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TWO SYSTEMS OF PRESUPPOSITION LOGIC

L L. HUMBERSTONE and J. M. BELL

Introduction In Introduction to Logical Theory ([17], p. 175) Strawson says:

It is self-contradictory to conjoin S with the denial of S' if S' is a necessary
condition of the truth, simply, of S. It is a different kind of logical absurdity
to conjoin 5 with the denial of S' if Sr is a necessary condition of the truth or
falsity of S. The relation between 5 and S' in the first case is that S entails
S'. We need a different name for the relation between S and S' in the second
case; let us say . . . that S presupposes S'.

This notion of presupposition has subsequently been employed in both
philosophical and linguistic studies,1 and it is generally held that a
distinction between entailment and presupposition is important in connec-
tion with RusselΓs theory of descriptions. In the passage we have quoted,
Strawson makes it clear that he considers presupposition to be a genuine
logical relation. If it is, then it should be possible to give an account of its
logic; but if in doing so classical two-valued propositional calculus is
employed the following difficulty arises. Strawson's definition above gives
that if S presupposes Sr then

(1) SOS',

(2) ~S D Sr.

But then since

(3) Sv~S,

it follows that

(4) S'.

In effect, if presupposition is represented by any formula equivalent to or
implying the conjunction of (1) and (2) then any proposition presupposed by
another is true. Clearly, this is not what Strawson intended, since the main
reason for introducing a notion of presupposition was to have available
machinery for the description of cases of failure of presupposition. This
suggests that in order to give an account of the logic of presupposition it is
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necessary to adopt a three-valued system and thereby take seriously the
claim that a proposition may be neither ture nor false. Accordingly we
provide a precise definition of the notion of presupposition in a three-
valued propositional logic. Then by means of the construction of a formal
system we derive a body of statements expressing consequences that follow
from the definition.

When we had already obtained a number of results which we present
here our attention was drawn to the paper by P. W. Woodruff, "Logic and
Truth-Value Gaps", [18]. Woodruff also defines presupposition in a three-
valued logic, and we were glad to find that our definitions are identical.
There is then an overlap between some of his paper and Part One of ours;
but we still felt it worthwhile to publish the material in Part One for two
reasons. First, unlike Woodruff we have formulated the logic of pre-
supposition in an axiomatic system and proved a large number of theorems.
(His own treatment is natural-deductive.) Second, we have adopted what
might be called a stringent' as contrasted with a 'lenient' definition of
validity. That is, where 1,2, and 3 are respectively the values true, void,
and false, for us a formula of three-valued logic, A, is valid iff for all
value assignments, V, V(A) = 1. This contrasts with the more common
account in which a wff A is valid iff V(A) = 1 or 2, for all V.2

The axiomatic system of presupposition logic which we call PRES is
presented in Part One, and a modal extension, PRES|_, in Part Two. In the
rest of this introduction we give an informal account of the basic ideas we
use. The language of presupposition logic has an infinite stock of proposi-
tional variables, each of which ranges over the three truth-values 1, 2, and
3. There are eight logical constants, three of which are primitive and the
rest introduced by definitions, as explained in Part One. The constants
divide into two groups, the one-place logical operators in one group and the
two-place logical connectives in the other. The constants are

Group 1: ~ (negation), T (truth).

Group 2: v (alternation), & (conjunction), D (implication), <-> (Kleene-
equivalence), —• (presupposition), = (like-value equivalence).

The meanings of the constants are given in the following truth-tables.

p ~p Ίp

1 3 1
2 2 3
3 1 3

v 1 2 3 & 1 2 3

1 1 1 1 1 1 2 3
2 1 2 2 2 2 2 3
3 1 2 3 3 3 3 3
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1 1 2 3 1 1 2 3
2 1 2 2 2 2 2 2
3 1 1 1 3 3 2 1

- 1 2 3 = 1 2 3

1 1 3 3 1 1 3 3
2 1 1 1 2 3 1 3
3 1 3 3 3 3 3 1

The tables for negation, alternation, conjunction, implication, and Kleene-
equivalence are those given by Kleene in 1938 in the system which
Rescher ([13], p. 34) calls K3; hence our expression 'Kleene-equivalence'.
The table for presupposition is obtained by computing the table for
T(Av~A)^>TB. We shall later prove that T(Av~A) is equivalent to
(TA v T ~A) which can be read "either A is true or A is false". Hence the
formula T(A v ~A) => ΊB can be read "If A is either true or false then B is
true", which (at least partially, see Part Two) captures Strawson's informal
definition of presupposition.

The table for Kleene-equivalence gives A<-^B the value 1 when both
A and B have the value 1 or 3 but not when both A and B have the value 2.
So if the intuitive idea of equivalence between A and B, that for all values
V(A) = V(B)9 is to be captured in three-valued logic, then some notion of
equivalence stronger than Kleene-equivalence is required in which (A
equivalent B) has the value 1 iff V(A) = V(B) and has the value 3 otherwise.3

To meet this need we employ the idea of like-value equivalence. Before we
had read Woodruff's paper we defined (A = B) as ((A —» B) <-> (B —> A)) and
computed the table for (=9 accordingly. This gave the table shown here, but
the definition proved clumsy to use in proofs. Woodruff's definition of
like-value equivalence is easier to use, and we have adopted it here. The
definition is given in Part One.

