RECURSIVE AND RECURSIVELY ENUMERABLE MANIFOLDS. I

VLADETA VUČKOVIĆ

Foreword In [1] I have presented a sketch of the Local Recursive Theorya generalization of the Recursive Theory, which is quite different from other generalizations: instead of being a study in definability (as, for example, [6] of Platek), or a concrete interpretation (as the Metarecursive Theory of Kreisel-Sacks in [7]), or an abstract axiomatization (as the Theory of Uniformly Reflexive Structures of Wagner in [8]), Local Recursive Theory is the study of sets which admit a local recursive structure; this structure is induced via appropriate enumerations of local neighborhoods and an effective patching of such neighborhoods.

Local Recursive Theory, or the Theory of Recursive and Recursively Enumerable Manifolds, is a further development of the Theory of Enumerations, of an integral part of the Recursive Theory, which was systematically studied by Malcev and his students, especially by Yu. Ershov; in [1] I presented a first draft for such a development, considering only a very special case (of injective local enumerations). Here, I develop the Local Recursive Theory in its full generality and in many directions which were not even mentioned in [1].

With the exception of a few pages, the material of this monograph has not been published previously. The monograph was drafted for a course in Generalized Recursive Theory, at the Graduate School of Mathematics at the University of Notre Dame in the first semester of 1974/1975 year.

CHAPTER I-BASIC NOTIONS

Every map $u: N \rightarrow U$ of the set N of non-negative integers onto an at most denumerable, non-empty set U, is called an enumeration of U; if it is bijective it will be called an indexing of U. Using enumerations we can extend recursive notions to any enumerated set U. For example, a map $f: U \rightarrow U$ of U into U will be called u-recursive iff (if and only if) there is an r. (recursive) function $f^{*}: N \rightarrow N$, such that, for all $n \in N$,

$$
\begin{equation*}
f(u(n))=u(f *(n)), \tag{1.1}
\end{equation*}
$$

i.e., such that the diagram in Figure 1.1 commutes.

Figure 1.1
In case u is an indexing, this situation may be expressed by

$$
\begin{equation*}
u^{-1} \circ f \circ u \text { is an } r \text {. function. } \tag{1.2}
\end{equation*}
$$

(Obviously, u^{-1} is the inverse of u, and \circ denotes composition of functions.)
The Theory of Enumerations is exposed in the fundamental paper [2] of Malcev, and in the monograph [5] of Ershov. For the results I shall refer to both of those expositions. The fundamental idea of the Local Recursive Theory is the following one: suppose, for each $p \in P, \alpha_{p}: N \rightarrow A_{p}$ is an enumeration of the set A_{p}; thus, for each $p \in P$, one can pursue some recursive theory on A_{p}, using the enumeration α_{p}; now, if $A=\bigcup_{p \in P} A_{p}$, can one use the same enumerations to introduce some recursive theory on A ? My answer is "yes', if one supposes the local neighborhoods A_{p} to be patched in an effective way-whenever their intersections are not empty. (By \varnothing I shall denote the empty set.)

Definition 1.1 A non-empty set A is called a Recursive Manifold (an RM) iff:
(i) There is a family \mathfrak{A} of enumerations $\alpha_{p}: N \rightarrow A_{p}, p \in P$, where each A_{p} is a non-empty subset of A and $A=\bigcup_{p \in P} A_{p}$.
(ii) For every pair $\left\langle p, p_{1}\right\rangle \in P^{2}$ such that $A_{p} \cap A_{p_{1}} \neq \varnothing$, both $\alpha_{p}^{-1}\left(A_{p_{1}}\right)$ and $\alpha_{p_{1}}^{-1}\left(A_{p}\right)$ are recursive sets, and there are numerical p.r. (partial recursive) functions

$$
f_{p}: \alpha_{p}^{-1}\left(A_{p_{1}}\right) \rightarrow \alpha_{p_{1}}^{-1}\left(A_{p}\right) \text { and } f_{p_{1}}: \alpha_{p_{1}}^{-1}\left(A_{p}\right) \rightarrow \alpha_{p}^{-1}\left(A_{p_{1}}\right)
$$

such that

$$
\begin{equation*}
\alpha_{p}(n)=\alpha_{p_{1}}\left(f_{p}(n)\right), \text { for all } n \in \alpha_{p}^{-1}\left(A_{p_{1}}\right), \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{p_{1}}(n)=\alpha_{p}\left(f_{p_{1}}(n)\right), \text { for all } n \in \alpha_{p_{1}}^{-1}\left(A_{p}\right) \tag{1.4}
\end{equation*}
$$

In Figure 1.2 (see p. 267) the relations (1.3) and (1.4) are represented graphically.

The sets A_{p} are called Local Neighborhoods, the enumerations α_{p} are called Local Enumerations and the family $\boldsymbol{\leftrightarrow}=\left\{\alpha_{p} \mid p \in P\right\}$ is called the Atlas

Figure 1.2
of the $\mathbf{R M}\langle A, \mathfrak{A}\rangle$. In general, $\langle A, \mathfrak{M}\rangle,\langle B, \mathfrak{B}\rangle,\langle C, \boldsymbol{C}\rangle, \ldots$, will denote RM's with atlases $\mathfrak{N}, \mathfrak{B}, \boldsymbol{\in}, \ldots$, respectively. We shall call sets A, B, C, \ldots, the Carriers of the corresponding RM's. In case all α_{p} are indexings (i.e., injective enumerations), we call $\langle A, \mathfrak{2}\rangle$ an Injective RM (an IRM). For such manifolds, (1.3) and (1.4) can be shortened to
(1.5) $\quad \alpha_{p_{1}}^{-1} \circ \alpha_{p}$ and $\alpha_{p}^{-1} \circ \alpha_{p_{1}}$ are p.r. functions with r. domains.

Every enumerated set $\langle U,\{u\}\rangle$ is an RM; in case u is bijective, $\langle U,\{u\}\rangle$ is an IRM. By \mathbf{n} I shall denote the IRM $\langle N,\{1\}\rangle$, where I is the identity on N. (In general, I_{A} will denote the identity on the set A.)

Example 1.1 Let A be a non-empty (infinite) set, and let $\alpha: N \rightarrow U$ be an enumeration (an indexing) of a subset U of A (which is infinite). If $A=U$, $\langle A,\{\alpha\}$ is an RM (an IRM). If $A \neq U$, let $P=A-U$ and to every $p \in P$ correspond the local neighborhood $A_{p}=U \cup\{p\}$ and the enumeration (the indexing) $\alpha_{p}: N \rightarrow A_{p}$, defined by

$$
\alpha_{p}(n)=\left\{\begin{array}{l}
p \text { for } n=0 \\
\alpha(n-1) \text { for } n \geqslant 1
\end{array}\right.
$$

Let $\mathfrak{H}=\left\{\alpha_{p} \mid p \in P\right\}$. Then $\langle A, \mathfrak{A}\rangle$ is an RM (an IRM). Further, for all $p \neq p_{1}$, $A_{p} \cap A_{p_{1}}=U$, and $\alpha_{p}^{-1}\left(A_{p_{1}}\right)=\alpha_{p_{1}}^{-1}\left(A_{p}\right)=N^{+}=N-\{0\}$, and $\alpha_{p}(n)=\alpha_{p_{1}}(n)$ for all $n \in N^{+}$. Figure 1.3 represents this last case.

Figure 1.3
Example 1.2 Let $\left\langle A_{i}\right\rangle_{i \in N}$ be a sequence of non-empty recursive subsets of N. Let $A=\bigcup_{i=0}^{\infty} A_{i}$, let $\alpha_{i}: N \rightarrow A_{i}$ be recursive, with A_{i} as range, and let $\mathfrak{H}=\left\{\alpha_{i} \mid i \in N\right\}$. Then $\langle A, \mathfrak{M}\rangle$ is an RM. Namely, if $i \neq j$ and $A_{i} \cap A_{j} \neq \varnothing$, then $A_{i} \cap A_{j}$ is recursive, and both $\alpha_{i}^{-1}\left(A_{j}\right)$ and $\alpha_{j}^{-1}\left(A_{i}\right)$ are recursive. Define then

$$
f_{i}(n)=\mu_{y}\left(\alpha_{i}(n)=\alpha_{j}(y)\right) \text { for all } n \in \alpha_{i}^{-1}\left(A_{j}\right)
$$

and

$$
f_{j}(n)=\mu_{y}\left(\alpha_{j}(n)=\alpha_{i}(y)\right) \text { for all } n \in \alpha_{j}^{-1}\left(A_{i}\right)
$$

Then $\alpha_{i}(n)=\alpha_{j}\left(f_{i}(n)\right)$ for all $n \in \alpha_{i}^{-1}\left(A_{j}\right)$, and $\alpha_{j}(n)=\alpha_{i}\left(f_{j}(n)\right)$ for all $n \in \alpha_{j}^{-1}\left(A_{i}\right)$. In the case in which $i \neq j$ implies $A_{i} \cap A_{j}=\varnothing$ for all $i, j \in N$, we may suppose that all A_{i} are only r.e. sets. In the case in which all A_{i} are infinite and recursive we may suppose that all α_{i} are recursive and increasing; in this case $\langle A, \mathfrak{R}\rangle$ becomes an IRM.

Example 1.3 Let Ω be the class of all ordinals, and let Ω_{0} be its subclass consisting of zero and of all limit-ordinals. To every $\xi \in \Omega_{0}$ there corresponds an enumeration

$$
\alpha_{\xi}: N \rightarrow\{\xi+n \mid n \in N\} .
$$

Let $H=\left\{\alpha_{\xi} \mid \xi \in \Omega_{0}\right\}$. Then $\langle\Omega, H\rangle$ is an $\mathbf{R M}$, very trivial indeed, since $\xi \neq \eta$, $\xi, \eta \in \Omega_{0}$, imply $U_{\xi} \cap U_{\eta}=\varnothing$, where U_{ξ} and U_{η} are ranges of α_{ξ} and α_{η} respectively. In case each α_{ξ} is injective (for example, if one defines $\alpha_{\xi}(n)=$ $\xi+n),\langle\Omega, H\rangle$ is an IRM. Initial segments of $\langle\Omega, H\rangle$ are RM's too. If Ω_{σ} is the set of all ordinals $<\sigma$, and $\Omega_{\sigma ; 0}$ the subset of Ω_{0} consisting of zero and of all limit-ordinals which are $<\sigma$, with $H_{\sigma}=\left\{\alpha_{\xi} \mid \xi \in \Omega_{\sigma ; 0}\right\},\left\langle\Omega_{\sigma}, H_{\sigma}\right\rangle$ is an RM (an IRM in case all α_{ξ} are indexings).

Example 1.4 Let H be a (non-immune and infinite) subset of N. Let $h_{0}: N \rightarrow H$ be a recursive (increasing) function with a recursive (infinite) range H_{0}. Let $h: N \rightarrow H-H_{0}$ be an enumeration of $H-H_{0}$ (an indexing of $H-H_{0}$, in which case we suppose it infinite). In a trivial way, $\left\langle H,\left\{h_{0}, h\right\rangle\right.$ is an RM (an IRM).

A more interesting manifold is constructed as follows (supposing that h is injective): define, for $n \geqslant 0$, the enumeration (indexing) h_{n+1} by

$$
\begin{aligned}
& h_{n+1}(i)=h(i) \text { for } 0 \leqslant i \leqslant n, \\
& h_{n+1}(i)=h_{0}(i-n-1) \text { for } n<i .
\end{aligned}
$$

Let H_{n} be the range of h_{n}, and $\boldsymbol{\mathfrak { s }}=\left\{h_{n} \mid n \in N\right\}$. Then, $\langle H, \boldsymbol{s}\rangle$ is an RM (an IRM). This is easily checked: $n<m$ implies $H_{n} \cap H_{m}=H_{n}$ and

$$
H_{m}-H_{n}=\{h(n), h(n+1), \ldots, h(m-1)\} .
$$

Thus, defining, for $n<m$,

$$
f_{m}(k)=\left\{\begin{array}{l}
k \text { for } 0 \leqslant k \leqslant n-1, \\
k+n-m \text { for } m \leqslant k, \\
\text { undefined for } n \leqslant k \leqslant m-1,
\end{array}\right.
$$

and

$$
f_{n}(k)=\left\{\begin{array}{l}
k \text { for } 0 \leqslant k \leqslant n-1, \\
k-n+m \text { for } n \leqslant k,
\end{array}\right.
$$

we have

$$
h_{m}(k)=h_{n}\left(f_{m}(k)\right) \text { for all } k \in D_{f_{m}},
$$

and

$$
h_{n}(k)=h_{m}\left(f_{n}(k)\right) \text { for all } k \in D_{f_{n}},
$$

where D_{f} denotes the domain of the function f. (We shall write R_{f} for the range of f.) This r. manifold $\langle H, \boldsymbol{s}\rangle$ has the property that $H_{n} \subset H_{n+1}$ for all $n \in N$.

