Notre Dame Journal of Formal Logic Volume XVIII, Number 3, July 1977 NDJFAM

WHEN DO *CONTINUOUS EXTENSIONS EXIST?

ROBERT WARREN BUTTON

In non-standard analysis we frequently need a non-standard extension of some standard function $f: X \to Y$, that is, an internal function $g: *X \to *Y$ other than *f such that $g|_X = f$. Often X and Y are topological spaces and we want g to be *continuous, so that for each *open $U \subseteq *Y$, $g^{-1}(U) \subseteq *X$ is *open. H. Gonshor showed in [3] that if X is normal, then any function $f: x \to IR$ has a *continuous extension. Obviously, the problem of which pairs (X, Y) have this property has some uninteresting solutions: (X, X) is such a pair where X is a discrete space. However, by introducing additional conditions on X and Y we can produce an interesting class of such pairs. First we remind the reader of the following definitions.

Definition 1 A topological space X is said to be Urysohn (or functionally Hausdorff) iff for any two points x, $y \in X$ there is a continuous function $g: X \to \mathbb{R}$ such that g(x) = 1 and g(y) = 0.

Definition 2 A topological space Y is said to be pathwise connected iff for any two points x, $y \in Y$ there is a continuous function $h: I \to Y$ such that h(1) = x and h(0) = y.

It is evident that any space Y is pathwise connected iff for any two points x, $y \in Y$ there is a continuous function h: $\mathbb{IR} \to Y$ such that h(1) = x and h(0) = y.

Theorem 1 Let X be a Urysohn space and let Y be a pathwise connected space in a model \mathfrak{M} . Then for any enlargement $*\mathfrak{M}$ of \mathfrak{M} , each function $f: X \to Y$ has a *continuous extension $g: *X \to *Y$. Moreover, if X is not a Urysohn space, then there is a function $f_1: X \to \mathbb{R}$ with no *continuous extension, and if Y is not pathwise connected, then there is a function $f_2: \mathbb{R} \to Y$ with no *continuous extension.

Proof: Let X be a Urysohn space, let Y be a pathwise connected space and let $f: X \to Y$ be an arbitrary function. We shall show that the binary relation R defined by: $\langle x, y \rangle Rg$ iff $g: X \to Y$ is continuous and g(x) = y is concurrent on $\{\langle x, f(x) \rangle : x \in X\}$.

Received April 9, 1975

406

For any *n* distinct points x_1, \ldots, x_n in X let $y_i = f(x_i)$ for $1 \le i \le n$. If n = 1, then the function $g \equiv y_1$ trivially satisfies $\langle x, y_1 \rangle Rg$, so we can assume that n > 1. For each $1 \le i$, $j \le n$ let $g_{i,j} : X \to \mathsf{IR}$ be a continuous function such that $g_{i,j}(x_i) = 1$ and $g_{i,j}(x_j) = 0$ if $i \ne j$, and let $g_{i,i} \equiv 1$ for $1 \le i \le n$. Now define $g': X \to \mathsf{IR}$ by:

$$g'(x) = \sum_{i=1}^{n} i \prod_{j=1}^{n} g_{i,j}(x),$$

so that g' is continuous and $g'(x_1) = 1, \ldots, g'(x_n) = n$.

For each $i, 1 \le i \le n-1$, there exists a continuous function $h_i: [i, i+1] \rightarrow Y$ such that $h_i(i) = y_i$ and $h_i(i+1) = y_{i+1}$. Define $h': \mathbb{IR} \rightarrow Y$ by:

$$h'(r) = \begin{cases} y_1 & \text{if } r < 1 \\ h_1(r) & \text{if } 1 \le r < 2 \\ \vdots \\ h_i(r) & \text{if } i \le r < i + 1 \\ \vdots \\ h_n(r) & \text{if } n - 1 \le r < n \\ y_n & \text{if } n \le r \end{cases}$$

so that h' is continuous and $h'(i) = y_i$ for $1 \le i \le n$. The function $h' \circ g'$: $X \to Y$ is continuous and for each x_i , $h' \circ g'(x_i) = h'(i) = y_i$, so R is concurrent on $\{\langle x, f(x) \rangle : x \in X\}$.

If X is not Urysohn, then there exist points $x, y \in X$ for which there is no continuous $f: X \to IR$ such that f(x) = 1 and f(y) = 0, so there can be no *continuous extension of any function $f_1: X \to IR$ such that $f_1(x) = 1$ and $f_1(y) = 0$.

If Y is not pathwise connected, then there exist points $x, y \in Y$ for which there is no continuous $f: \mathbb{IR} \to Y$ such that f(1) = x and f(0) = y, so there can be no *continuous extension of any function $f_2: \mathbb{IR} \to Y$ such that $f_2(1) = x$ and $f_2(0) = y$.

Corollary 1 A topological space X is Urysohn iff each function $f: X \to IR$ has a *continuous extension $g: *X \to *IR$.

Corollary 2 A topological space Y is pathwise connected iff each function $f: \mathbb{IR} \to Y$ has a *continuous extension $g: *\mathbb{IR} \to *Y$.

If (X, \mathfrak{F}) is a topological space and $*(X, \mathfrak{F}) = (*X, *\mathfrak{F})$ is an enlargement, then $*\mathfrak{F}$ is closed under *finite intersections and internal unions, and contains \emptyset and *X. The topology on *X for which $*\mathfrak{F}$ is a base is called the Q-topology and will be denoted by $*\mathfrak{F}$. In [1] we showed that for any topological spaces X and Y, if $f: *X \to *Y$ is internal, then it is *continuous iff it is Q-continuous.

Corollary 3 Let X be a Urysohn space, let Y be pathwise connected, and let $f: X \rightarrow Y$ be arbitrary. Then f has a Q-continuous extension $g: *X \rightarrow *Y$.

The following example shows that the remainder of Theorem 1 does not hold for Q-continuous extensions. Let Y be a totally pathwise disconnected

space, so that each continuous $f: I \to Y$ is constant. For any two points $x, y \in Y$, the function $f: I \to Y$ defined by f(r) = y for $r \in I/\{1\}$, f(1) = x has no *continuous extension. In [2] we showed that $\mu(1)$ is Q-clopen, so the function

$$g(r) = \begin{cases} x \text{ for } r \in \mu(1) \\ y \text{ for } r \notin \mu(1) \end{cases}$$

is a Q-continuous extension of f.

REFERENCES

- [1] Button, R. W., "A note on the Q-topology," Notre Dame Journal of Formal Logic, forthcoming.
- [2] Button, R. W., "Monads for regular and normal spaces," Notre Dame Journal of Formal Logic, vol. XVII (1976), pp. 449-456.
- [3] Gonshor, H., "Enlargements contain various kinds of completions," in Hurd and Loeb, Victoria Symposium on Nonstandard Analysis (University of Victoria, 1972), *Lecture Notes in Mathematics*, vol. 369, Springer-Verlag, Berlin (1974), pp. 60-70.
- [4] Machover, M., and J. Hirschfeld, "Lectures on non-standard analysis," Lecture Notes in Mathematics, vol. 94, Springer-Verlag, Berlin (1969).
- [5] Robinson, A., Non-standard Analysis. Studies in logic and the foundations of mathematics, North-Holland Publishing Co., Amsterdam (1966).

Southern Illinois University at Carbondale Carbondale, Illinois

408