We have already noted how the constants divide into two groups
syntactically. From the tables it can be seen that they also divide into two
groups semantically. In one group are the constants 'T', '—*', and '=', in
the other the rest. For each of the constants in the first group, whatever
the input values may be the output value is always either 1 or 3. In other
words, these constants alone eliminate the indeterminate value 2, and for
this reason we call them decisive.*

One other notion is important in our system, that of a T-formula. A
T-formula is any wff of PRES in which no propositional variable is outside
the scope of some occurrence of the operator 'T'. Evidently, T-formulae
themselves must be either true or false, the value 2 having been eliminated
by the occurrences of 'T' within the formula.5 For example, ζTp9, (T(pv q)',
'(Tp D TqY, are all T-formulae; 'p9, 'Tp D p9, 'qvTq', are not. It follows
from the definitions to be given in Part One that any wff whose main
connective is either '=' or '-*' is a T-formula.
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Part One: The System PRES

1. Vocabulary The propositional variables p, q, r, . . .; the constants ~, v,
T; and parentheses.

2. Formation Rules
(1) Any propositional variable alone is a wff.
(2) If A is wff, so are (~A), (TA).
(3) If both A and B are wff, then so is (A v B).
(4) If A is wff, and B is obtained from A by rewriting any part of A
according to the abbreviative definitions below, then B is wff.
(5) Only expressions satisfying (l)-(4) are wff.

3. Abbreviative Definitions
[Def 3] (A Ώ B) for (~ΛvB).
[Def &] (A & B) for ~ (~ A v - 5).
[Def <->] (A *->£) for ((A D 5) & (J3 3 A)).
[Def ->] (A -> 5) for (T(A v -A) z> T.B).
[Def s] (A = JB) for ((TA<-^TJ5) & (~T ~A«->~T~£)).

4. Axioms and Rules The tables for ~, v, and T have been axiomatized by
Lennart Aqvist, see [l], and we adopt his system here. As above, we use
A, B, C, . . . as schematic for wff of PRES, and also P, Q, R, . . . as
schematic for wff of classical propositional calculus (PC). The axioms are:

Al. T(/>vtf)«->(T/>vT0).
A2. T(/>& tf)<^(Tp& τ#).
A3. Ίp^p>

The inference rules are:

Rl. Modus ponens.
R2. Uniform substitution.
R3. From \-A infer hTA.
R4. If P ^ Q is one of the PC theorems:

PCI ((/>=>?)& (?:>r)) =>(P^r)
PC2 ((/> 3 )̂ & (r ^ s)) ^ ((/> & r) 3 (# & s))
PC3 ((/> & tf) => r) => (β => fa 3 r))

and substitution in P yields an open formula (any formula of PRES which is
not a T-formula is an open formula) which is a theorem of PRES, then the
result of the same substitution in Q is a theorem of PRES.
R5. If P is a theorem of PC, and A is obtained from P by uniformly
substituting not necessarily distinct T-formulae for each variable in P,
then A is a theorem of PRES.
R6. If A is a theorem of PRES and either B or ~ ~ 5 i s a wff subformula of
A, and C results from A by replacing B by ~~B, or ~~B by B, then C is a
theorem of PRES. -

Proofs of the independence and consistency of the axioms are given in
Aqvist, cf. [l], where it is also shown that the system is complete in the
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sense of having all and only valid formulae as theorems, though incomplete
in the sense that it admits of a consistent proper extension.

5. A Note on the Proofs In giving proofs we write the number of a theorem
or of a previous step in the proof followed by 'xRn =', where Rn is one of
the rules R1-R6, and then write the formula deduced from the designated
theorem or step by means of that rule. Where a rule has a double input we
write '+' between the two formulae used as premisses. Thus an application
of modus ponens is written 'A D B + ΛxRl = B', or with reference numbers
in place of Ά => B9 and (A\ We write 'xDRn' when we use a derived rule
DRn. In the case of R4 we write 'R4, PCn + m = K' where PCn is one of
PC1-PC3, the open formula obtained by substitution in the antecedent is the
theorem m, and the formula obtained from the consequent according to the
rule is K. In the case of R5 we write <R5, PCn = m', where PCn is either
one of PC1-PC3 or else one of the following PC theorems:

PC4 (/>:> (qvr)) D ((q => s) => (/> D (s v r)))
PC5 (pvq)^(qvp)
PC6 (P^q)^ ((q => r) => (p => r))
PC7 p => (pvq)
PC8 p D (qwp)
PC9 ((p D q) &(p^ r)) D (p D (q & r))
PC10 (p& ~q) D ~(/>D q)

PC11 ((pvq) &~q)^P
PC12 (p^(q^r)) D (q D (p D r))
PC13 (/>=>r)=> ((pv^)z) ( r v ? ) )
PC14 (^=>r) D (CPvςr) D (fvr))
PC15 (q 3 r) D ((p D ?) D ((r D s) D (p D s)))
PC16 (p D (^ D r)) D ((/> & ̂ ) ^ r)

PC17 (P & q) ̂  P
PC18 (P &q) ^ q

In connection with R2, R4, and R5 we do not list the substitutions in detail,
since inspection of the proofs shows what this is. Definitional rewriting is
shown by 'xDefC', where C is one of the nonprimitive constants. Where
proofs of theorems are given in Aqvist, cf. [1], we omit them here, and give
the number of the theorem in Aqvist's paper, preceded by ζAΎ\

6. Theorems

[ τ h . i ] p ^ ~ τ ~p

(AT3)

[Th.2] T(pvq) => (TpvTq)

(ATI)