Example 1.5 An RM (IRM) $\langle A, \boldsymbol{N}\rangle$ will be called an amalgam iff $A_{p} \cap A_{p_{1}} \neq \varnothing$ implies that $\alpha_{p}(n)=\alpha_{p_{1}}(n)$ for both $n \in \alpha_{p}^{-1}\left(A_{p_{1}}\right)$ and $n \in \alpha_{p_{1}}^{-1}\left(A_{p}\right)$. On such a manifold, in case it is injective, we can define $\overline{\bar{P}}$ additive operations \oplus_{p} and $\overline{\bar{P}}$ multiplicative operations $\odot_{p}, p \in P,(\overline{\bar{P}}=$ the cardinal of the set $P)$, by

$$
\alpha_{p}(n) \oplus_{p} \alpha_{p}(m)=\alpha_{p}(n+m)
$$

and

$$
\alpha_{p}(n) \odot_{p} \alpha_{p}(m)=\alpha_{p}(n \cdot m)
$$

It is interesting to note: if $\alpha_{p}(n), \alpha_{p}(m)$, and $\alpha_{p}(n+m)$ are in $A_{p} \cap A_{p_{1}}$ then $\alpha_{p}(n) \oplus_{p} \alpha_{p}(m)=\alpha_{p_{1}}(n) \oplus_{p_{1}} \alpha_{p_{1}}(m)$, and similarily for \odot_{p}. Thus, one can consider A_{p} 's as "sheets" of the amalgam $\langle A, \mathfrak{A}\rangle$; on each sheet A_{p} one can develop an arithmetic which will be compatible with the arithmetic on another sheet $A_{p_{1}}$, in case $A_{p} \cap A_{p_{1}} \neq \varnothing$.

Let me introduce now some first effective notions on manifolds. In the following (if not indicated otherwise) $\langle A, \mathfrak{N}\rangle,\langle B, \boldsymbol{B}\rangle,\langle C, \boldsymbol{C}\rangle, \ldots$, will denote RM's (or IRM's); then

$$
\mathfrak{A}=\left\{\alpha_{p} \mid p \in P\right\}, \boldsymbol{3}=\left\{\beta_{q} \mid q \in Q\right\}, \boldsymbol{\epsilon}=\left\{\gamma_{r} \mid \boldsymbol{r} \in R\right\}, \ldots
$$

$A_{p}, B_{q}, C_{r}, \ldots$, will denote respective ranges of enumerations $\alpha_{p}, \beta_{q}, \gamma_{r}, \ldots$
Definition 1.2 (i) The set $X \subset A$ is \mathfrak{A}-recursively enumerable ($\mathfrak{A}-\mathrm{r} . \mathrm{e}$), respective \mathfrak{A}-recursive ($\mathfrak{M}-\mathrm{r}$.) iff, for every $p \in P, \alpha_{p}^{-1}(X)$, the inverse image of X under α_{p}, is an r.e., respective an r . subset of N.
(ii) The map $f: X \rightarrow B, X \subset A$, is $\mathfrak{A}-\mathfrak{B}$-partial recursive ($\mathfrak{A}-\mathfrak{3}$-p.r.) iff X is an \mathfrak{A}-r.e. set and, for every pair $\langle p, q\rangle \in P \times Q$, there is a p.r. arithmetical function $f_{p, q}$, with domain $D_{f p, q}=\alpha_{p}^{-1}\left(X \cap f^{-1}\left(B_{q}\right)\right)$, such that

$$
\begin{equation*}
f\left(\alpha_{p}(n)\right)=\beta_{q}\left(f_{p, q}(n)\right), \text { for all } n \in D_{f p, q} \tag{1.6}
\end{equation*}
$$

In Definition 1.2, in case $X \cap f^{-1}\left(B_{q}\right)=\varnothing, f_{p, q}$ is meant to be the nowhere defined p.r. function Λ.

In considering functionals, i.e., maps $f: X \rightarrow N, X \subset A$, and antifunctionals, i.e., maps $f: D \rightarrow A, D \subset N$, we shall consider N always as the IRM $\mathrm{n}=\langle N,\{1\}\rangle$, where I is the identity on N. In this way, every $\alpha_{p}: N \rightarrow A_{p}$, as an anti-functional, is $\{1\}-\mathfrak{2 l}$-recursive. In case it is injective, its inverse $\alpha_{p}^{-1}: A_{p} \rightarrow N$, as a map from A into N, is an $\mathfrak{A}-\{1\}$-partial recursive functional, with \mathfrak{A}-recursive domain A_{p}. Also, I_{A}, the identity on A, is an $\mathfrak{H}-\mathfrak{H}$-recursive map: if f_{p} and $f_{p_{1}}$ are as in (1.3) and (1.4) then, in case $A_{p} \cap A_{p_{1}} \neq \varnothing$,

$$
\mathcal{I}_{A}\left(\alpha_{p}(n)\right)=\alpha_{p_{1}}\left(f_{p}(n)\right), \text { for all } n \in \alpha_{p}^{-1}\left(A_{p_{1}}\right),
$$

and

$$
\mathrm{I}_{A}\left(\alpha_{p_{1}}(n)\right)=\alpha_{p}\left(f_{p_{1}}(n)\right), \text { for all } n \in \alpha_{p_{1}}^{-1}\left(A_{p}\right) .
$$

Similarly, every constant map $f: A \rightarrow\{a\}$, where a is a fixed element of A, is $\mathfrak{A}-\mathfrak{A}$-recursive.

For subsets of A^{m} and maps from A^{m} we enlarge Definition 1.2.
Definition 1.2^{\prime} (i) The set $X \subset A^{m}, m \geqslant 1$, is \mathfrak{A}-r.e. (respectively $\mathfrak{A}-\mathrm{r}$.) iff, for every m-tuple $\left\langle p_{1}, \ldots, p_{m}\right\rangle \in P^{m}$, the set

$$
\begin{equation*}
X_{p_{1}, \ldots, p_{m}}^{-1}=\left\{\left\langle n_{1}, \ldots, n_{m}\right\rangle \in N^{m} \mid\left\langle\alpha_{p_{1}}\left(n_{1}\right), \ldots, \alpha_{p_{m}}\left(n_{m}\right)\right\rangle \in X\right\} \tag{1.7}
\end{equation*}
$$

is an r.e. (respectively r.) subset of N^{m}.
(ii) Let $X \subset A^{m}$. The map $f: X \rightarrow B$ is $\mathfrak{2}-\mathfrak{B}-$ p.r. iff X is $\mathfrak{A}-$ r.e. and, for every $(m+1)$-tuple $\left\langle p_{1}, \ldots, p_{m} ; q\right\rangle \in P^{m} \times Q$, there is a p.r. function

$$
f_{p_{1}}, \ldots, p_{m} ; q \text { with domain } \alpha_{p_{1}}^{-1}\left(f^{-1}\left(B_{q}\right)\right) \times \ldots \times \alpha_{p_{m}}^{-1}\left(f^{-1}\left(B_{q}\right)\right)
$$

such that

$$
\begin{equation*}
f\left(\alpha_{p_{1}}\left(n_{1}\right), \ldots, \alpha_{p_{m}}\left(n_{m}\right)\right)=\beta_{q}\left(f_{p_{1}}, \ldots, p_{m} ; q\left(n_{1}, \ldots, n_{m}\right)\right), \tag{1.8}
\end{equation*}
$$

for all $\left\langle n_{1}, \ldots, n_{m}\right\rangle \in D_{f_{1}}, \ldots, p m ; q$.
(iii) Let X be a subset of A^{m}. A map $g: X \rightarrow B^{n}, g=\left\langle g_{1}, \ldots, g_{n}\right\rangle$, is $\mathfrak{A}-\mathfrak{B}$-p.r. iff X is an \mathfrak{A}-r.e. set and each $g_{i}: X \rightarrow B$ an $\mathfrak{A}-\mathfrak{B}$-p.r. map.

For example, the projection $f: A^{2} \rightarrow A$, defined by $f(x, y)=x$, is $\mathfrak{A}-\mathfrak{A l}-$ recursive. Defining $f_{p, p_{1} ; p}(n, m)=n$, we have (in case $A_{p} \cap A_{p_{1}} \neq \varnothing$)

$$
f\left(\alpha_{p}(n), \alpha_{p_{1}}(m)\right)=\alpha_{p}\left(f_{p, p_{1} ; p}(n, m)\right)=\alpha_{p}(n), \text { for all } n \in N .
$$

Similar is the situation with $g(x, y)=y$. Remark that in case $\langle B, \mathfrak{B}\rangle$ is an IRM, one can define the p.r. function in (1.8) by

$$
\begin{equation*}
f_{p_{1}, \ldots, p_{m} ; q}\left(n_{1}, \ldots, n_{m}\right) \simeq \beta_{q}^{-1}\left(f\left(\alpha_{p_{1}}\left(n_{1}\right), \ldots, \alpha_{p_{m}}\left(n_{m}\right)\right) .\right. \tag{1.9}
\end{equation*}
$$

Definition 1.3 Let $X \subset A . \chi_{X}$, the characteristic functional of X, is defined by

$$
\chi_{X}(x)=\left\{\begin{array}{l}
0 \text { if } x \in X, \tag{1.10}\\
1 \text { if } x \in C X=A-X .
\end{array}\right.
$$

Theorem 1.1 (i) The set $X \subset A$ is \mathfrak{A}-recursive iff both X and $C X$ are $\mathfrak{A}-\mathrm{r} . \mathrm{e}$.
(ii) The set $X \subset A$ is \mathfrak{M}-recursive iff its characteristic functional χ_{X} is $\mathfrak{2}$ - $\{1\}$-recursive.
Proof: (i) If X is \mathfrak{M}-recursive then each $\alpha_{p}^{-1}(X)$ is recursive; therefore, each $\alpha_{p}^{-1}(\mathrm{C} X)=\alpha_{p}^{-1}\left(A_{p}-X\right)=N-\alpha_{p}^{-1}(X)$ is recursive too. Conversely, if both $\alpha_{p}^{-1}(X)$ and $\alpha_{p}^{-1}(C X)$ are r.e. they are recursive, i.e., X is $\otimes 1$-recursive. (ii) Remark that a functional $f: A \rightarrow N$ is $21-\{1\}$-recursive iff to each $p \in P$ there corresponds a recursive arithmetical function f_{p} such that $f\left(\alpha_{p}(n)\right)=$ $f_{p}(n)$, for all $n \in N$. Now, if X is recursive, $\chi_{X} \circ \alpha_{p}$ is just the characteristic function of the recursive set $\alpha_{p}^{-1}(X)$.

It is evident that $X \subset A$ is \mathfrak{A}-r.e. iff it is the domain of an $\mathfrak{A}-\mathfrak{A}$-p.r. map from A into A. Also, every such set is the range of such a map. However, it is not necessarily true that the range of every $\mathfrak{A l - \mathfrak { A } - \mathrm { p } . \mathrm { r } . \text { map } \mathrm { p }}$ $f: X \rightarrow A$ is an \mathfrak{A}-r.e. set. Namely,

$$
\begin{equation*}
f(X)=\bigcup_{p \in P} f\left(X \cap A_{p}\right) \tag{1.11}
\end{equation*}
$$

Consider now $D_{p}=\alpha_{p}^{-1}\left(X \cap A_{p}\right)$, in case it is not empty. It is a r.e. subset of N and for every p_{1}, such that $X \cap f^{-1}\left(A_{p_{1}}\right) \neq \varnothing$, there is a p.r. function $f_{p, p_{1}}$ with domain $\alpha_{p}^{-1}\left(X \cap f^{-1}\left(A_{p_{1}}\right)\right)$ such that

$$
f\left(\alpha_{p}(n)\right)=\alpha_{p_{1}}\left(f_{p, p_{1}}(n)\right), \text { for all } n \in D_{f_{p, p_{1}}}
$$

This gives:

$$
\alpha_{p_{1}}^{-1}\left(f\left(X \cap A_{p}\right)\right)=\alpha_{p}^{-1}\left(X \cap f^{-1}\left(A_{p_{1}}\right)\right)
$$

and this proves that each $f\left(X \cap A_{p}\right)$ is an \mathfrak{M}-r.e. set, since the set $\alpha_{p}^{-1}(X \cap$ $f^{-1}\left(A_{p_{1}}\right)$), as the domain of a p.r. arithmetical function, is a r.e. set. However, for each $p_{1} \in P$,

$$
\begin{equation*}
\alpha_{p_{1}}^{-1}(f(X))=\bigcup_{p \in P} \alpha_{p_{1}}^{-1}\left(f\left(X \cap A_{p}\right)\right) \tag{1.12}
\end{equation*}
$$

and, although each member in the union in (1.12) is a r.e. subset of N, the union itself is not necessarily a r.e. subset of N.

Example 1.6 Consider the IRM of Example 1.3, with $\alpha_{\xi}(n)=\xi+n$. Let ω be the smallest denumerable ordinal, let $\xi_{0}=0$ and $\xi_{n}=\omega \cdot n$ for $n \geqslant 1$. Let $d: N \rightarrow N$ be any increasing function whose range D is not a r.e. set, and $X=\left\{\xi_{n} \mid n \in N\right\}$. Then X is an H-r.e. subset of Ω. (Each $\alpha_{\xi}^{-1}(X)$ is either empty or a singleton.) Define $f: X \rightarrow \Omega$ by $f\left(\xi_{n}\right)=d(n)$. Then $f\left(\alpha_{\xi}(i)\right)$ is defined only if $\xi=\xi_{n}$ for some $n \in N$, and $i=0$; in such a case

$$
f\left(\alpha_{\xi_{n}}(i)\right)=\left\{\begin{array}{l}
\alpha_{0}(d(n)) \text { for } i=0, \\
\text { undefined otherwise },
\end{array}\right.
$$

i.e., f is an H - H-p.r. map. Yet, $\alpha_{0}^{-1}(f(X))=\mathbf{D}$ is not a r.e. set, i.e., $f(X)$ is not an H-r.e. set.

