does not block counter-
examples to: If a function is computable it is recursive. Also I shall close
this paper by arguing that Bowie has not shown that it is likely that there is
a function computable in the sense of D3 which is nonrecursive. But let me
note some positive merits of D3. First, D3 allows, as Bowie admits, a
commonly made distinction between descriptions of a function, viz., f(x)
formulae, which provide an algorithm and those which do not. Second, D3
and D2 maintain for computability the distinction between a function qua
correspondence and a form for the function. Third, D2 and D3 preserve
and clarify Bowie's insight that in one sense ' is computable' is an
intensional predicate; but without having to grant that there is a predicate
of set denoting terms which does not apply to co-referential terms.

Let me now try to dismiss Bowie's argument that there is a nonrecur-
sive function computable in the sense of D3. Consider the expression: The
non-negative integer ci(x) correlated with the non-negative integer x by
making cf (x) be 1 if the #-th flip of coin C is heads and cf (x) be 0 if the ΛΓ-th
flip of coin C is tails. (The flips of the coin are counted and values of cf(#)
are recorded to avoid getting two values for the same x.) Let us abbreviate
this expression to cf(#), a form for the "coin-flip function." Bowie would
argue that λ#[cf(λr)] is computable because cf(#) is a computable expression

THE INTENSIONALITY OF THE PREDICATE 171

by D2 but that it is highly improbable that λx [cf (x)] is a recursive function
in the sense of Dl. He reminds us that there are 2**° correspondences of
non-negative integers into {θ, l}, i.e., 0, 1 sequences. He adds, in effect,
that there are only denumerably many recursive expressions. So, at most,
denumerably many of these 0, 1 sequences are denoted by terms of the
form λx[g(x)] where g(x) is a recursive expression. Then with the
assumption that cf (x) is not a recursive expression, he concludes that it is
highly improbable that there is some other recursive expression g{x) such
that λx[g(x)] denotes the 0, 1 sequences, selected at random from the 2*°
sequences of 0's and Γs by flipping coin C, denoted by λx[cf(x)].

I will assume that cf(x) is not a recursive expression. Also I will not
quarrel with Bowie's claim that the sequence, if any, denoted by X#[cf(#)]
is very likely not identical with any denoted by a λx[g(x)] with recursive
g(x). (Bowie defines a denumerable family of nonrecursive expressions
such as cf(x) and thus increases the probability that some expression
similar to cf (x) generates a 0, 1 sequence which is not generated by any
recursive expression.) Instead, I will argue that it is doubtful that X#[cf(j*r)]
has a denotation and that the process encoded in the form cf(x) is not a
genuine computing process. ci(x) is not really computable in the sense of
D2. I should note that in the remainder of the paper I will be considering
function forms primarily in their role as rules.

What 0, 1 sequence does λ#[cf(#)] denote? If it denoted at all, it would
denote the sequence of 0's and Γs that would result by following cf (x) qua
rule for denumerably many flips of coin C. Let us not raise here any
anti-platonistic worries about the existence of nondenumerably many
denumerable sequences. Let us worry only if X#[cf(#)] can be used to
refer successfully to any of them. If one believes that it is now fixed or
determined how all possible flips of C will turn out, I grant that he can
rationally believe that X#[cf(#)] denotes that predetermined sequence for C,
whatever it may be. However, if one does not accept this determinism, he
has no reason for thinking there is such a sequence. Let me repeat that I
am not saying that X#[cf(#)] fails to denote because any of the 2̂ ° 0, 1
sequences fail to exist. Grant that they all exist. My claim is that
X#[cf(#)] fails to denote any one of them because its sense or intension,
i.e., cf(#), can be used to denote only finitely many members of the range of
any such sequence. Prior to the 100-th flip of C, cf (100) cannot be used to
refer to any value of X#[cf(#)]. So we cannot say that λ#[cf(#)] is the
correspondence such that for any x its value at x is cf(#). For all k greater
than y, where y numbers the last flip of C, there simply is no cf(k). I want
also to emphasize that I am not arguing that cf(#) makes A#[cf(#)] fail to
denote a sequence because d(x) does not enable us to pick out that
sequence. Just as I granted that X#[b(#)] denoted a sequence, I would grant
that λx [the number h(x) such h(x) is the value of Gauss's favorite function
at x] may denote a function even if we cannot pick it out from this descrip-
tion. Gauss's favorite function could have been addition. I am arguing that
we cannot make assertions such as: X#[cf(#)], whatever it may be, is such
and such, because prior to denumerably many flips of C there is no such

172 CHARLES F. KIELKOPF

sequence. I think that I have at least shown that it is dubious that λ#[cf(Λr)]
can be used to refer to a 0, 1 sequence.