[Th.2.1] 0>vT<7) -Dl(pvq)

(AT1.1)
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[Th.3] Ύ(p & q)^ (Tp & Tq)

(A2xDef^->) + (R5, PCl7)xRl = Th.3

[Th.3.l] (Tp&Tq) => T(p & q)

(AT2)

[Th.4] Tp D (Tq => T(P & q))

(AT2.1)

[DR1] From KA, \-B infer \-A & B

(1)A Hyp.
(2)B Hyp.
(3) TA (l)xR3
(4) ΊB (2)xR3
(5) TA D (T£ D T(A & B)) (Th.4)xR2
(6) T(Λ & 5) ((5) + (3)xRl) + (4)xRl
(7) (A & 5) ((A3)xR2) + (6)xRl

[DR2] From \-A^> B, \-B 3 C infer \-A 3 c, provided A, B, and C
are T-formulae.

(1) A z> 5 Hyp.
(2) 5 D C Hyp.
(3) (A I) 5) & (B 3 C) (1) + (2)xDRl
(4) (Λ ̂  C) (R5, PCI) + (3)xRl

[Th.5] (Tp^>p)&(p^~T~p)

(AT4)

[Th.6] Tp ^ ~T ~/>

(R4, PCI) + (Th.5) = Th.6

[Th.7] T ~ ^ D - T / ?

(AT5)

[Th.8] T(/>=>(T) D (Tί^T^)

R5, PC4, T(~pvq)/p, T - p/q, Tq/r, ~Tp/s =

(1) (T(-Pvq) ^ (T~pvTq)) 3 ( ( T ^ p ~Ύp) 3 (T(^^v^)
D(^T^vT^)))

((1) + (Th2.1xR2)xRl) + (Th.7)xRl = (2) T(~pvq) 3 (~T/>vT^)
(2) xDef 3 = Th.8

[Th.8.1] T ( P ^ ) ^ (/>=>Ttf)

R5, PC 5= (l)(T/>vT^) ^ (T^vT/>)
(1) + (Th.2)xDR2 = (2) T(pvq) D (T^vT^)
((2)xR6)xDef D = (3) T(£v#) D (~T# D T/>)
(3) + (R5, PCl6)xRl = (4)(T(pvq) & ~Tq) D T̂ >
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(4) + (A3)xDRl = (5)((Ί(pvq) & ~lq) 3 Ίp) & (Ίp 3 p)

(R4, PCI) + (5) = (6) (T(pvq) & ~Ttf) 3 £

(R4, PC3) + (6) = (7) T(pvq) 3 (~ Ίq 3 />)

((7)xDef3)χR6 = (8) T(/>v#) 3 (T#v£)

((8)xR2)xDef3 = Th.8.1

[DR3] From \-A z> B infer \-ΊA 3 T5

(1) A D B Hyp.

(2) T ( A ^ ) (l)xR3

(3) ΊA => T^ (Th.8xR2) + (2)xRl

[Th.9] Ίp ^ TT£

(AT 11)

[DR4] From h-A 3 B infer \—B 3 ~A

(1) A 3 5 Hyp.

(2) T(~Λv5) ((l)xDefD)xR3

(3) T -AvTJ5 (Th.2xR2) + (2)xRl

(4) T ΰ v T ~ A (3)xR5, PC5

(5) Ί(B v~A) (Th.2.1xR2) + (4)xRl

(6)~~Bv~i4 ((A3xR2) + (5)xRl)xR6

(7) ~B D -A (6)xDefD

[DR5] From h A ^ E m/βr I — T ~ A ^ < v T ~ ΰ

(1) A 3 5 Hyp.

(2) ~β 3 ^ A (l)xDR4

(3) T ~ 5 3 T - A (2)xDR3 '

( 4 ) - T - A D ^ T - , B (3)xDR4

[DR6] From \-A D 5, KB D A iw/er hA = B

(1) A D £ Hyp.

(2) 5 3 A Hyp.

(3) TA<^T^(((l)xDR3) + ((2)xDR3)xDRl)xDef <-»

( 4 ) - T - A ^ ^ ~ T ~ 5 Similarly by DR5

(5) A = .B ((3) + (4)xDRl)xDef=

[Th.9.1] Ίp = ΊΊp

(A3xR2) + Th.9xDR6 = Th.9.1

[Th.10] - T ^ 3 T - T ^

((A3)xR2)xDR4 = (1) ~Ίp 3 ~ΊΊp

(2)ΊΠ7>vT~ T^ (AT9)

((2)xR6)xDef3 = (3) - ΊΊp 3 T ~ Ίp

(1) + (3)xDR2 = Th.10

From this point on we give sample proofs only.