In view of the previous example, one may ask for the validity of the Graph-Theorem for maps of one RM into itself. Such a theorem is valid without additional suppositions for IRM's only; in the general case of RM's I need one condition more.

Definition 1.4 (i) We say that the atlas \mathfrak{M} is positive iff, for every $p \in P$, the numerical predicate \mathfrak{M}_{p} of two variables, defined by

$$
\begin{equation*}
\mathfrak{A}_{p}(n, m) \leftrightarrow \alpha_{p}(n)=\alpha_{p}(m), \tag{1.13}
\end{equation*}
$$

is recursively enumerable, it is negative iff, for every $p \in P, \sim \mathfrak{A}_{p}$, the negation of \mathfrak{A}_{p}, is r.e.; it is solvable iff it is both negative and positive.
(ii) We say that the $\mathrm{RM}\langle A, \mathfrak{A}\rangle$ is positive, negative, and solvable iff its atlas \mathfrak{A} is positive, negative, and solvable respectively.

Definition 1.4 leaves a huge number of RM's outside of its scope; I shall call such RM's neutral. It is evident that all IRM's are solvable. (For these, $\mathfrak{\mu}_{p}(n, m) \leftrightarrow n=m$.)
Theorem 1.2 (Graph Theorem) Let $\langle A, \mathfrak{A}\rangle$ be a positive RM, and let X be an \mathfrak{A}-r.e. subset of A. Then, a partial map $f: X \rightarrow A$ is $\mathfrak{A}-\mathfrak{2 l}$-partial recursive iff its graph G_{f} is an \mathfrak{A}-recursively enumerable subset of A^{2}.
Proof: First, let f be \mathfrak{M}-p.r. For $\left\langle p, p_{1}\right\rangle \in P^{2}$ consider the set (subset of N^{2})

$$
\left(\mathrm{G}_{f}\right)_{p, p_{1}}^{-1}=\left\{\langle n, m\rangle \mid\left\langle\alpha_{p}(n), \alpha_{p_{1}}(m)\right\rangle \in \mathrm{G}_{f}\right\}=\left\{\langle n, m\rangle \mid \alpha_{p_{1}}(m)=f\left(\alpha_{p}(n)\right)\right\} .
$$

Let $f_{p, p_{1}}$ be p.r. with domain $\alpha_{p}^{-1}\left(X \cap f^{-1}\left(A_{p_{1}}\right)\right)$, and such that

$$
f\left(\alpha_{p}(n)\right)=\alpha_{p_{1}}\left(f_{p, p_{1}}(n)\right), \text { for all } n \in \mathbf{D}_{f_{p, p_{1}}}
$$

Then

$$
\begin{aligned}
\left(G_{f}\right)_{p, p_{1}} & =\left\{\langle n, m\rangle \mid \alpha_{p_{1}}(m)=\alpha_{p_{1}}\left(f_{p, p_{1}}(n)\right)\right\} \\
& =\left\{\left.\langle n, m\rangle\right|_{\mathfrak{p}_{1}}\left(m, f_{p, p_{1}}(n)\right) \wedge n \in \mathbf{D}_{f_{p, p}}\right\}
\end{aligned}
$$

which proves (since $\langle A, \mathfrak{A}\rangle$ is positive) that each $\left(G_{f}\right)_{p, p_{1}}^{-1}$ is r.e., i.e., that G_{f} is \mathfrak{A}-r.e. (The sign \wedge above denotes conjunction.)

Conversely, suppose that G_{f} is \mathfrak{A}-r.e., i.e., that each $\left(G_{f}\right)_{p, p_{1}}^{-1}$ is a r.e. subset of N^{2}. By definition of this set we have

$$
f\left(\alpha_{p}(n)\right)=\alpha_{p_{1}}(m) \leftrightarrow\langle n, m\rangle \in\left(\mathrm{G}_{f}\right)_{p, p_{1}}^{-1} .
$$

Define $f_{p, p_{1}}$ by

$$
f_{p, p_{1}}(n) \simeq \text { some } m \text { such that }\langle n, m\rangle \in\left(\mathrm{G}_{f}\right)_{p, p_{1}}^{-1}
$$

$f_{p, p_{1}}$ is p.r. and $f\left(\alpha_{p}(n)\right)=\alpha_{p_{1}}\left(f_{p, p_{1}}(n)\right)$ for all $n \in \mathbf{D}_{f p, p_{1}}$, which proves that f is \mathfrak{A} - \mathfrak{A}-partial recursive. (The symbol \simeq denotes conditional equality.)

Corollary 1.2.1 For every IRM $\langle A, \mathfrak{A}\rangle$ and any \mathfrak{A}-r.e. set $X \subset A$, the partial map $f: X \rightarrow A$ is $\mathfrak{A}-\mathfrak{H}-$ p.r. iff its graph is $\mathfrak{A}-$ r.e.

Remark that the proof of Theorem 1.2 establishes a sharper one-sided result: in any $\mathbf{R M}\langle A, \mathfrak{A}\rangle$, if \mathbf{D}_{f} is $\mathfrak{A}-$ r.e. and $\mathrm{G}_{f} \mathfrak{A}$-r.e. then f is \mathfrak{A}-p.r.

Similar to the case of direct images, we cannot say anything definite about inverse images of \mathfrak{A}-r.e. sets under $\mathfrak{A}-\mathfrak{H}$-p.r. maps. The following theorem is the only exception I know.
Theorem 1.3 The inverse image of a r.e. subset of N under an $\mathfrak{A}-\{\mid\}-$ p.r. functional $f: X \rightarrow N, X \subset A$, is an \mathfrak{A}-r.e. set.

Proof: To each $p \in P$ there corresponds a recursive function f_{p} such that $f\left(\alpha_{p}(n)\right)=f_{p}(n)$, for all $n \in N$. Let $E \subset N$ be r.e. and such that $f(X) \cap E \neq \varnothing$. Then $\alpha_{p}^{-1}\left(f^{-1}(E)\right)=f_{p}^{-1}(E)$, which is a r.e. subset of N.

Theorem 1.4 If $X \subset A$ is \mathfrak{M}-r.e. then there is a map $\varphi: P \rightarrow N$ such that

$$
\begin{equation*}
X=\bigcup_{p \in P} \alpha_{p}\left(\omega_{\varphi(p)}\right), \tag{1.14}
\end{equation*}
$$

where $\omega_{i}=\left\{n \mid V_{y} T_{1}(i, n, y)\right\}$ is the i 'th r.e. subset of N in the standard enumeration of all such subsets.
Proof: Set $\omega_{\varphi(p)}=\alpha_{p}^{-1}(X)$, and remark that $\alpha_{p}\left(\alpha_{p}^{-1}(X)\right)=A_{p} \cap X$.
The following example exhibits the perils of replacing maps with functionals for RM's $\langle A, \mathfrak{A}\rangle$, where $A \subset N$; it illustrates also bad sides of atlases whose cardinal is larger than the cardinal of the carrier A.

Example 1.7 To every arithmetical function $\alpha: N \rightarrow N$ there corresponds its bar-function $\bar{\alpha}$ by

$$
\bar{\alpha}(n)=\prod_{i<n} p_{i}^{1+\alpha(i)}
$$

where $p_{0}=2$ and $p_{i}=$ the i 'th odd prime. Let U_{α} be the range of $\bar{\alpha}$ and $\mathfrak{A}=\{\bar{\alpha} \mid$ for all $\alpha: N \rightarrow N\}$. Let $A=\bigcup_{\alpha \in \mathscr{A}} U_{\alpha}$. Obviously, A is the set of all
sequence numbers. sequence numbers.

Let me prove that $\langle A, \mathfrak{A}\rangle$ is an IRM. Since $\bar{\alpha}(0)=1$ for all α, then for all functions α, β the intersection $U_{\alpha} \cap U_{\beta}$ is not empty; as is easily checked, either $U_{\alpha}=U_{\beta}$ or $U_{\alpha} \cap U_{\beta}$ is a finite set. In the former case, $(\bar{\beta})^{-1} \circ \bar{\alpha}$ and $(\bar{\alpha})^{-1} \circ \bar{\beta}$ are identities on N, and in the second case they are identities on their domains. Thus, $\langle A, \mathfrak{A}\rangle$ is even an amalgam (see Example 1.5).

Consider now a functional $f: A \rightarrow N$. It is recursive iff every $f \circ \bar{\alpha}$ is a recursive function (see Figure 1.4). Let now f be defined by $f(x)=x$ for all $x \in A$. Then $f \circ \bar{\alpha}(n)=\bar{\alpha}(n)$, i.e., $f \circ \bar{\alpha}$ is the bar-function $\bar{\alpha}$ itself. Since most of $\bar{\alpha}$'s are not recursive, f is not an \mathfrak{A} - $\{1\}$-recursive functional.

However, as identity I_{A} on A, f is an $\mathfrak{A}-\mathfrak{A}$-recursive map, since

$$
(\bar{\beta})^{-1} \circ f \circ \bar{\alpha}=(\bar{\beta})^{-1} \circ \bar{\alpha},
$$

which is a p.r. function for all α, β.

Figure 1.4

In the theory of enumerations, a set $X \subset U$, where $\langle U,\{u\}\rangle$ is an enumerated set (i.e., an RM with singleton-atlas), is called weakly u-r.e. iff there is a r.e. set $\omega_{i} \subset N$ such that $X=u\left(\omega_{i}\right)$. We can introduce a similar notion.

Definition 1.5 The set $X \subset A$ is weakly \mathfrak{A}-r.e. iff there is a $\varphi: P \rightarrow N$ such that $X=\omega_{\varphi}$, where

$$
\begin{equation*}
\omega_{\varphi}=\bigcup_{p \in P} \alpha_{p}\left(\omega_{\varphi(p)}\right) \tag{1.15}
\end{equation*}
$$

 converse statement does not hold even in the case of enumerated sets (see, for example, [5], page 312).

Until now I have imposed the demand that for every $\mathbf{R M}\langle A, \boldsymbol{\mathfrak { A }}\rangle$, each A_{p} be essentially a "recursive"' set (and so $A_{p} \cap A_{p_{1}}$ is also "recursive'"). Now I shall reduce this demand to recursive enumerability only.

Definition 1.6 A set A is called a Recursively Enumerable Manifold (an REM) iff:
(i) There is a family $\boldsymbol{\sim 1}$ of enumerations $\alpha_{p}: N \rightarrow A_{p}, p \in P$, where each A_{p} is a subset of A and $A=\bigcup_{p \in P} A_{p}$.
(ii) For every pair $\left\langle p, p_{1}\right\rangle \in P^{2}$ such that $A_{p} \cap A_{p_{1}} \neq \varnothing$, both $\alpha_{p}^{-1}\left(A_{p_{1}}\right)$ and $\alpha_{p_{1}}^{-1}\left(A_{p}\right)$ are recursively enumerable subsets of N, and there are numerical partial recursive functions

$$
f_{p}: \alpha_{p}^{-1}\left(A_{p_{1}}\right) \rightarrow \alpha_{p_{1}}^{-1}\left(A_{p}\right) \text { and } f_{p_{1}}: \alpha_{p_{1}}^{-1}\left(A_{p}\right) \rightarrow \alpha_{p}^{-1}\left(A_{p_{1}}\right)
$$

such that (1.3) and (1.4) hold.
(iii) If all α_{p} are injective we say that A is an Injective REM (an IREM).

Example 1.8 Every sequence $\left\langle A_{i}\right\rangle_{i \in N}$ of non-empty r.e. subsets of N is an REM: let $\alpha_{i}: N \rightarrow A_{i}$ be recursive, with A_{i} as range, let $A=\bigcup_{i=0}^{\infty} A_{i}$ and $\mathfrak{A}=\left\{\alpha_{i} \mid i \in N\right\}$. Then $\langle A, \boldsymbol{2}\rangle$ is an REM which, in general, is not an RM. In case all A_{i} are infinite and all α_{i} injective (and recursive) $\langle A, \mathfrak{A}\rangle$ is an IREM.

All definitions of this chapter are applicable to REM's, and I shall use them without further notice. Also all theorems of this chapter hold for REM's without change; in using them I shall refer to the number of the theorem for RM's.

Note that a disjoint $\operatorname{REM}\langle A, \boldsymbol{2}\rangle$, i.e., for which $p \neq p_{1}$ implies $A_{p} \cap A_{p_{1}}=$ \varnothing, is always an RM.

CHAPTER II-GENERATION OF REM'S AND RM'S

In this chapter I shall exhibit several ways of obtaining new REM's and RM's from given ones.

