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TWO NOTES ON RECURSIVELY ENUMERABLE VECTOR SPACES

RICHARD GUHL

1 A Characterization of Recursive Spaces We retain the terminology of [4]
of which this note is a continuation.

Definition Let σ0 = σ - (0). Let n c Uo. Define m(n) to be the (largest
prime divisor of n + 1).

Obviously:

(i) m(n) is a partial recursive function,
(ii) m(F0) infinite iff dim V infinite,
(iii) m respects inclusion on sets,
(iv) m maps (proper) subspaces to (proper) subsets,
(v) for β c Uo, m(x) 1 - 1 on β implies β is a repere.

Definition Let V be a subspace of U. γ is a cobasis for V if γ is a basis
for a complementary space for V. ηv is the canonical cobasis for V if ηv is
a cobasis for V and ηv c 77.

Remark The canonical cobasis for a space V is defined to be the set γ such
that γ = (e, in 771 ̂ z- is not in (L(e; ) j < z) + F).

Proposition F The canonical cobasis for a recursive space is recursive.

Proof: Let f(i) list the canonical cobasis in increasing order. If / is a
finite function, then its range is recursive. Otherwise / is a recursive
function by the Corollary to Proposition C.

Proposition G For any space V, ene m(V0) iff en is not in the canonical
cobasis for V.

Proof: It suffices to show that

(19) ene m(F0) iff ene (L(e, ) i < n) + V).

Assume the left hand side. Then there is an element e in V such that:

e = roeo + . . . + rnem where rn Φ 0.
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So en = -l/rn(roeo + . . . + rn.γen^ + l/rn(e). So the right hand side holds.
Assume the right hand side. Suppose en = (roeo + . . . + rn^en^) + soeo +
. . . + snen + . . . + Skβk, where soeo + . . . + skek i s in V. Then: r0 + s0 =
0, . . ., rn.γ + sn.γ = 0, sn = 1, sn+ι = 0, . . ., sk = 0. So ene m(F0) and the left
hand side holds.

Proposition H If V is any space, η - m(F0) is a cobasis for V.

Proof: It is the canonical cobasis for V by Proposition G.

We now characterize recursive spaces by their images under m.

Proposition I Let V be a r.e. space. Then m(F0) is r .e. and

(20) V recursive space iff m(F0) recursive set.

Proof: Suppose V is r .e. Then m(F0) is r .e. as a consequence of the
definition of m(x). Retaining the assumption that V is r .e. throughout, we
have the following chain of reversible implications: m(F0) recursive iff
V - m(Fo) is recursive iff the canonical cobasis for V is recursive iff V is
recursive.

We now refine our characterization by investigating the effect of m on
reperes.

Proposition J Let V be any space and β any basis of V. If m is 1 - 1 on β,

m(/3) = m(Fo).

Proof: m(/3) c m(V0) by (i). Suppose ene m(F 0 ) . Then t h e r e is an element
v e V such that m (v) = en and

(21) v = sobo + . . . + Skbk where no sz i s 0,

and the b{ a r e all dist inct e lements of β. Since m(x) i s 1 - 1 on β, m(υ) -
m(b0) or . . . or m(δ^), so en = m(b0) or . . . or m(bk).

Corollary K If V is a r .e . space and γ is a generating set for V on which

m(x) is 1 - 1, then V is a recursive space iff m(y0) is a recursive set.

Proof: γ0 is a repere in V so by Proposition J, m(y0) = m(V0). Now apply
Proposition I.

2 Another Type of r.e. Vector Space We assume some familiarity with the
content of [3].

Definition Let S be a non-empty md (mutually disjoint) class of r .e. sets.

Then S is called r .e. if there is a recursive function gn(x) such that

5 = (pgoy βgi, . .).

Definition Let V be a subspace of U. Then (U/V) is the md-class of cosets
of V in U. If this class is considered as a vector space over F it is
assumed that addition and scalar multiplication are defined in the usual
way.