[Th.10.1] ~ T > Ξ f ~ T £
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[Th.ll] Ίp^>Ί(ps/q)
[Th.12] T(pvq)^(TpvTq)
[Th.13] Ί(p& q) 3 Ίp
[Th.13.1] Ί(p & q) ̂  Ίq
[Th.14] T(p &q) = {Ίp &Ίq)
[Th.15] {Ίp & Ίq) DT(Tί& Ίq)
[Th.15.1] {Ίp & Ίq) = T(Tp & T?)
[Th.16] (Tp v Tρ) 3 T(T> v T#)
[Th.16.1] (T/>vT#) ^ T(T/>vT?)
[Th.17] (TpT^)DT(TpT^)

R5, PC13, ~Ίp/p, Ίq/q9 T~ Ίp/r =
(l)(~T/> ^ T ~ Ίp) ~ ((^T^vT^) ^ (T ~ TίvT^))
(1) + (Th.ll)xRl = (2)(^TpvT^) 3 (T - T^vT^)
((2)xR6)xDefD = (3)(~T/> v T^) 3 (~ T - T> 3 T^)
(R5, PC16) + (3)xRl = (4)((~T/>v T?) & - T - T/>) => T^
(4) + (Th.9xR2)xDR2 = (5)((~T/> v T?) & ~ T - T/>) 3 TT^
(R5, PC3) + (5)xRl = (6)(~TίvT^) 3 (~ T - T^ 3 TT?)
((6)xDef.D)xR6 = (7)(~T/>vT^) 3 (T - T^vTT^)
(7) + (Th.2.1xR2)xDR2 = (8)(~T£vTg) 3 T(~Tί vTg)
(8)xDef3 = τh.17

[Th.17.1] (Ίp 3 T^) = T(T/> 3 T?)

[Th.18] (/>-»/>) D ~T ~/>

R5, PC8 = (1)T ~ /> 3 (T/) v T - />)
(Th.2.1xR2) + (l)xDR2 = (2) T - j>3 Ί(pv~p)
(R5, PC9) + ((2) + (Th.7)xDRl)xRI =
(3)T~/>=> ( T ( ί v - ί ) & ~ T ^ )
R5, PC 10 = (4)(T(pv~/>) & ~T/>) 3 ~(Ί(pv~p) 3 T/>)
(3) + (4)xDR2 = (5)T ~pΏ~ (Ί(pv~p) 3 Ίp)
((5)xDR4)xR6 = (6)(T(/>v~/>) 3 T/>) 3 ^ T - p
(6)xDef— = Th.18

[Th.18.1] ~Ί~pz>(p-*p)

R5, PC11 = W((ΊpvΊ ~p) & - T ~ ^ ) 3 jp

(R5, PC3) + (l)xRl = (2)(Ίp v T - p) 3 (~ T - p 3 T/>)
(Th.2xR2) + (2)xDR2 = (3) Ί{pv~p) 3 (~ T - p^Ίp)
(R5, PC 12) + (3)xRl = ( 4 ) - T - p (Ί(pv~p) 3 T/>)
(4)xDef- = Th.18.1

[Th.18.2] ( p - ί ) ^ ~ T - ί
[Th.19] (p-. ~p) = ~Ίp
[Th.20] P^{P^P)
[Th.21] (Ίp->q)^(p-*q)
[Th.22] (P - T^) 3 (p - ^)

R5, PC6 =
(l)(T(/>v~/>) 3 TT^) 3 ((TT r̂ 3 T^) 3 (T(/>v~/>) 3 T^))
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(R5, PC12) + (l)xRl =
(2)(TT<7 o T<?) 3 ((TU»v~/») 3TT?) 3 ( T ( ί v ~ ί ) 3 T ? ) )
(((A3)xR2) + (2)xRl)xDef^ = Th.22

[Th.22.1] (P^ q)^(P^Tq)
[Th.22.2] (/»- q)^(p-^Ύq)
[Th.23] {p-* q)^T(p- q)
[Th.23.1] (£-* <?) = T (£-><?)
[Th.24] (P-* q)^>(~P- q)

(Th.2xR2) + (R5, PC5)xDR2 =
(l)T(~/>v/>) 3 (T/>vT ~/>)
(Th.2.1xR2) + (l)xDR2 =
(2)T(~/>v/>) 3T(i>v~i>)
(2)xR6 =
(3)T(~pv~~/>) 3T(/>v~£)
(R5, PC6) + (3)xRl =
(4)(T(/>v~/>) 3 T<?) 3 (T(~/>v />) 3 Jq)
(4)xDef-+ = Th.24

[Th.24.1] (~P- q)^> (p-> q)
[Th.24.2] (P^ q) = (~p-* q)
[Th.25] (P^q) 3 (T/> 3 T<?)
[Th.25.1] (p -> q) 3 (T/» 3 q)
[Th.25.2] (ί-?)3(T~p Tί)
[Th.25.3] (ί-^(T~p?)
[Th.26] ( ( / > - f ) & ( ί - ) 1 ) 3 ( P - ( ? & r))
[Th.26.1] (P^ (q& r)) 3 ((p _ 9) & (/> _ r))
[Th.26.2] (tf» -» ̂  &(/»-» r)) = (ί - (̂  & r))
[Th.27] (0> -» ?) v (p - r)) 3(/>-(?v r))
[Th.27.1] (p — (gvr)) 3 ((/> -> q)v{p-> r))
[Th.27.2] ((/> - 9) v (/> - r)) = (p-(qvr))
[Th.28] ((/> - r) & (ί - r)) 3 ((/, v 9) - y)
[Th.29] ((/> - . r) v (? - r)) 3 ((/> & 4) _ r)
[Th.30] (ί -* q) 3 ((T? 3 Tr) 3 (/> - r))
[Th.30.1] (P- ?) 3 (j(ί 3 r ) D ( ί - r))
[Th.3l] (/> - ?) 3 ((«7 - , f ) D ( ί - » r))

R5, PC15, τ(pv~P)/P, Ίq/q, Ύ(qv~q)/r, Jr/s =
(1) (T?3T(?v~ί))3((T(ίv~/>) 3T?)3((T(ϊv~?)~Tr)