Theorem 2.1 (Duplication) Let $\langle A, 9\rangle$ be an REM (an RM), let B be any set
of the same cardinality as A, and let $f: A \rightarrow B$ be a bijective map of A onto B. Define the family

$$
\mathfrak{B}=\left\{\beta_{p} \mid p \in P\right\} \text { of maps by } \beta_{p}=f \circ \alpha_{p} .
$$

Then, $\langle B, \mathfrak{B}\rangle$ is an REM (an RM), f is an $\mathfrak{A}-\mathfrak{B}$-recursive map and f^{-1} is a习-2-recursive map.
Proof: Let A_{p} and B_{p} denote the respective ranges of α_{p} and β_{p}. It is obvious that $B=\bigcup_{p \in P} B_{p}$. Suppose that $D_{p, p_{1}}=B_{p} \cap B_{p_{1}}$ is not empty. Then:

$$
\begin{aligned}
\beta_{p}^{-1}\left(D_{p, p_{1}}\right) & =\left(f \circ \alpha_{p}\right)^{-1}\left(D_{p, p_{1}}\right) \\
& =\left\{n \mid \underset{m}{ } f\left(\alpha_{p}(n)\right)=f\left(\alpha_{p_{1}}(m)\right)\right\} \\
& =\left\{\left.n\right|_{m} ^{\vee} \alpha_{p}(n)=\alpha_{p_{1}}(m)\right\} \\
& =\alpha_{p}^{-1}\left(A_{p} \cap A_{p_{1}}\right)=\alpha_{p}^{-1}\left(A_{p_{1}}\right) .
\end{aligned}
$$

If $\alpha_{p}^{-1}\left(A_{p_{1}}\right)$ is r.e. (r.) then $\beta_{p}^{-1}\left(D_{p, p_{1}}\right)$ is r.e. (r.). (V_{m} denotes the existential quantifier.) Let now $f_{p, p_{1}}$ be partial recursive, with $\alpha_{p}^{-1}\left(A_{p_{1}}\right)$ as domain (and $\alpha_{p_{1}}^{-1}\left(A_{p}\right)$ as range), and such that

$$
\alpha_{p}(n)=\alpha_{p_{1}}\left(f_{p, p_{1}}(n)\right) \text { for all } n \in \alpha_{p}^{-1}\left(A_{p_{1}}\right)
$$

Then, for all $n \in \beta_{p}^{-1}\left(D_{p, p_{1}}\right)$

$$
\beta_{p}(n)=f\left(\alpha_{p}(n)\right)=f\left(\alpha_{p_{1}}\left(f_{p, p_{1}}(n)\right)\right)=\beta_{p_{1}}\left(f_{p, p_{1}}(n)\right)
$$

(and similarily for $\beta_{p_{1}}(n)$). This proves that \mathbf{B} is an atlas on B. At last, for all $n \in N$, and $p_{1} \in P$

$$
f\left(\alpha_{p_{1}}(n)\right)=\beta_{p_{1}}(I(n)),
$$

where I is the identity on N; similarly, if $D_{p, p_{1}} \neq \varnothing$ then

$$
f\left(\alpha_{p_{1}}(n)\right)=\beta_{p}\left(f_{p_{1}}(n)\right), \text { for all } n \in \alpha_{p_{1}}^{-1}\left(A_{p}\right),
$$

where $f_{p_{1}}$ satisfies $\beta_{p_{1}}(n)=\beta_{p}\left(f_{p_{1}}(n)\right)$ for all $n \in \beta_{p_{1}}^{-1}\left(D_{p, p_{1}}\right)$. The statement about f^{-1} is proved in a similar way.

Remark: If $\langle A, \mathfrak{A}\rangle$ is an IREM (an IRM) then $\langle B, \mathfrak{Y}\rangle$ is an IREM (an IRM).
Construction in Theorem 2.1 is suitable for situations in which we need replicas of an REM which are disjoint from it. Another simple construction is given by the next theorem.

Theorem 2.2 Let $\langle A, \mathfrak{M}\rangle$ be a positive REM (a solvable RM). For every $p \in P$ define $\beta_{p} b y$

$$
\beta_{p}(n)=\left\langle n, \alpha_{p}(n)\right\rangle \text { for all } n \in N .
$$

Let B_{p} be the range of β_{p}, let $B=\bigcup_{p \in \mathcal{P}} B_{p}$ and $\mathfrak{B}=\left\{\beta_{p} \mid p \in P\right\}$. Then, $\langle B, \mathfrak{B}\rangle$ is an IREM (an IRM).

Proof: Each β_{p} is obviously injective. Suppose $D_{p, p_{1}}=B_{p} \cap B_{p_{1}}$ is not empty. Then

$$
\beta_{p}^{-1}\left(D_{p, p_{1}}\right)=\beta_{p}^{-1}\left(\left\{\left\langle n, \alpha_{p}(n)\right\rangle \mid \alpha_{p_{1}}(n)=\alpha_{p}(n)\right\}\right)=\left\{n \mid \alpha_{p_{1}}(n)=\alpha_{p}(n)\right\} .
$$

Let $f_{p_{1}}: \alpha_{p_{1}}^{-1}\left(A_{p}\right) \rightarrow \alpha_{p}^{-1}\left(A_{p_{1}}\right)$ be partial recursive with r.e. domain (with r.) and range, and such that $\alpha_{p_{1}}(n)=\alpha_{p}\left(f_{p_{1}}(n)\right)$ for all $N \in \alpha_{p_{1}}^{-1}\left(A_{p}\right)$. Then

$$
\begin{aligned}
\beta_{p}^{-1}\left(D_{p, p_{1}}\right) & =\left\{n \mid \alpha_{p}\left(f_{p_{1}}(n)\right)=\alpha_{p}(n)\right\} \\
& =\left\{n \in \alpha_{p_{1}}^{-1}\left(A_{p}\right) \mid \mathfrak{A}_{p}\left(f_{p_{1}}(n), n\right)\right\},
\end{aligned}
$$

where $\boldsymbol{\Re}_{p}$ is the predicate from Definition 1.4. In case $\langle A, \mathfrak{M}\rangle$ is a positive REM this proves that $\beta_{p}^{-1}\left(D_{p, p_{1}}\right)$ is a r.e. subset of N (and similarly for $\beta_{p_{1}}^{-1}\left(D_{p, p_{1}}\right)$). In case $\langle A, \boldsymbol{x}\rangle$ is a solvable RM we must proceed further. Define $g_{p_{1}}$ by

$$
g_{p_{1}}(n)= \begin{cases}f_{p_{1}}(n) & \text { for } n \in \alpha_{p_{1}}^{-1}\left(A_{p}\right), \\ b & \text { for } n \notin \alpha_{p_{1}}^{-1}\left(A_{p}\right),\end{cases}
$$

where b is any fixed element of $C \alpha_{p_{1}}^{-1}\left(A_{p}\right) . g_{p_{1}}$ is recursive, since $\alpha_{p_{1}}^{-1}\left(A_{p}\right)$ is now recursive. Then

$$
\beta_{p}^{-1}\left(D_{p, p_{1}}\right)=\left\{n \mid n \in \alpha_{p_{1}}^{-1}\left(A_{p}\right) \wedge \boldsymbol{x}_{p}\left(g_{p_{1}}(n), n\right)\right\} .
$$

Since $\boldsymbol{\mu}_{p}$ and $g_{p_{1}}$ are recursive, $\beta_{p}^{-1}\left(D_{p, p_{1}}\right)$ is now recursive. (Similarly for $\left.\beta_{p_{1}}^{-1}\left(D_{p, p_{1}}\right).\right)$ At last

$$
\beta_{p}^{-1}\left(\beta_{p_{1}}(n)\right)=\beta_{p}^{-1}\left(\left\langle n, \alpha_{p_{1}}(n)\right\rangle\right)=n \text { if } n \in \beta_{p_{1}}^{-1}\left(D_{p, p_{1}}\right)
$$

(undefined otherwise), which shows that each $\beta_{p}^{-1} \circ \beta_{p_{1}}$ is a p.r. function.
I shall call the IREM (the IRM) $\langle B, \mathfrak{B}\rangle$ from Theorem 2.2 and The Graph of the REM (of the RM) $\langle A, \mathfrak{2}\rangle$.

Example 2.1 I call $\langle B, \mathfrak{3}\rangle$ from Theorem 2.2 a graph, because, for the manifold $\langle A,\{\alpha\}\rangle$, where α is an enumeration of A, the corresponding B is just the graph of α.

Definition 2.1 Let $\langle A, \boldsymbol{\mathfrak { u }}\rangle$ and $\langle B, \mathfrak{B}\rangle$ be REM's, let $\mathfrak{A}=\left\{\left.\alpha_{p}\right|_{p \in P}\right\}, \mathfrak{B}=\left\{\left.\beta_{q}\right|_{q \in \ell}\right\}$ and let A_{p} and B_{q} be the respective ranges of α_{p} and β_{q}. Set $\mathbf{C}=A \times B$ and, for each pair $\langle p, q\rangle \in P \times Q$, define the enumeration $\gamma_{p, q}: N \rightarrow A_{p} \times B_{q}$ by

$$
\begin{equation*}
\gamma_{p, q}\left(\sigma^{2}(n, m)\right)=\left\langle\alpha_{p}(n), \beta_{q}(m)\right\rangle, \tag{2.1}
\end{equation*}
$$

where $\sigma^{2}: N^{2} \rightarrow N$ is the well-known bijective, recursive map of N^{2} onto N. (I shall induce its inverses σ_{1}^{2} and σ_{2}^{2} by $\sigma_{1}^{2}\left(\sigma^{2}(n, m)\right)=n$ and $\sigma_{2}^{2}\left(\sigma^{2}(n, m)\right)=m$; they are recursive and of large oscillation: they take each natural number as value infinitely many times.) Set

$$
\boldsymbol{\sigma}=\left\{\gamma_{p, q} \mid\langle p, q\rangle \in P \times Q\right\}
$$

and denote the range of $\gamma_{p, q}$ by $\mathbf{C}_{p, q}$. Then the pair $\langle\mathbf{C}, \boldsymbol{\omega}\rangle$ is called the Direct Product of $\langle A, \mathfrak{x}\rangle$ and $\langle B, \mathfrak{B}\rangle$.

Theorem 2.3 The direct product of two REM's (respectively RM's, IREM's, and IRM's) is an REM (respectively RM, IREM, and IRM).

Proof: Using notations of Definition 2.1, remark first that $\gamma_{p, q}$'s are injective in case both α_{p} 's and β_{q} 's are injective. Suppose now that $D=$ $\mathbf{C}_{p, q} \cap \mathbf{C}_{p_{1}, q_{1}} \neq \varnothing$. Then:

$$
\gamma_{p, q}^{-1}(D)=\sigma^{2}\left(\alpha_{p}^{-1}\left(A_{p} \cap A_{p_{1}}\right), \beta_{q}^{-1}\left(B_{q} \cap B_{q_{1}}\right)\right) ;
$$

if $\alpha_{p}^{-1}\left(A_{p} \cap A_{p_{1}}\right)$ and $\beta_{q}^{-1}\left(B_{q} \cap B_{q_{1}}\right)$ are r.e. (r.) so is $\gamma_{p, q}^{-1}(D)$. Moreover, if $f_{p_{1}}: \alpha_{p_{1}}^{-1}\left(A_{p}\right) \rightarrow \alpha_{p}^{-1}\left(A_{p_{1}}\right)$ and $f_{q_{1}}: \beta_{q_{1}}^{-1}\left(B_{q}\right) \rightarrow \beta_{q}^{-1}\left(B_{q_{1}}\right)$ satisfy

$$
\alpha_{p_{1}}(n)=\alpha_{p}\left(f_{p_{1}}(n)\right) \text { for all } n \in \alpha_{p_{1}}^{-1}\left(A_{p}\right)
$$

and

$$
\beta_{q_{1}}(m)=\beta_{q}\left(f_{q_{1}}(m)\right) \text { for all } m \in \beta_{q_{1}}^{-1}\left(B_{q}\right) \text {, }
$$

then

$$
\begin{aligned}
\gamma_{p_{1}, q_{1}}\left(\sigma^{2}(n, m)\right) & =\left\langle\alpha_{p_{1}}(n), \beta_{q_{1}}(m)\right\rangle \\
& =\left\langle\alpha_{p}\left(f_{p_{1}}(n)\right), \beta_{q}\left(f_{q_{1}}(m)\right)\right\rangle \\
& =\gamma_{p, q}\left(\sigma^{2}\left(f_{p_{1}}(n)\right), f_{q_{1}}(m)\right),
\end{aligned}
$$

for all $\sigma^{2}(n, m) \in \gamma_{p_{1}, q_{1}}^{-1}(D)$; thus, with

$$
f_{p_{1}, q_{1}}(u)=\sigma^{2}\left(f_{p_{1}}\left(\sigma_{1}^{2}(u)\right), f_{q_{1}}\left(\sigma_{2}^{2}(u)\right)\right)
$$

we obtain

$$
\gamma_{p_{1}, q_{1}}(n)=\gamma_{p, q}\left(f_{p_{1}, q_{1}}(n)\right),
$$

for all $n \in \gamma_{p_{1}, q_{1}}^{-1}(D)$.
Example 2.2 Let $\langle A, \mathfrak{A}\rangle,\langle B, \mathfrak{3}\rangle$ be REM's and let $\langle\mathbf{C}, \boldsymbol{C}\rangle$ be their direct product. Define the projections $p_{0}: \mathbf{C} \rightarrow A$ and $p_{1}: \mathbf{C} \rightarrow B$ by $p_{0}(x, y)=x$ and $p_{1}(x, y)=y$. Since

$$
p_{0}\left(\gamma_{p, q}\left(\sigma^{2}(n, m)\right)\right)=p_{0}\left(\alpha_{p}(n), \beta_{q}(m)\right)=\alpha_{p}(n),
$$

p_{0} is ©-2-recursive. Similarily, p_{1} is ©-ㅋ-recursive.
Let now $\langle\mathbf{D}, \mathfrak{T}\rangle, \mathfrak{T}=\left\{\delta_{s} \mid s \in S\right\}, \mathbf{D}_{s}=$ range of δ_{s}, be another REM, such that there are two maps, $g_{0}: \mathbf{D} \rightarrow A$ which is \mathfrak{P} - \mathfrak{A}-recursive, and $g_{1}: \mathbf{D} \rightarrow B$ which is \mathfrak{D} - \mathfrak{B}-recursive. These two maps determine in a unique way the map $f: \mathbf{D} \rightarrow C$, defined by $f(x)=\left\langle g_{0}(x), g_{1}(x)\right\rangle$, which satisfies both $g_{0}=p_{0} \circ f$ and $g_{1}=p_{1} \circ f$ (see Figure 2.1).