Definition Let V be a subspace of U and γ a choice set of the md-class



TWO NOTES 297

(U/V) such that 0 e y. Let c(x) be the choice set of (U/V) associated with y.
Then C = (y, +, •) is the vector space over F determined by y and V, where

x + y = c(x + y) x, y eγ,
r ' x = c(r -x) for x e γ, r e F.

The following proposition depends, for its proof, on the fact that
c(x + V) = c(x) is an isomorphism of vector spaces taking (U/V) onto C;
whence the properties of (U/V) are transferred to C. The assertions are
well known properties of the quotient space.

Proposition L Let V be a subspace of U, 0 e γ a choice set for (U/V), c(x)
the choice function associated with y, and C the associated vector space.
Then:

(a) if β is a repere in U whose span is disjoint from V, then c(β) is a repere
in C,
(b) if γ is a repere in C then γ is a repere in U and its span is disjoint
from V,
(c) if β0 is a cobasis for V in U then c(β0) is a basis for C,
(d) if γ is a basis for C then it is a cobasis for V in U.

Proposition M If V is a r.e. space, (U/V) is a r.e. class o/r.e. sets.

Proof: Let a(n) and υ(x) be recursive functions ranging over εF and V
respectively. Put

gn(x) ~ a(n) + v(x), for ny xe ε.

Then gn is a recursive function of two variables such that (U/V) =
(pgo, pgi, . . .), and the proposition is proved.

Proposition N For a r.e. space V, V decidable iff the mό-class (U/V) has a
partial recursive choice set. (A space V is a gc-subspace of Uby definition
if this condition is satisfied.)

Proof: Assume V decidable. Since every finite md-class of non-empty r.e.
sets has a r.e. choice set, we may assume that V has infinitely many cosets
in U. Put cn = x(xe εF & (i < n —> x - c{ e V). Then c(x) is a strictly in-
creasing function, and it is recursive since V is decidable and so a
recursive set. So V is a gc-subset of_J7. Assume V a gc-subspace of U.
Let 0 € y be a recursive choice set for (U/V) with associated choice function
c(x). Then c~\θ) = V and c~ι(γ - 0) = U - V are r.e. sets. So V is de-
cidable.

Definition Let F satisfy our requirements for a field. A r.e. space over F
is an ordered triple (p, +, •) = R such that

(a) R is a vector space over F,
(b) p is a r.e. set,
(c) 0 e p and 0 is the zero-element of R,
(ά) the following functions are partial recursive:
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f(x, y) = x + y, for x, y e p,
g(n,x) = φ~ι{n) 'X for ne φ(F), xe p.

Proposition O Let V be a decidable space, γ a r.e. choice set of (U/V) with
0 e γ and C the associated vector space. Then:

(a) C is a r.e. space,
(b) C has a r.e. basis iff V is a recursive space.

Proof: (a) C is obviously a r.e. space (in the sense of the immediately
preceding definition).
(b) Use Proposition L. Let V be recursive and let δ be a r.e. cobasis for V.
Then by part (a) of Proposition L, c(δ) is a r.e. basis for C. So C has a r.e.
basis. On the other hand, if C has a r.e. basis δ, then by part (d) of
Proposition L, δ is a cobasis for V in U. So 7 is a recursive space.

We believe that the definition we have given is the intuitively obvious
definition of r.e. space. We now present the following theorem.

Proposition P There exists a r.e. space {in the sense of our definition)
which has no r.e. basis.

Proof: By Proposition E, there exists a decidable space that is not
recursive. Choosing such a space for our V in Proposition O, we have as
associated vector space C, a space that is r.e. by part (a) and that has no
r.e. basis by part (b).

The intuitive content of Proposition P is that linear independence is not
a recursive property, since all we have changed in our definition is the
relation of linear independence.

The preceding paper consists largely of material developed in the
author's doctoral dissertation under Professor J. C. E. Dekker, whom he
would like very much to thank for making said dissertation possible.
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