3(T(ίv~^)3Tr)))
(R5, PC7) + (Th.2.1xR2)xDR2 = (2)T<7 3 T(<7v~<?)
((1) + (2)xRl)xDef— = Th.31

[DR7] From \-A, [-A —> B infer \-B

In concluding this section we think it worth remarking that the following
formulae are not theorems:

* (P -> q) D (T/> — q) (the converse of Th.21)
* ({P v q) — r) 3 ((/> — r) & (ή- — r)) (the converse of Th.28)
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* ((P & Φ -* r) ^> ((p -* r) v (q -> r)) (the converse of Th.29)
* (p->q)^T(p^q) (cf. Th.25)

* (P-* q)^{P^q) {cf. Th.25)
* (P-> q)^> ((q => r) D (/> - r)) (c/. Ths.30, 30.1)

Part Two: The Paradoxes of Material Presupposition
and Their Solution

The system PRES captures and develops some important aspects of
our ordinary (—if somewhat ill-defined—) concept of presupposition. Yet,
in certain other respects, it constitutes a patently inadequate systematiza-
tion of that notion. In particular, as a result of the definition of '—»', and
the substitution of 'T(pv~p)> for '£', and 'TV for 'q' in the PC-thesis
(~p ^ (p 3 #)', we obtain as a thesis of PRES:

[Th.32] ~T(/>v~/>) ^ (P~> q)

In words: a void proposition presupposes any proposition whatever. By
making the same substitutions in the PC-thesis 'q ^> (p => #)', we obtain as
another thesis of PRES:

[Th.33] T?D (P-+4)

That is, it is proved that a true proposition is presupposed by any proposi-
tion whatever. These results arise from the incorporation of the PC-theses
known as the paradoxes of material implication, and consequently they
might themselves be called the paradoxes of material presupposition. Now,
just as some (notably C. I. Lewis) have found the paradoxes of material
implication an insuperable obstacle to the construal of '̂ >' as a formalisa-
tion of the pre-systematic notion of implication, so it might be objected that
the paradoxes of material presupposition count heavily against any claim
for '—>' as representing the pre-systematic idea of presupposition. As a
solution to this problem, it might be further suggested that we follow in
Lewis' footsteps and 'strengthen' our original connective by placing it in
the scope of a necessity operator, now regarding this whole complex as the
appropriate formalisation of the notion under investigation. After all, the
inadequacy of material presupposition as a formal rendering of presupposi-
tion and the inadequacy of material implication as a formal rendering of
implication (or entailment) are basically due to the same thing: namely,
that the informal notions themselves involve more than just the comparison
of truth-values, which is all that their formal representatives may make
reference to. It seems reasonable to expect that a treatment of the
'problem of presupposition', then, might usefully parallel the treatment of
the 'problem of implication', that is, be effecting a modalisation of the
underlying truth-functional logic. For the remainder of this paper, we shall
be occupied in pursuing this suggestion.

The system PRES may be regarded, in the light of what has just been
said, as a formal theory of material presupposition, and we may regard the
system PRESL, to be developed presently, as a theory of strict presupposi-
tion, where ζρ strictly presupposes qy is the intended verbalisation of
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*L(/>—> q)\ with '->' defined as in PRES. Indeed, the most convenient way
of developing a logic of strict presupposition proves to be by providing a
modal extension of PRES. To do this, we define PRES|_ as the system
formed by adding to the axioms of PRES the two axioms and one rule of
inference distinctive of that system called by Sobociήski ' T :

[A4] L(ίD?)D(LpU)
[A5] Lpop

R7. From \-A infer \-LA

together with one axiom relating the necessity operator to the truth-
operator:

[A6] Lp D LTp

As a result of R7 and [A4], it is obvious that PRESL contains the following
derived rule:

[D.R.8] From hA => B infer \-LA 3 LB

Applying this rule to [A3], we get the first theorem to be stated here that is
in PRESL but not in PRES:

[Th.34] LTp^Lp

which, given [A6] via an application of [D.R.6], yields:

[Th.35] Lp=LTp

In the same vein we have:

[Th.36] Lp D TLp

(Th.34xR3) + (Th.8.1xR2)xRl = (1) LTp 3 TLp
R4, PCI + ((1) + AβxDRl) = Th.36

[Th.37] Lp = TLp

These first four theorems of PRESL connect with some of the features
we are going to want the semantics of a modal system with a truth-operator
to have. For on the normal reading of 'U as 'it is necessarily true that',
and given that the formal rendering of 'it is true that p9 is provably
equivalent ([Th.9.l]) to the formal rendering of 'it is true that it is true that
p9, one would certainly expect to have 'it is necessarily true that p9 and 'it
is necessarily true that it is true that p9 likewise equivalent. [Th.35] states
this equivalence, and also means that 'L-formulae' (i.e., formulae in which
no propositional variable lies outside the scope of an occurrence of 'L')
may be regarded as derivatively T-formulae. Another aspect of the same
matter is that 'L' is a decisive constant, in the sense introduced above,6

since if ζp9 is void, so that y{p) = 2, ζTp9 is false (remembering that we
want V(Lp) = V(LTp), and assuming that we have ' U as a decidedness-
preserving constant, in the sense of footnote 5). Now we can see [Th.37] as
a modal analogue to [Th.15.1], [Th.16.1], and [Th.17.1]. For these three
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theses say, in effect, that any truth-functional compound, A, all of whose
components are T-formulae, is provably equivalent to its own 'truthing up',
TA. [Th.37] carries this result into the area of modality. This ties in
neatly with the semantics of the situation, for we want LA to be true in a
world if and only if A is true, in all worlds possible relative to that world.
If A is not true 'everywhere', in this sense, then A is not necessarily true,
and LA is false. We rule out, in other words, the possibility that LA should
actually take the value 2 in a world, even if A is assigned 2 in all relatively
possible worlds. (Under such circumstances, since A is not everywhere
true, LA is just plain false, and is assigned 3 in the world in question.)
Having decided, then, on the value assignment policy:

V(LA, w{) = 1 iff V(A, Wj) = 1 for all Wj possible relative to w{,
V(LA, wi) = 3 otherwise,

for necessity, a natural choice of policy for the correlative modal notion,
possibility, represented here by 'M', would be:

V(MA, wι) = 1 iff V(A, Wj) = 1 for some Wj possible relative to wi9

V(MA, Wj) = 3 otherwise.

Thus, we construe necessity as truth in all possible worlds and possibility
as truth in at least one possible world, just as in the semantics of modal
extensions of two-valued propositional calculus. The similarity at this
point might tempt one to think that we are in for the unfolding of all the
usual modal relations, the existence of the third value perhaps merely
complicating the matter in some routine way. To develop some theorems
on possibility, it might then be thought, one has just to define MA as
~L~A, in the usual way, and proceed. This would be a serious mistake,
however, as a moment's reflexion reveals. For what ~L~A (being
equivalent to ~LT~A) says is that A is not everywhere false, whereas
what we decided MA was to mean is that A is somewhere true. In three-
valued logic these are by no means the same thing, since the former would
be true, and the latter false, if A were assigned the value 2 in all possible
worlds. Similarly, ~M~A is to be distinguished from LA (=LTA), since
the former is true provided that A is nowhere false, while the latter is true
only if A is, not just non-false everywhere, but actually true everywhere.7

To obtain these relations, hAA must be defined, not as ~ L ~ A, which would
be equivalent to ~ LT~A, but in the following way:

[Def. M] MA for ~L~TA

The reader may verify for himself that the semantic relations
specified by our assignment policies for L and M are guaranteed to hold by
this definition. We may now proceed to develop some theorems on the
notions of necessity, possibility and truth as they interact in PRESL

[Th.38] Lp 3 Ύp
[Th.39] /> D ~ L ~ />
[Th.40] Ίp => - L ~ p
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[Th.4l] Lp^>~L~p
[Th.42] ~LpT~Lί

Th.l0xR2 - (1) ~TLp D T ~ TL/>
Th.36xDR5 = (2) - T ~ L£ z> ~ T - TL/>
((l)xDR4) + (2)xDR2 = (3) ~ T ~ Lp D ~ ~ T L £
((3)xR6) + (A3xR2)xDR2 = (4) ~T - Lp => Lp
(4)xDR4xR6 = Th.42

[Th.43] ~Lp=T~Lp
[Th.44] ~ T ~ p = > ~ L ~ p
[Th.45] Lp Z) Up

Th.41xR2 = (1) LΊp => - L - Ίp
A6 + (l)xDR2 = (2) Lp ^ ~ L ~ Ίp
(2)xDefM = Th.45

[DR9] From \-A^ B infer I— L ~ A^> ~L ~ B

[Th.46] Mp -D ~ L - />

A3xDR9xDefM = Th.46

[Th.47] Lp => - M ~ p

((Th.lxDR8)xR6)xDefM = Th.47

[Th.48] Ίp 3 Mp

(Th.39xR2)xDefM = Th.48

[Th.49] ^ M - p = ^ - T ~ p

These relations are pictured in the following diagram. An arrow between
formulae signifies that the implication in that direction, but not its
converse, is provable between those formulae. (Implications that are
provable as a result of the transitivity of implication are not marked
separately.) For convenience, we write a dash by an operator to symbolise
the circumnegation of that operator; thus, Wp for ~ M ~ p, etc.

Lp^— > T p ^ ^ J ^ J VP

^ ^ ^ ^ h A p ^ ^ ^ ^

Having thus demonstrated that the modal geography of a three-valued
terrain introduces certain distinctive complications that might not have
been anticipated, given a familiarity with two-valued modal logic, we may go
on to deal with the more complex formulae of PRESL, including especially
those pertaining to strict presupposition. One first point to clear away is
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the worry that the non-equivalence of L and ~ M ~ provides us with two
distinct ways of modally strengthening material presupposition, and that we
must, therefore, choose whether it is in fact L (p -* q) or rather ~ M ~ (p —• q)
that should be regarded as representing strict presupposition. It is not
difficult to see, however, that:

[Th.50] L(p-*q) Ξ E ~ M ~ ( / > - > q)

We omit the proof (remarking only that it depends on [Th.23.1]). Fortu-
nately, then, the worry about a modal embarras de richesse turns out to be
unfounded in this context. One area in which such a worry legitimately
arises, however, is that of entailment. We may suppose, so as not to
multiply points of disputation, that, for two-valued logic, Lewis' strict
implication adequately formalises the notion of entailment. There is,
however, no single natural rendering in a three-valued logic with a truth-
operator, of strict implication. Thus questions about 'whether or not all
cases of presupposition are cases of entailment', etc., remain formally
unsettleable, the relation of entailment having only been defined for two-
valued logic, with the relation of presupposition defined only for three-
valued logic.8 We might say that the two notions, as they stand, are thus
'incommensurable'. Since we have good reason to believe that if pre-
supposition is treated as a logical relation which may hold between
individual propositions, it is not amenable to treatment in two-valued
calculi (as argued in our introductory section), we may devote some
attention to the question of how entailment is to be represented in
three-valued logic (—we must have the two notions represented within the
same logical system so as to compare their behaviour). Given that we want
some sort of strict implication, we may examine three (among the several
possible) candidates:

(A) L(ί=>?)[sLT(/>=>?)]
(B) L(Tp^Tq)
(C) ~MU>&~<?)