Figure 2.1
Now,

$$
f\left(\delta_{s}(n)\right)=\left\langle g_{0}\left(\delta_{s}(n)\right), g_{1}\left(\delta_{s}(n)\right)\right\rangle=\gamma_{p, q}\left(\sigma^{2}\left(f_{s}(n), h_{s}(n)\right)\right),
$$

where f_{s} and h_{s} satisfy

$$
g_{0}\left(\delta_{s}(n)\right)=\alpha_{p}\left(f_{s}(n)\right),
$$

and

$$
g_{1}\left(\delta_{s}(n)\right)=\beta_{q}\left(h_{s}(n)\right)
$$

on corresponding domains. This proves that f is \mathfrak{P} - \mathbb{C}-recursive.
The dual notion to the direct product is the direct sum.
Definition 2.2 Let $\langle A, \mathfrak{N}\rangle$ and $\langle B, \mathfrak{3}\rangle$ be REM's. A REM $\langle\mathbf{C}, \boldsymbol{C}\rangle$ is called the Direct Sum of $\langle A, \mathfrak{A}\rangle$ and $\langle B, \mathfrak{B}\rangle$ iff there are two maps, $f_{0}: A \rightarrow \mathbf{C}$, which is \mathfrak{A} - $\boldsymbol{6}$-recursive, and $f_{1}: B \rightarrow \mathbf{C}$, which is $\boldsymbol{3}$ - $\boldsymbol{6}$-recursive, with the following property: for any REM $\langle\mathbf{D}, \mathfrak{D}\rangle$ and any two maps, $g_{0}: A \rightarrow \mathbf{D}$, which is \mathfrak{U} - \mathfrak{P}-recursive, and $g_{1}: B \rightarrow \mathbf{D}$, which is \mathfrak{B} - \mathfrak{Q}-recursive, there is a uniquely determined \boldsymbol{C}-จ-recursive map $f: \mathbf{C} \rightarrow \mathbf{D}$, such that $g_{0}=f \circ f_{0}$ and $g_{1}=f \circ f_{1}$ (see Figure 2.2).

Figure 2.2
Theorem 2.4 The direct sum of any two REM's exists; it is of the same kind (REM, IREM, RM, IRM) as those two.

Proof: I shall use notations of Definition 2.2. Consider first the case of disjoint A and B. In this case, set $\mathbf{C}=A \cup B$ and $\boldsymbol{C}=\boldsymbol{2} \cup \boldsymbol{3}$. Trivially, $\langle\mathbf{C}, \boldsymbol{G}\rangle$ is an REM of the same kind as both $\langle A, \mathfrak{R}\rangle$ and $\langle B, \mathfrak{B}\rangle$. (In case those two are not of the same kind, then $\langle\mathbf{C}, \boldsymbol{C}\rangle$ is of the kind of the "worse", one of those two.)
Let f_{0} be the identity on A and f_{1} the identity on B (both maps satisfy conditions of Definition 2.2). For given g_{0} and g_{1} as in Definition 2.2, define $f: \mathbf{C} \rightarrow \mathbf{D}$ by

$$
f(x)=\left\{\begin{array}{l}
g_{0}(x) \text { for } x \in A, \\
g_{1}(x) \text { for } x \in B
\end{array}\right.
$$

f is ©-マ-recursive and $g_{0}=f \circ f_{0}, g_{1}=f \circ f_{1}$. Suppose now that $A \cap B \neq \varnothing$. Let A^{\prime} be any set disjoint from $A \cup B$, of the same cardinality as A; take any bijective $\varphi: A \rightarrow A^{\prime}$ and construct, as in Theorem 3.1, the replica $\left\langle A^{\prime}, \mathfrak{M}^{\prime}\right\rangle$ of $\langle A, \mathfrak{M}\rangle$. (Thus $\mathfrak{H}^{\prime}=\left\{\alpha_{p}^{\prime} \mid p \in P\right\}$ and $\alpha_{p}^{\prime}=\varphi \circ \alpha_{p}$.) Let then $\langle\mathbf{C}, \boldsymbol{c}\rangle$ be the direct sum of $\left\langle A^{\prime}, \mathfrak{M}^{\prime}\right\rangle$ and $\langle B, \mathfrak{3}\rangle$, i.e., $\mathbf{C}=A^{\prime} \cup B$ and $\boldsymbol{C}=\mathfrak{H}^{\prime} \cup \mathfrak{B}$. Define $f_{0}: A \rightarrow \mathbf{C}$ by $f_{0}=\varphi$, and let f_{1} be the identity on B. (By Theorem 3.1
f_{0} is \mathfrak{A}-(\mathbf{C}-recursive.) For $g_{0}: A \rightarrow \mathbf{D}$ and $g_{1}: B \rightarrow \mathbf{D}$ as in Definition 2.2, construct f as in the first part of this proof. Anew, f is ©-פ-recursive and $g_{0}=f \circ f_{0}, g_{1}=f \circ f_{1}$.
Definition 2.3 Let $\langle A, \mathfrak{M}\rangle$ and $\langle B, \mathfrak{B}\rangle$ be REM's. We say that $\langle B, \mathfrak{B}\rangle$ is a submanifold of $\langle A, \mathfrak{M}\rangle$ iff $B \subset A$ and to every $q \in Q$ there corresponds a $p \in P$ such that $B_{q} \subset A_{p}$.
(Obviously, I use in Definition 2.3 the notations $\mathfrak{A}=\left\{\alpha_{p} \mid p \in P\right\}, \mathfrak{B}=\left\{\beta_{q} \mid q \in Q\right\}$, $A_{p}=$ the range of α_{p} and $B_{q}=$ the range of β_{q}.)
Lemma 2.1 An $\operatorname{REM}\langle B, \mathfrak{B}\rangle$ is a submanifold of the REM $\langle A, \mathfrak{M}\rangle$ iff to every $q \in Q$ there corresponds some $p \in P$ and a function $f_{p}: N \rightarrow N$ such that $\beta_{q}=$ $\alpha_{p} \circ f_{p}$.
Proof: Define $f_{p}(n)=$ any m such that $\beta_{q}(n)=\alpha_{p}(m)$.
In view of Lemma 2.1 I shall say that $\langle B, \mathfrak{B}\rangle$ is effectively a submanifold of $\langle A, \mathfrak{A}\rangle$ iff each f_{p} in Lemma 2.1 is recursive (or can be chosen recursive). In the case in which $\langle A, \mathfrak{A}\rangle$ and $\langle B, \mathfrak{B}\rangle$ are injective, all f_{p} must be injective.
Example 2.3 One may conjecture that the fact of $\langle B, \mathfrak{B}\rangle$ being an REM would imply the recursiveness of each f_{p} in Lemma 2.1. Let me give an example that it is not so.

Let B be any subset of N which is not r.e. and let b be the principal function of B, i.e., b is an increasing function with B as its range. Then the IRM $\langle B,\{b\}\rangle$ is a submanifold of the IRM $\langle N,\{1\}\rangle$ (I is the identity on N), and $b=1 \circ f$, where f can never be chosen recursive ($f=b$).
Example 2.4 Let $\langle A, \mathfrak{A}\rangle$ be an REM. Let $P_{0} \subset P$ be non-empty. To each $p \in P_{0}$ there corresponds an injective recursive function g_{p}; define $\beta_{p}=\alpha_{p} \circ g_{p}$, $\mathfrak{B}=\left\{\beta_{p} \mid p \in P_{0}\right\}, B_{p}=$ range of β_{p}, and $B=\bigcup_{p \in P_{0}} B_{p}$. Then $\langle B, \mathfrak{B}\rangle$ is an REM which is effectively a submanifold of $\langle A, \mathfrak{A}\rangle$.
Example 2.5 Let $\langle M, \mathfrak{M}\rangle, \mathfrak{M}=\left\{\mu_{t} \mid t \in T\right\}, M_{t}=$ range of μ_{t}, be a positive REM. Define $\mu_{t}^{(0)}$ and $\mu_{t}^{(1)}$ by $\mu_{t}^{(0)}(n)=\mu_{t}(2 n)$ and $\mu_{t}^{(1)}(n)=\mu_{t}(2 n+1)$ Let $M_{t}^{(0)}$ and $M_{t}^{(1)}$ be the respective ranges of $\mu_{t}^{(0)}$ and $\mu_{t}^{(1)}$, set $M^{(0)}=\bigcup_{t \in T} M_{t}^{(0)}$, $M^{(1)}=\bigcup_{t \in T} M_{t}^{(1)}, \mathfrak{M}^{(0)}=\left\{\mu_{t}^{(0)} \mid t \in T\right\}$ and $\mathfrak{M}^{(1)}=\left\{\mu_{t}^{(1)} \mid t \in T\right\}$. Then $\left\langle M^{(0)}, \mathfrak{M}^{t}{ }^{(0)}\right\rangle$ and $\left\langle M^{(1)}, \mathfrak{M}^{(1)}\right\rangle$ are REM's which are effectively submanifolds of $\langle M, \mathfrak{M}\rangle$.

It is enough to prove that $\left\langle M^{(0)}, \mathfrak{M}^{(0)}\right\rangle$ is an REM. Suppose that $D=M_{t}^{(0)} \cap M_{t_{1}}^{(0)} \neq \varnothing$. Then

$$
\left(\mu_{t}^{(0)}\right)^{-1}(D)=\left\{n \mid \vee_{u} \mu_{t}(2 n)=\mu_{t_{1}}(2 u)\right\}
$$

Let $f_{t_{1}}: \mu_{t_{1}}^{-1}\left(M_{t}\right) \rightarrow \mu_{t}^{-1}\left(M_{t_{1}}\right)$ be partial recursive and such that

$$
\mu_{t_{1}}(n)=\mu_{t}\left(f_{t_{1}}(n)\right) \text { for all } n \in D_{f_{t_{1}}}
$$

Then

$$
\left(\mu_{t}^{(0)}\right)^{-1}(D)=\left\{\left.n\right|_{u} \mu_{t}(2 n)=\mu_{t_{1}}\left(f_{t_{1}}(2 u)\right)\right\}=\left\{\left.n\right|_{u} \mathfrak{M}_{t}\left(2 n, f_{t_{1}}(2 u)\right)\right\}
$$

where $\mathfrak{M}_{t}(u, u) \leftrightarrow \mu_{t}(u)=\mu_{t}(u)$ is a r.e. predicate. Thus, $\left(\mu_{t}^{(0)}\right)^{-1}(D)$ is r.e. The remaining part of the proof is left to the reader.

Let me introduce a less strict notion of submanifold.
Definition 2.4 Let $\langle A, \mathfrak{A}\rangle$ and $\langle B, \mathfrak{3}\rangle$ be REM's. We say that $\langle B, \mathfrak{B}\rangle$ is a quasi-submanifold of $\langle A, \mathfrak{2}\rangle$ iff $B \subset A$ and to every $q \in Q$ there corresponds a finite set $P_{q} \subset P$ such that

$$
\begin{equation*}
B_{q}=B \cap \bigcup_{p \in P_{q}} A_{p} \tag{2.2}
\end{equation*}
$$

Lemma 2.2 An REM $\langle B, \mathfrak{B}\rangle$ is a quasi-submanifold of the $\operatorname{REM}\langle A, \mathfrak{M}\rangle$ iff $B \subset A$ and to every $q \in Q$ there corresponds a finite family, say $\left\{f_{p_{1}}^{(q)}, \ldots\right.$, $\left.f_{p_{m}}^{(q)}\right\}$ of partial functions, such that

$$
\beta_{q}(n)=\alpha_{p_{i}}\left(f_{p_{i}}^{(q)}(n)\right) \text { for } n \in \beta_{q}^{-1}\left(A_{p_{i}}\right),
$$

and for $i=1,2, \ldots, m$, and such that (2.2) holds with $P_{q}=\left\{p_{1}, \ldots, p_{m}\right\}$.
Anew, if all $f_{p_{i}}^{(q)}$ in Lemma 2.2 are recursive (or can be chosen recursive), we shall say that $\langle B, \mathfrak{B}\rangle$ is effectively a quasi-submanifold of $\langle A, \mathfrak{M}\rangle$.