A difficulty in arguing that cf(#) is not a computing rule is that we
admit that the rules for the constant functions such as C1(#) and Z(x) are
computing rules. And following these constant function rules, viz., working
on a denumerable list of the same numeral, hardly involves anything that
could be called calculating. Hence, we cannot reject cf(x) as a computing
rule because following it involves no calculation. Still, it is eccentric to
call cf(Λr) a computing rule. Let us say that Z(x) meets the minimal
conditions for being a computing rule. Admittedly, any listing of the values
of XΛ;[Z(#)] depends upon physical conditions, but what the values of
λ# [Z(#)] are does not depend upon any physical conditions. However, not
only must certain physical conditions hold to list the values of λx[cf(x)]9

but what the values of λ#[cf(#)] will be depends upon physical conditions
which need not be as they will be. In other words, given that its sense is
fixed by linguistic conventions λx[Z(x)] has to have the values that it does
have. But even when its sense is fixed λ#[cf(#)] does not need to have any
of the values it happens to get. People at different times and places can
list the values of λx[Z(x)]. But to list the values of λ#[cf(#)] one has to
have access to a particular coin C, or in Bowie's full example: access to a
particular machine. And there is no way of duplicating the coin or machine
so that people can go elsewhere and at another time list values for
λΛr[cf(λr)] and be guaranteed to get the same results as those using the
original equipment. Also I would say that cf{#) does not really abbreviate a
finite set of rules as Kleene on p. 227 of [8] says an algorithm should.
I would say that cf (x) encodes a denumerable or indefinitely large set of
rules. There is a separate rule for each flip of coin C. The reason we
cannot take cf(#) and go off by ourselves and compute values of λ#[cf(#)] is
that not enough rules are given in the formula cf(#). We need that
particular coin C to continue to give us more and more rules. The formula
cf(ΛΓ) encodes the rule schema: Look at C for the indefinitely many more
rules. The above are my reason for saying that the procedure for listing
values of λx[cf(x)] by use of cf(x) is not computing. Basically the reasons
amount to saying that this listing of values is not computing because it is
only the reporting of certain empirical observations.

But in closing I must add that Bowie's arguments have made a contri-
bution. They force us to recognize that recursiveness and computability
are primarily properties of expressions, i.e., intensional properties.
Bowie's arguments help us to get clearer about what is not a computing
process. To defend Church's thesis we have to say that a potentially
denumerable list of 0's and l's, or Yes's and No's, is not being made by a
computing process if items are put on the list according to the outcome of
an empirical event. For instance, if someone were following the rule:
S(ΛΓ) is 1 if x-th output from machine M is 1 and S(x) is 0 if x-th output is 0,
that person would not be computing even if M were printing out 0's and l's
according to the rule: Print 1 if x is even and print 0 if x is odd.

THE INTENSIONALITY OF THE PREDICATE 173

REFERENCES

[1] Bowie, G. L., "An argument against Church's thesis," Journal ofPhilosophy, vol. 70 (1973),
pp. 66-73.

[2] Church, A., Introduction to Mathematical Logic I, Princeton University Press, New Jersey
(1956).

[3] Church, A., The Calculi of Lambda-conversion, pp. 1-3, Princeton University Press, New
Jersey (1941).

[4] Yasuhara, A., Recursive Function Theory and Logic, Academic Press, New York (1971), pp.
66-69.

[5] Donnellan, K., "Reference and definite descriptions," Philosophical Review, vol. 75 (1966),
pp. 281-304.

[6] Kleene, S. C, Introduction to Metamathematics, Van Nostrand, Princeton (1950).

[7] Mendelson, E., Introduction to Mathematical Logic, Van Nostrand, New York (1964).

[8] Kleene, S. C, Mathematical Logic, John Wiley & Sons, New York (1967).

The Ohio State University
Columbus, Ohio