As to (C), we think we may dismiss its chances of representing entailment
without much difficulty, if we accept the plausible condition on possible
entailment relations that they be transitive. For (C) reduces by R6 and the
definition of <M' to <L - Ί(p & - # ) ' , which by Th.3, Th3.1, DR4, DR8, and
DR6 is equivalent to 'L~(T/> & T ~ q)', whence by definitional rewriting
and R6 we obtain as provably like-valued equivalent to (C) the formula
<L(T/> => ~ T ~ q)\ It should be clear that <L(T/> D ~ T - q)y and ιL{Ίq =>
~ T ~ r)9 do not imply 'L(Tp 3 ~ T ~ r ) \ They would do so only if it were
provable that (~T ~q' implied ζTq', that is, only if we eliminated the value
'void' from our logic.

Having excluded (C), we may compare (A) and (B). Both embody
transitive relations (proofs omitted), and they are such that (A) implies but
is not implied by (B). We state this as

[Th.51] L(p^q)^L(Tp^Tq)

(Th.8xDR8) + (A6xR2)xDR2 = Th.51
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Semantically, this means that there are more circumstances under which
(B) is true than under which (A) is true. (B) will be false only if there is
some possible world in which ζp9 is true and (q' is either false or void,
while (A) will be false then and also if there is any world in which 'p' is
void and ζq9 is void, or in which ζp9 is void and '#' is false. It is difficult to
see what bearing such facts have on the question of which formula should be
taken to represent entailment in PRESL and perhaps it would be most
sensible to regard both (A) and (B) as equally entailment-like, calling (A)
'external', and (B) 'internal' entailment (after the position of the 'T'
relative to the parentheses). There are some considerations, however,
which weigh in favour of (B) as the more appropriate choice. One such
consideration that might be brought to bear on the issue is the dictum that
one proposition entails another when the truth of the latter follows from, or
may be inferred from, the truth of the former. Such a view naturally
inclines one to regard internal rather than external entailment as the
'genuine' entailment relation. If we accept this, then the ruling of the
system PRES|_ on the question of whether or not there are cases of pre-
supposition that are not also cases of entailment9 is in the negative. For
one may easily prove

[Th.52] L(p->q)^L(Tp^Tq)

Th.25xDR.8 = Th.52

This is in accord with the argument of Nerlich in [12] (in particular, with
what he calls the a fortiori argument on this subject).10 The argument is
simply that since a proposition cannot be true or false unless what it
presupposes is true, it cannot be true, tout court, unless what it pre-
supposes is true, and hence from its truth one can infer the truth of what it
presupposes, which is to say that it entails this latter. Should one wish to
reject this conclusion, one might then opt for 'L(p^> q)' as the more
appropriate formalisation of entailment in three-valued logic, noting that
the formula

* L{p-*q) H ( ί ^ )

is not provable in PRESL, or alternatively one could choose to disregard
the system PRES|_ as a formalisation of presupposition. We ourselves are
impressed by Nerlich's line of reasoning, and so naturally tend to regard
the provability of [Th.52] as one of the system's assets.

Observe, most importantly, that while this means (on the 'internal'
account of entailment) that the notions of presupposition and entailment are
not disjoint, it does not mean that they are not distinct. That is, the
converse of [Th.52] is certainly not provable. One could even give a
special name to that class of entailments which are not cases of presup-
position, for example, calling them 'affirmative entailments', so that:

p affirmatively entails q =df L(Tp 3 Jq) & ~ \_(ρ -> q)

or equivalently,

p affirmatively entails q =df L(Tp D Tq) & ~ L(Tp v ~/> ^ Tq)
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Then the distinction drawn by Strawson in [17] between one proposition's
entailing another, and its presupposing that other might be redrawn, by
those interested, as a distinction between the first proposition's affirma-
tively entailing the second, and its presupposing it. This would at least be
a division into mutually exclusive classes.

Given that PRESL is a modal extension of PRES, it is not surprising
that many of the results established for material presupposition go over,
mutatis mutandis, into our account of strict presupposition. We have
already seen this in the case of [Th.52], the modal analogue of [Th.25], and
offer the following further examples:

[Th.53] L{Ίp -> a) o L(p -> q) (= Th.21xDR8)
[Th.53.1] Up - la) => L(p — a) (= Th.22xDR8)
[Th.53.2] HP - q) z> L(/> — la) (= Th.22.1xDR8)
[DRlO] From hAo> B, \-B^> A infer hLA = LB

(Proof by DR8 and DR6)
[Th.53.3] HP ~* Q) = L(/> -> Ίq) (= Th.22 + Th.22.1xDR10)
[Th.54] HP— q) ^ L(~£-> q) (= Th.24xDR8)
[Th.54.l] L(~p-> a) ^L(p-> q) (= Th.24.1xDR8)
[Th.54.2] HP-* Φ = L(~/>-» q) (= Th.24 + Th.24.1xDRlO)
[Th.55] L(p&q)^Lp