CHAPTER III--ATLASES AND THEIR DEGREES

In this chapter I shall consider relations between different atlases on one and the same set, and two fundamental relations between such atlases: compatibility and reducibility. Compatibility is concerned with the recursive structure imposed by a given atlas, and reducibility helps introduce a classification of atlases on one and the same set. Both notions can be introduced with various degrees of strength.

I consider a fixed non-empty set A, and atlases

$$
\mathfrak{A}=\left\{\alpha_{p} \mid p \in P\right\}, \mathfrak{B}=\left\{\beta_{q} \mid q \in Q\right\}, \boldsymbol{C}=\left\{\gamma_{r} \mid r \in R\right\}, \ldots
$$

which are all atlases on A. I shall say that an atlas \mathfrak{A} is an RE-atlas (respectively IRE-atlas, \mathbb{R}-atlas and IR-atlas) iff $\langle A, \mathfrak{A}\rangle$ is an REM (respectively IREM, RM, and IRM). If I do not mention the special structure of the atlas, I always consider it to be an RE-atlas; I shall mainly be interested in such, most general atlases.

Definition 3.1 Two atlases \mathfrak{A} and \mathfrak{B} (on A) are compatible iff they induce the same "r.e.", "p.r.", and "r."-notions for sets and anti-functionals in both $\langle A, \mathfrak{N}\rangle$ and $\langle A, \boldsymbol{3}\rangle$.

Thus, compatible atlases induce the same "effective" structures on a given set A, at least for its subsets and for maps of N into A.

Theorem $3.1 \mathfrak{A}$ and \mathfrak{B} are compatible iff their union $\mathfrak{A} \cup \mathfrak{B}$ is an atlas on A, which is compatible with both \mathfrak{A} and $\mathfrak{\mathfrak { B }}$.

Proof: Suppose first that \mathfrak{A} and \mathfrak{B} are compatible. Consider α_{p} as an anti-functional $f: N \rightarrow A$, with A_{p} as range. It is, trivially, an $\{1\}-\mathfrak{A}-$ recursive anti-functional. But then it must be also $\{1\}$ - \mathfrak{B}-recursive; thus,
whenever $A_{p} \cap B_{q} \neq \varnothing$ there is a p.r. function f_{q}, with domain $\alpha_{p}^{-1}\left(B_{q}\right)$, such that $f(n)=\beta_{q}\left(f_{q}(n)\right)$, i.e., such that $\alpha_{p}(n)=\beta_{q}\left(f_{q}(n)\right)$ for all $n \in \alpha_{p}^{-1}\left(B_{q}\right)$. With a similar consideration for β_{q} 's, we conclude that $\mathfrak{A} \cup \boldsymbol{B}$ is an atlas on A. It is obviously compatible with both \mathfrak{A} and \mathfrak{B}. Converse evident.

Let me point out that the condition on anti-functionals cannot be omitted from Definition 3.1. To see this, let A be a denumerable set and $\alpha: N \rightarrow A, \beta: N \rightarrow A$ two indexings of A. By Theorem 3.1, $\{\alpha\}$ and $\{\beta\}$ are compatible iff there is a recursive permutation $p: N \rightarrow N$ such that $\beta=\alpha \circ p$. By a theorem of Kent ([9], p. 233) there exists a non-recursive permutation $f: N \rightarrow N$ such that, for every r.e. set $E \subset N$, both $f(E)$ and $f^{-1}(E)$ are r.e. Thus, if $\beta: N \rightarrow A$ is defined by $\beta=\alpha{ }^{\circ} f, \beta$ and α induce the same notions "r.e." and "r." for subsets of A. However, for anti-functionals this is not true. Define $\varphi: N \rightarrow A$ by $\varphi=B \circ f^{-1}$. Then φ is not $\{1\}-\{\beta\}$-recursive; namely, if there is a recursive, injective $\varphi^{*}: N \rightarrow N$ such that $\varphi(n)=$ $\beta\left(\varphi^{*}(n)\right)$ for all $n \in N$, this would imply that $f^{-1}=\beta^{-1} \circ \varphi=\varphi^{*}$ is recursive, and so that f is recursive. However, since $\varphi=\alpha \circ I$, where I is the identity on N, we obtain that φ is $\{1\}-\{\alpha\}$-recursive.
Corollary 3.1.1 If \mathfrak{A} and $\mathfrak{\mathfrak { S }}$ are compatible (on A) then I_{A}, the identity on A, is both $\mathfrak{A}-\mathfrak{B}$-recursive and \boldsymbol{B}-2-recursive.

Proof: $\mathrm{I}_{A}: A \rightarrow A$ is \mathfrak{M} - 3 -recursive iff for every $p \in P$ and $q \in Q$, such that $A_{p} \cap B_{q} \neq \varnothing$, there is a p.r. function $f_{p, q}$ with domain $D_{p, q}=\alpha_{p}^{-1}\left(B_{q}\right)$ such that $I_{A}\left(\alpha_{p}(n)\right)=\beta_{q}\left(f_{p, q}(n)\right)$ for all $n \in D_{p, q}$, i.e., such that $\alpha_{p}(n)=\beta_{q}\left(f_{p, q}(n)\right)$ for all $n \in \alpha_{p}^{-1}\left(B_{q}\right)$. Since \boldsymbol{M} and \boldsymbol{B} are compatible such $f_{p, q}$'s always exist.

Definition 3.2 Two atlases \mathfrak{M} and \mathfrak{B} (on A) are strongly compatible iff they are compatible and, for every $\operatorname{REM}\langle M, \mathfrak{M}\rangle$, " f is \mathfrak{A} - \mathfrak{M}-p.r. map"' \leftrightarrow " f is $\mathfrak{B}-\mathfrak{M}$-p.r. map" and " f is \mathfrak{M} - \mathfrak{A}-p.r. map" \leftrightarrow " f is \mathfrak{M} - \mathfrak{B}-p.r. map".

It is difficult to find necessary and sufficient conditions for strong compatibility; they may depend on the structure of atlases in question. I am able to provide a fairly general sufficient condition in Corollary 3.2.1.

Theorem 3.2 Let \mathfrak{M} and $\mathfrak{\mathfrak { B }}$ be compatible (on A), and suppose that each B_{q} meets only finite many A_{p} 's. Then, for any REM $\langle M, \mathfrak{M}\rangle$, every $\mathfrak{A}-\mathfrak{M}$-p.r. map is also a $\mathfrak{3}$ - \mathfrak{M}-p.r. map, and every $\mathfrak{M - M - p . r}$. map is also an $\mathfrak{M - 3 - p . r}$. map.

Proof: Let $f: X \rightarrow M, X \subset A$, be an \mathfrak{A} - \mathfrak{M}-p.r. map. Thus, for every pair $\langle p, t\rangle \in P \times T$ (we suppose $\mathfrak{M}=\left\{\mu_{t} \mid t \in T\right\}$) there is a p.r. function $f_{p, t}$, with domain $D_{p, t}=\alpha_{p}^{-1}\left(X \cap f^{-1}\left(M_{t}\right)\right)$, where $M_{t}=$ range of μ_{t}, and such that

$$
f\left(\alpha_{p}(n)\right)=\mu_{t}\left(f_{p, t}(n)\right) \text { for all } n \in D_{p, t} .
$$

Let $q \in Q$ be such that $A_{p} \cap B_{q} \neq \varnothing$. By supposition, there is a p.r. function g_{q}, with domain $\beta_{q}^{-1}\left(A_{p}\right)$, such that

$$
\beta_{q}(m)=\alpha_{p}\left(g_{q}(m)\right) \text { for all } m \in \beta_{q}^{-1}\left(A_{p}\right) .
$$

Now, if B_{q} is covered by $A_{p_{1}}, A_{p_{2}}, \ldots, A_{p_{s}}$, we have s p.r. functions $g_{q_{j}}$, $j=1,2, \ldots, s$, such that

$$
\begin{equation*}
\beta_{q}(m)=\alpha_{p_{j}}\left(g_{q_{j}}(m)\right) \text { for all } m \in \beta_{q}^{-1}\left(A_{p_{j}}\right) \tag{3.1}
\end{equation*}
$$

Then,

$$
f\left(\beta_{q}(m)\right)=\mu_{t}\left(f_{p_{j, t}}\left(g_{q_{j}}(m)\right)\right) \text { for all } m \in \beta_{q}^{-1}\left(A_{p_{j}} \cap f^{-1}\left(M_{t}\right)\right),
$$

and $j=1, \ldots, s$. By the uniformization theorem of the classical recursive theory there is a p.r. function $f_{q, t}$ defined on

$$
\beta_{q}^{-1}\left(X \cap f^{-1}\left(M_{t}\right)\right)=\bigcup_{j=1}^{s} \beta_{q}^{-1}\left(X \cap A_{p_{j}} \cap f^{-1}\left(M_{t}\right)\right)
$$

such that, for every $n \in \beta_{q}^{-1}\left(X \cap f^{-1}\left(M_{t}\right)\right), f_{q, t}(n)$ is one of the values $f_{p_{j, t}}\left(g_{q_{j}}(n)\right)$ which are defined at the point n. Then

$$
f\left(\beta_{q}(n)\right)=\mu_{t}\left(f_{q, t}(n)\right) \text { for all } n \in D_{f q, t} .
$$

Suppose now that $f: Y \rightarrow A, Y \subset M$, is an \mathfrak{M} - \mathfrak{A}-p.r. map. Thus, for every pair $\langle t, p\rangle \in T \times P$ there is a p.r. function $f_{t, p}$, with domain $D_{t, p}=$ $\mu_{t}^{-1}\left(Y \cap f^{-1}\left(A_{p}\right)\right)$, such that

$$
f\left(\mu_{t}(n)\right)=\alpha_{p}\left(f_{t, p}(n)\right) \text { for all } n \in D_{t, p} .
$$

Suppose now anew that $A_{p_{1}}, \ldots, A_{p_{s}}$ cover B_{q}. Since \mathfrak{M} and $\mathfrak{\mathfrak { B }}$ are compatible, there are p.r. functions h_{i} such that

$$
\alpha_{p_{i}}(m)=\beta_{q}\left(h_{i}(m)\right) \text { for } m \in \alpha_{p_{i}}^{-1}\left(B_{q}\right)
$$

Then

$$
f\left(\mu_{t}(n)\right)=\beta_{q}\left(h_{i}\left(f_{t, p_{i}}(n)\right)\right)
$$

for $n \in \mu_{t}^{-1}\left(Y \cap f^{-1}\left(B_{q} \cap A_{p_{i}}\right)\right), i=1, \ldots, s$. As in the first part of the proof, there is a p.r. function $f_{t, q}$, with domain $\mu_{t}^{-1}\left(Y \cap f^{-1}\left(B_{q}\right)\right)$ such that

$$
f\left(\mu_{t}(n)\right)=\beta_{q}\left(f_{t, q}(n)\right) \text { for all } n \in D_{f t, q} \text {, }
$$

which proves that f is also an \mathfrak{M}-3-p.r. map.
Corollary 3.2.1 Let $\mathfrak{\mathfrak { N }}$ and $\mathfrak{\mathfrak { B }}$ be compatible and such that each A_{p} meets at most finite many B_{q} 's and each B_{q} meets at most finite many A_{p} 's. Then \mathfrak{A} and $\boldsymbol{\aleph}$ are strongly compatible .

Most pleasant atlases are the finite ones. The following theorem demonstrates why it is so.
Theorem 3.3 If $\mathfrak{A}=\left\{\alpha_{i} \mid 0 \leqslant i \leqslant n\right\}$ is a finite atlas on A, then there is an enumeration $\alpha: N \rightarrow A$ of A such that \mathfrak{N} and $\{\alpha\}$ are strongly compatible.
Proof: By induction. Let $n=1$, i.e., $\mathfrak{M}=\left\{\alpha_{0}, \alpha_{1}\right\}$. Set $\alpha(2 n)=\alpha_{0}(n)$ and $\alpha(2 n+1)=\alpha_{1}(n) . \mathscr{U}$ and $\{\alpha\}$ are trivially compatible; by Corollary 3.2 .1 they are strongly compatible. Induction now completes the proof.

If we apply the construction in the proof of Theorem 3.3 to the case in which $\langle A, \mathfrak{2}\rangle$ is an IREM, the corresponding α will be not an indexing but an enumeration only. I can prove that in the case in which $\langle A, \mathfrak{M}\rangle$ is an IRM the corresponding α may be chosen so as to be an indexing.

Theorem 3.4 If $\langle A, \mathfrak{A}\rangle$ is an IRM with finite atlas $\mathfrak{A}=\left\{\alpha_{i} \mid 0 \leqslant i \leqslant n\right\}$, then there is an indexing $\alpha: N \rightarrow A$ such that \mathfrak{A} and $\{\alpha\}$ are strongly compatible.

Proof: By induction. Let $n=1$, i.e., $\mathfrak{A}=\left\{\alpha_{0}, \alpha_{1}\right\}$. Consider $D=A_{0} \cap A_{1}$ ($A_{i}=$ range of α_{i}). $E=\alpha_{1}^{-1}(D)$ is either empty, finite or infinite and recursive; if it is empty apply the construction in the proof of Theorem 3.3, and if it is not empty consider $N-E$. This is a recursive set. If it is finite, say $N-E=\left\{e_{0}, \ldots, e_{s}\right\}$, define $\alpha(i)=\alpha_{1}\left(e_{i}\right)$ for $i=0, \ldots, s$ and $\alpha(s+1+i)=$ $\alpha_{0}(i)$ for $i \geqslant 0$. If $N-E$ is infinite, let $f: N \rightarrow N-E$ be recursive, increasing, with $N-E$ as range. Set $\alpha(2 i)=\alpha_{0}(i)$ and $\alpha(2 i+1)=\alpha_{1}(f(i))$. It is easy to show that \mathfrak{A} and $\{\alpha\}$ are compatible. Then, they are strongly compatible. Now, apply induction.

Theorems 3.3 and 3.4 show that, as far as "effective" structure is in question, finite atlases can always be replaced by enumerations, respectively by indexings. However, this situation should not suggest that denumerable sets A should be considered only as REM's $\langle A,\{\alpha\}\rangle$, where α is an enumeration or an indexing. I shall give later important instances in which denumerable atlases on such a set A are essentially different from possible enumerations of A (i.e., from singleton-atlases on A).

In the Theory of Enumerations one of the fundamental problems is the so-called problem of reducibility for enumerations of one and the same set. If $\alpha: N \rightarrow A$ and $\beta: N \rightarrow A$ are enumerations of the set A, and there is a recursive (and injective) function f, such that $\alpha=\beta \circ f$, then we say that α is reducible (uni-reducible) to β. In a natural way, this notion leads to a notion of equivalence (and uni-equivalence) and to the notion of degrees (one-degrees) of enumerations of A. (For example, the whole content of [5] consists in an elaboration of this notion of reducibility.)

In the Theory of REM's we have several possible notions of reducibility of atlases, all of which fall back to the reducibility of enumerations in case of singleton-atlases. I shall expose now some of these possibilities.

We consider a non-empty set A and the class a_{A} of all atlases $\mathfrak{M}, \mathfrak{B}, \mathfrak{C}, \ldots$, on A. (See the beginning of this chapter for notations.)

Definition $3.3 \mathfrak{A}$ is strongly reducible (strongly one-reducible) to \mathfrak{B}, in symbol $\mathfrak{A} \ll \mathfrak{B}\left(\mathfrak{M} \ll_{1} \mathfrak{B}\right)$, iff $\mathfrak{A}=\left\{\alpha_{p} \mid p \in P\right\}, \mathfrak{B}=\left\{\beta_{p} \mid p \in P\right\}$ and there is a family $F=\left\{f_{p} \mid p \in P\right\}$ of recursive (and injective) arithmetical functions, such that

$$
\begin{equation*}
\alpha_{p}=\beta_{p} \circ f_{p}, \text { for all } p \in P \tag{3.2}
\end{equation*}
$$

Strong reducibility is an immediate generalization of the reducibility of enumerations, and it is not difficult to pursue its study along the same lines as in the classical recursive theory. In the next chapter I shall show the naturalness of the demand that atlases be enumerated by same indices-at least for the sake of comparison of REM's; however, I will not enter into any detailed discussion of the strong reducibility.

Definition $3.4 \mathfrak{A}$ is finitely reducible (finitely one-reducible) to \mathfrak{B}, in symbol $\boldsymbol{\boldsymbol { A } _ { \mathrm { F } }} \leqslant \boldsymbol{3}\left(\boldsymbol{A}_{F-1}^{\leqslant} \boldsymbol{3}\right)$, iff each A_{p} can be covered by finite many B_{q} 's, say by $B_{q_{1}}^{(p)}, \ldots, B_{q_{s}}^{(p)}$, and there are (injective) p.r. functions $f_{1}^{(p)}, \ldots, f_{s}^{(p)}$, such that for every $i=1,2, \ldots, s$

$$
\begin{equation*}
\alpha_{p}(n)=\beta_{q_{i}}\left(f_{i}^{(p)}(n)\right) \text { for } n \in \alpha_{p}^{-1}\left(B_{q_{i}}\right) \tag{3.3}
\end{equation*}
$$

One should remark that the Definition 3.4 does not demand the covering neighborhoods $B_{q_{1}}^{(p)}, \ldots, B_{q_{s}}^{(p)}$ to be disjoint in pairs. Thus, if $n \in \alpha_{p}^{-1}\left(B_{q_{i}}^{(p)} \cap\right.$ $B_{q_{j}}^{(p)}$, we will have

$$
\alpha_{p}(n)=\beta_{q_{i}}\left(f_{i}^{(p)}(n)\right)=\beta_{q_{j}}\left(f_{j}^{(p)}(n)\right)
$$

It is evident that $\underset{F}{\leqslant}$ and $\underset{F-1}{\leq}$ are both reflexive and transitive. Defining
and

$$
\begin{equation*}
\mathfrak{A}_{\mathrm{F-1}}^{\equiv} \boldsymbol{\mathfrak { B }} \leftrightarrow \boldsymbol{A}_{\mathrm{F}-1} \leq \boldsymbol{\mathfrak { B }} \wedge \boldsymbol{\mathfrak { B }} \underset{\mathrm{F-1}}{\leq} \mathfrak{A}, \tag{3.5}
\end{equation*}
$$

we define Finitary Atlas-Degrees (on A), respectively Finitary Atlas-OneDegrees (on A), in short FAD's, respective FAOD's, as equivalence classes of a_{A} under $\overline{\bar{F}}$, respectively under ${ }_{F} \bar{E}_{1}$. The FAD of \mathfrak{A} will be denoted by \mathfrak{M}_{F}, and its FAOD will be denoted by $\mathfrak{M}_{\mathrm{F}-1}$.

By Corollary 3.2 .1 if two compatible atlases are in the same FAD, then they may eventually be strongly compatible. In principle, one may expect that a FAD contains non-compatible atlases. For example, if in (3.3) one of the sets $\alpha_{p}^{-1}\left(B_{q_{i}}\right), i=1, \ldots, s$, is not r.e., then \mathfrak{A} and \mathfrak{B} are not compatible.

Example 3.1 Let me consider FAD's on N, the set of non-negative integers. In order to eliminate pathological atlases, I shall consider only at most denumerable atlases $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \ldots$, on N, which are genuine in the following sense: if just one of A_{p} 's, or $B_{q}{ }^{\prime}$'s, or C_{r} 's, . . ., is removed, the remaining local neighborhoods of the respective atlas do not cover N.

A singleton-atlas $\{\alpha\}$ is an atlas on N iff α is an enumeration of N; thus

$$
\{\alpha\} \underset{\mathrm{F}}{\lessgtr}\{\beta\} \leftrightarrow \alpha=\beta \circ f,
$$

where f is a recursive function.
Now, suppose that α is an indexing of N. If β is another indexing of N and $\{\alpha\} \underset{F}{\lessgtr}\{\beta\}$, then $\alpha=\beta \circ p$, where p is a recursive permutation. This implies also that $\beta=\alpha \circ p^{-1}$, i.e., $\{\beta\} \underset{F}{\leqslant}\{\alpha\}$. Thus, we have the result:
(i) If two singleton injective atlases on $\{\alpha\}$ and on $\{\beta\}$ are comparable (under

In particular, all singleton-atlases each consisting of one recursive permutation are in the same FAD, say $\{1\}_{F}$; this FAD is incomparable (under the obvious sense of this word) with any FAD which contains a
singleton-atlas consisting of one non-recursive permutation. This already proves:
(ii) There is a continuum of mutually incomparable FAD's on N.

Now consider a genuine denumerable atlas $\mathfrak{A}=\left\{\alpha_{i} \mid i \in N\right\}$ on N, and a singleton-atlas $\{\alpha\}$ on N. We can never have $\{\alpha\} \underset{F}{\lessgtr} \boldsymbol{A}$, since no finite number of A_{i} 's ($A_{i}=$ range of α_{i}) can cover N (which has to be the case if $\{\alpha\} \underset{F}{\lessgtr} \mathfrak{M})$. Thus, we obtain:
(iii) The FAD's of genuine denumerable atlases on N never contain finite atlases and, if comparable with FAD's of finite atlases, the FAD's of genuine denumerable atlases are smaller than the FAD's of finite atlases.
(I have taken for granted that the reader realizes that, by Theorem 3.3, finite atlases fall into FAD's of singleton-atlases, i.e., they do not produce any new FAD's on N.)

Let now $\{\alpha\}$ be an injective singleton-atlas on N. Let $\left\langle E_{i}\right\rangle_{i \in N}$ be a sequence of infinite recursive sets, such that $N=\bigcup_{i=0}^{\infty} E_{i}$, but such that for every $j \in N, N-E_{j} \neq N$. Let E_{i} be the range of the increasing recursive function f_{i}, let $\alpha_{i}=\alpha \circ f_{i}$ and $\mathfrak{A}=\left\{\alpha_{i} \mid i \in N\right\}$. Then \mathfrak{A} is a genuine atlas on N, and $\mathfrak{M} \underset{F}{ }\{\alpha\}$. This gives:
(iv) To every injective singleton-atlas on N one can correspond a genuine denumerable atlas of a lower FAD.

Theorem 3.5 The FAD's on a fixed set A form an upper semi-lattice, i.e., to every two FAD's $\mathfrak{\Omega}_{\mathrm{F}}$ and $\mathfrak{\mathfrak { B }}_{\mathrm{F}}$ there corresponds their least upper bound $\mathfrak{A}_{\mathrm{F}} \vee \mathfrak{B}_{\mathrm{F}}$.
Proof: If the atlases \mathfrak{A} and \mathfrak{B} are given, $\boldsymbol{\mathfrak { A }}=\left\{\alpha_{p} \mid p \in P\right\}, \boldsymbol{\mathfrak { B }}=\left\{\beta_{q} \mid q \in Q\right\}$, consider the cardinalities $\overline{\bar{P}}$ and $\overline{\bar{Q}}$. Suppose $\overline{\bar{P}} \leqslant \overline{\bar{Q}}$; then we can assume that $P \subset Q$. Define $\mathbb{C}=\left\{\gamma_{q} \mid q \in Q\right\}$ as follows: if $q \in P$ then $\gamma_{q}(2 n)=\alpha_{q}(n)$ and $\gamma_{q}(2 n+1)=\beta_{q}(n)$; and if $q \in Q-P$ then $\gamma_{q}=\beta_{q}$. Trivially, $\boldsymbol{M} \leqslant \boldsymbol{C}$ and $\boldsymbol{\mathcal { B }} \leqslant \boldsymbol{F}$. Suppose now that an atlas $\mathfrak{O}=\left\{\delta_{s} \mid s \in S\right\}$ is such that both $\mathfrak{A} \underset{F}{\lessgtr} \mathfrak{P}$ and $\mathfrak{B} \underset{F}{<} \mathfrak{\mathcal { D }}$. Then one obtains easily that $\underset{\boldsymbol{C}}{\lessgtr} \boldsymbol{\mathcal { P }}$ i.e., $\boldsymbol{C}_{F}=\boldsymbol{M}_{F} \vee \mathfrak{B}_{F}$.

In an analogy with the notion of a cylinder I shall introduce a notion of cylindrification for atlases.

Definition 3.5 Let $\mathfrak{A}=\left\{\alpha_{p} \mid p \in P\right\}$ be an atlas on A. Then, $\left.C y\right|_{\mathfrak{2}}$, the cylindrification of \mathfrak{A}, is the atlas $\left.C_{y}\right|_{\mathfrak{1}}=\left\{\bar{\alpha}_{p} \mid p \in P\right\}$, where

$$
\begin{equation*}
\bar{\alpha}_{p}\left(\sigma^{2}(n, m)\right)=\alpha_{p}(m) \text { for all } n, m \in N \tag{3.6}
\end{equation*}
$$

($\sigma^{2}, \sigma_{1}^{2}$, and σ_{2}^{2} and σ_{2}^{2} are as in Definition 2.1.)
Since $\alpha_{p}(m)=\bar{\alpha}_{p}\left(\sigma^{2}(0, m)\right)$ and $\bar{\alpha}_{p}(n)=\alpha_{n}\left(\sigma_{2}^{2}(n)\right)$ we have always $\left.\boldsymbol{M}_{F-1}^{\leq} C_{y}\right|_{21}$ and $\mathrm{Cy}_{\mathbf{2}} \underset{\mathrm{F}}{ } \underset{\mathrm{M}}{ } \mathbf{2}$.
Lemma 3.1 Let $\mathfrak{\mathfrak { A }}$ and $\mathfrak{\mathfrak { B }}$ be atlases on A. Then:
(i) $\mathfrak{A} \underset{F-1}{\leq} \mathrm{Cy}_{\mathfrak{A}}$ and $\mathrm{Cy}_{\mathfrak{2 1}} \underset{\mathrm{F}}{ } \underset{\mathfrak{M}}{ }$.
(ii) $\mathfrak{B} \underset{F}{\leq} \boldsymbol{\mathfrak { A }}$ implies $\boldsymbol{3} \underset{\mathrm{F}-1}{\leq} \mathrm{Cy}_{\mathfrak{2}}$.
(iii) $\mathfrak{B} \underset{F}{\gtrless} \mathfrak{A} \leftrightarrow \mathrm{Cy}_{\mathfrak{*}} \underset{\mathcal{F}_{-1}}{\stackrel{F}{F} \mathrm{Cy}_{\mathfrak{X}}}$.