(Th.l3xDR8) + (A6xR2)xDR2 = (1)L(P & q) => LTp
(1) + Th.34xDR2 = Th.55

[Th.55.1] L(p& q) => (Lp & L )̂
[Th.55.2] {Lp & Lq) =) L(/> & #)
[Th.55.3] L(i>& )̂ = (LP& Lq)
[Th.56] ( L ( P - q) & Hp-**))=> L{p-* (q & r))

Th.26xDR8 = (1) L((p -> q) & (P - r)) D L(/> - (q & r))
(Th.55.2xR2) + (l)xDR2 = Th.56

[Th.56.1] L(p-> (q&r)) D ( L ( ί - ί) & L(p- r))
[Th.56.2] ( L ( P - «) & L(/>- r)) ^ L ( p - (^ & r))
[Th.57] Lp^L(pvq)

((Th.llxDRβ) + A6xDR2) + (Th.34xR2)xDR2 = Th.57

[Th.57.1] (Lp.vLq) ^L(pvq)
[Th.58] (L{p- q)vL(p-> r)) D L(p-+(qv?))

(Th.27xDR8) + (Th.57.1xR2)xDR2 = Th.58

Note that because the converse of [Th.57.l] is not provable, we do not have
the analogues for strict presupposition of [Th.27.l] and [Th.27.2].

[Th.59] (L{p-+f) & L(q->r)) 3 L{{pvq) - r)
[Th.60] (Up - r) v L(q - r)) D L((ί & q) - r)
[Th.βl] L(p - ?) ̂  (L(T^ =) Ίr) ̂  Lip - r))
[Th.62] L(P - *) => (L(g D r) D L(/> - r))
[Th.63] L(ί - ^) 3 (Lto - ^) D L(/> - r))
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And finally the analogues to [Th.32] and [Th.33]:

[Th.64] L - Ί(p v ~p) ^L(p-^q)

[Th.65] LTqΏL(p-^q)

which constitute the inevitable paradoxes of strict presupposition' and

bring us back to where we began. In words: a necessarily void proposition

presupposes any proposition whatever, and a necessarily true proposition

is presupposed by any proposition whatever. At this point, just as at the

corresponding point in the dispute about strict implication, there will be

some who feel that the strict presupposition paradoxes are to be welcomed

as showing us something important and easy to overlook in our concept

of presupposition, and there will be others who will find in them grounds

for rejecting strict presupposition as a formalisation of that presystematic

concept. These latter might care to amuse themselves in the construction

of formal systems differing from PRESL in replacing the material

implication of PRES, not by strict implication, but instead by Parry's

'analytic implication', by Anderson and Belnap's 'relevant implication' or

their 'entailment', by McCall's 'connexive implication' or by any of the

many other implicational connectives on the market today. We wish them

the best of luck.

NOTES

1. Particularly relevant to our discussion is Austin ([2], p. 51). We have taken
from here the term 'void' and adapted it to apply to propositions with unfulfilled
presuppositions. (For Austin it is the utterance which is void in such cases.)
Much recent philosophical interest in presupposition centres round what has
become known as free logic. See van Fraassen's and Lambert's contributions
to Lambert [10], and the references cited there. For the use of the notion of
presupposition by linguists, see especially Lakoff [8] and [9]; Kiparsky and
Kiparsky [7]; and Horn [6].

2. This means that the system of presupposition logic we present does not include
classical propositional calculus. However, the language of classical preposi-
tional logic, considered purely syntactically, is a part of the language of pre-
supposition logic.

3. The system K3 has the advantage that the non-primitive constants are defined in
terms of the primitive constants in the way familiar from two-valued proposi-
tional calculus.

4. The term 'decisive' is due in this connection to Rescher. Our usage differs
slightly from his in that for him it is the truth-table of a constant rather than
the constant itself that is decisive. See Rescher [13], p. 61.

5. This is true only because all the logical constants we have introduced are
decidedness-preserving, by which we mean that whenever the input values are
only 1 and/or 3 the output value also is only 1 or 3. This is a partial generali-
sation of Rescher's notion 'normal'. See Rescher [13], p. 55.
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6. Notice that if we had not adapted Reseller's use of 'decisive' we would not have
been able to apply this term to the non-truth-functional constant 'L\

7. The fact that the normal relations between 'L' and 'M' are skewed by the
existence of a third value has been noticed before. A particularly lucid dis-
cussion is to be found in Segerberg (1967). Segerberg is concerned to provide a
modal extension of a three-valued logic where the third value is the intended
assignment for meaningless sentences rather than void propositions. This
difference is reflected in Segerberg's choice of Bochvar's tables (see Rescher
[13], p. 29) for the constants rather than Kleene's. It is important to see that in
Segerberg's treatment and in ours modality exists alongside many-valuedness, in
contrast, for example, with some of the work of Lukasiewicz, where modality is
construed in terms of many-valuedness.

8. Our talk of the relation of presupposition here should be understood as follows:
we say that the relation of presupposition holds between A and B when it is true
that A presupposes B. We treat '-*' as a binary connective, reading 'p —• q' as
'that p presupposes that q\ and not as the name of a binary relation holding
between sentences or between propositions. Similarly for entailment.

9. Implicitly Strawson, in [16], is arguing that there are cases of presupposition
which are not cases of entailment, since he argues that Russell was wrong to
say that 'The King of France is wise' entails 'The King of France exists'.

10. This argument appears in an almost identical form in Roberts [14].
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