Proof: (i) was already proved. (ii) Let $q \in Q$ and let $A_{p_{1}}, \ldots, A_{p_{s}}$ cover B_{q} so that

$$
\begin{equation*}
\beta_{q}(n)=\alpha_{p_{i}}\left(f_{i}^{(q)}(n)\right), \text { for } n \in \beta_{q}^{-1}\left(A_{p_{i}}\right), \tag{3.7}
\end{equation*}
$$

where $f_{1}^{(q)}, \ldots, \dot{f}_{s}^{(q)}$ are p.r. functions. Define $g_{i}^{(q)}(n)=\sigma^{2}\left(n, f_{i}^{(q)}(n)\right), i=$ 1, . . ., s. Then:

$$
\beta_{q}(n)=\bar{\alpha}_{r}\left(g_{i}^{(q)}(n)\right), \text { for } n \in \beta_{q}^{-1}\left(A_{p_{i}}\right),
$$

which proves that $\mathfrak{B}_{F-1} \mathrm{Cy}_{\mathfrak{2}}$.
 Conversely, if $\mathrm{Cy}_{\mathbf{3}_{\mathrm{F}}} \leqslant \mathrm{Cy}_{21}$ we have

$$
\left.\left.\boldsymbol{\mathfrak { B }} \underset{\mathrm{F}-1}{\leq} C y\right|_{\mathfrak{3}} \underset{\mathrm{F}-1}{\leq} C y\right|_{\mathfrak{A}} \underset{F}{\leq} \mathfrak{A} \text {, i.e., } \boldsymbol{\mathfrak { B }} \underset{\mathrm{F}}{\leq} \boldsymbol{A} \text {. }
$$

Theorem 3.6 Every FAD (on A) contains a maximal FAOD.
Proof: Consider \mathfrak{M}_{F} and $C_{y} 1_{\mathfrak{A}_{\mathcal{F - 1}}}$. Obviously, Cy $\left.\right|_{\mathfrak{A}_{\mathrm{F}-1}}$ is contained in $\mathfrak{M}_{\mathrm{F}}$. Now, let $\mathfrak{B} \in \mathfrak{M}_{\mathrm{F}}$ be in any FAOD, say in $\mathfrak{B}_{\mathrm{F}-1}$. Since $\mathfrak{B} \in \mathfrak{M}_{\mathrm{F}}$, we have $\mathfrak{B} \underset{\mathrm{F}}{\lessgtr} \mathfrak{A}$, and by (ii) of Lemma $3.1 \mathfrak{B}_{\mathrm{F}=-1}^{\leq} \mathrm{Cy}_{\mathfrak{2}}$.

Let us remark that (iii) of Lemma 3.1 establishes an order-homomorphism from the ordering $\underset{F}{\lessgtr}$ into the ordering $\underset{F-1}{\lessgtr}$. All this shows that finitary reducibility of atlases is an appropriate extension of the reducibility of enumerations. Let me remark that ' $\mathfrak{B} \underset{F}{<} \mathfrak{A}$ ' is equivalent with ' $\langle A, \mathfrak{B}\rangle$ is effectively a quasi-submanifold of $\langle A, \mathfrak{A}\rangle$ ". This suggests placing our manifolds $\langle A, \mathfrak{A}\rangle,\langle A, \mathfrak{3}\rangle,\langle A, \boldsymbol{c}\rangle, \ldots$, inside one fixed larger manifold.

Thus, I should now have a fixed REM $\langle M, \mathfrak{M}\rangle, \mathfrak{M}=\left\{\mu_{t} \mid t \in T\right\}, M_{t}$ range of $\mu_{t}, M=\bigcup_{t \in T} M_{t}$, and that $A \subset M$. I shall consider atlases on A (obviously, I suppose that A is non-empty) which are finitely reducible to \mathfrak{M} in the obvious sense: $\mathfrak{A} \underset{\mathrm{F}}{\leq} \mathfrak{M}$ iff each A_{p} can be covered by finite many M_{t} 's, say by $M_{t_{1}}, \ldots, M_{t_{s}}$, and there are p.r. functions $f_{i}^{(p)}, i=1, \ldots, s$, such that

$$
\alpha_{p}(n)=\mu_{t_{i}}\left(f_{i}^{(p)}(n)\right) \text { for } n \in \alpha_{p}^{-1}\left(M_{t_{i}}\right),
$$

and $i=1$, ..., s. (Consequently, I shall suppose that REM's $\langle A, \mathfrak{2}\rangle,\langle A, \mathfrak{3}\rangle$, $\langle A, \boldsymbol{\epsilon}\rangle, \ldots$, are effectively quasi-submanifolds of $\langle M, \mathfrak{M}\rangle$.)

In a similar way I can extend the notion of finitary reducibility to subsets A_{0} of A, i.e., to the atlases on such subsets.

Definition 3.6 The atlas \mathfrak{A} (on $A \subset M$) is principal iff $\mathfrak{A} \underset{\mathfrak{F}}{\leqslant} \mathfrak{M}$ and, for every atlas \mathfrak{B} on A, the relation $\mathfrak{B} \underset{F}{<} \mathfrak{M}$ implies $\boldsymbol{\mathfrak { B }} \underset{F}{ } \mathbf{\mathfrak { N }}$.

The existence of principal atlases on A depends on the recursive structure of A in $\langle M, \mathfrak{M}\rangle$, and on the structure of \mathfrak{M}.

Theorem 3.7 If $\langle M, \mathfrak{M}\rangle$ is positive and A is an \mathfrak{M}-r.e. set, then there exists at least one principal atlas on A.

Proof: Let $T_{0} \subset T$ be the set of all $t \in T$ such that $\mu_{t}^{-1}(A) \neq \varnothing$. Then, every set $\mu_{t}^{-1}(A)$, for $t \in T_{0}$, is a non-empty r.e. subset of N. Let it be the range of the recursive function m_{t}. Then, $A \cap M_{t}=\mu_{t}\left(M_{t}(N)\right)$ for all $t \in T_{0}$, and $A=\bigcup_{t \in T_{0}} A_{t}$, where $A_{t}=$ range of $\alpha_{t}=\mu_{t} \circ M_{t}$. At last, set $\mathfrak{A}=\left\{\alpha_{t} \mid t \in T_{0}\right\}$. I shall prove that \mathfrak{A} is principal.

Suppose $\mathfrak{B}=\left\{\beta_{q} \mid q \in Q\right\}$ is an atlas on A, such that $\mathfrak{B} \underset{F}{\leqslant} \mathfrak{M}$. Let $q \in Q$ be fixed and let $\left\{t_{0}, t_{1}, \ldots, t_{s}\right\} \subset T$ be such that $\left\{M_{t_{0}}, M_{t_{1}}, \ldots, M_{t_{s}}\right\}$ covers B_{q}; let $f_{0}^{(q)}, f_{1}^{(q)}, \ldots, f_{\mathrm{s}}^{(q)}$ be p.r. and such that, for $i=0,1, \ldots, s$,

$$
\beta_{q}(n)=\mu_{t_{i}}\left(f_{i}^{(q)}(n)\right) \text { for } n \in \beta_{q}^{-1}\left(M_{t_{i}}\right) \text {. }
$$

Since $B_{q} \subset A$, we have $B_{q} \cap M_{t_{i}}=B_{q} \cap A_{t_{i}}$. Thus,

$$
\begin{equation*}
\beta_{q}(n)=\mu_{t_{i}}\left(f_{i}^{(q)}(n)\right) \text { for } n \in \beta_{q}^{-1}\left(A_{t_{i}}\right) \tag{3.8}
\end{equation*}
$$

$(i=0,1, \ldots, s)$ and $\left\{A_{t_{0}}, A_{t_{1}}, \ldots, A_{t_{s}}\right\}$ covers B_{q}. For $i=0,1, \ldots, s$, define g_{i} by $g_{i}(n) \simeq$ some $y \in N$ such that $\mu_{t_{i}}(y)=\mu_{t_{i}}\left(m_{t_{i}}(n)\right)$; since \mathfrak{M} is positive, each q_{i} is a p.r. function, and we have

$$
\mu_{t_{i}}(n)=\alpha_{t_{i}}\left(g_{i}(n)\right) \text { for all } n \in D_{g_{i}}
$$

Then, by (3.8), we obtain

$$
\beta_{q}(n)=\alpha_{t_{i}}\left(g_{t_{i}}\left(f_{i}^{(q)}(n)\right)\right) \text { for } n \in \beta_{q}^{-1}\left(A_{t_{i}}\right),
$$

and $i=0,1, \ldots, s$, which proves that $\boldsymbol{\mathfrak { B }} \underset{\mathrm{F}}{\lessgtr} \mathfrak{M}$.
Corollary 3.7.1 If $\langle M, \mathfrak{M}\rangle$ is an IREM (an IRM) and $A \subset M$ an $\mathfrak{M r}$-r.e. set, such that each non-empty $\mu_{t}^{-1}(A)$ is infinite, then there is a principal atlas \mathfrak{A} on A, such that $\langle A, \mathfrak{A}\rangle$ is an IREM (an IRM).

If both \mathfrak{A} and \mathfrak{B} are principal, they are in the same FAD; this FAD is the maximal element of the family of FAD's of all REM's $\langle A, \boldsymbol{C}\rangle$, which are effectively quasi-submanifolds of $\langle M, \mathfrak{M}\rangle$.
Example 3.2 Consider $\langle N,\{1\}\rangle$, where \mid is the identity on N, as the fixed REM $\langle M, \mathfrak{M}\rangle$. (To be precise, $\langle N,\{1\}\rangle$ is an IRM.) Let A be any non-empty subset of N. We shall consider at most denumerable genuine atlases on A. Let $\mathfrak{A}=\left\{\alpha_{i} \mid i \in N\right\}, A_{i}=$ range of $\alpha_{i}, A=\bigcup_{i=0}^{\infty} A_{i}$, be such an atlas. Suppose it is principal. Consider any $\operatorname{REM}\langle A,\{\alpha\}\rangle$. If $\{\alpha\} \underset{F}{\leqslant}\{1\}, \alpha$ must be a recursive function with range A, i.e.,
(i) If a singleton atlas $\{\alpha\}$ on A is finitely reducible to $\{1\}$, then A must be a r.e. set and α a recursive function.

Therefore, let us start with the case in which A is a r.e. set. Then any recursive function $\alpha: N \rightarrow A$, with A as range, defines an atlas $\{\alpha\}$ on A such that $\{\alpha\} \underset{F}{ } \underset{F}{ }\{1\}$. Since \mathfrak{A} is principal, we obtain at once: A must be covered by at most finite many A_{i} 's. However, this contradicts the supposition that \mathfrak{A} is genuine. So, we have:
(ii) If A is r.e. then no genuine infinite atlas $\mathfrak{H}=\left\{\alpha_{i} \mid i \in N\right\}$ on A can be principal.

Thus, if principal, \mathfrak{A} must be finite. But then, by Theorem 3.3, \mathfrak{x} can be replaced by a singleton atlas $\{\alpha\}$, where α is recursive and has A as range. Now, let $\mathfrak{A}=\{\alpha\}, \alpha: N \rightarrow A, \alpha$ recursive. Let $\mathfrak{\mathfrak { B }}=\left\{\beta_{i} \mid i \in N\right\}$ be any atlas on A, such that $\mathfrak{B} \underset{F}{<}\{1\}$. This implies: each β_{i} is recursive. Define then

$$
f_{i}(n)=\mu_{y}\left(\alpha(y)=\beta_{i}(n)\right) .
$$

Then $\beta_{i}(n)=\alpha\left(f_{i}(n)\right)$, i.e., $\mathfrak{B} \underset{\mathrm{F}}{\leq}\{\alpha\}$, and we obtain
(iii) Every principal atlas on A, in case A is r.e., can be reduced to a singleton atlas $\{\alpha\}$, with recursive α. Every such atlas is then principal.
(The last statement in (iii) should not be astonishing, in view of Theorem 3.6.) Now suppose that A is not r.e. Remark that it cannot be immune if it admits any atlas $\underset{F}{\lessgtr}\{1\}$ which contains at least one infinite local neighborhood A_{p} (since, then α_{p} must be recursive). Thus, we have to consider two cases: A immune, and A non-immune.

Let first A be immune. Then, every atlas $\mathfrak{A} \leqslant\{1\}$ on A, must contain only finite local neighborhoods A_{p}, and so must be infinite. Let $\boldsymbol{M}=$ $\left\{\alpha_{i} \mid i \in N\right\}$, where each α_{i} is recursive, with finite range, and suppose that $\boldsymbol{\mu}$ is genuine. Thus, if $\mathfrak{B}=\left\{\beta_{i} \mid i \in N\right\}$ is any atlas on A which is finitely reducible to $\{1\}$, we will have $\overline{\bar{B}}_{i}<\infty$, for all $i \in N$. Also the relation $\boldsymbol{B} \underset{F}{<}\{1\}$ implies that each β_{i} is recursive (with finite range). Therefore, to each $i \in N$ there corresponds finite many numbers $i_{0}, i_{1}, \ldots, i_{s}$, such that $A_{i_{0}}$, $A_{i_{1}}, \ldots, A_{i_{s}}$ cover B_{i}. Define $f_{i_{\mu}}$ by

$$
f_{i_{\mu}}(n) \simeq \text { any } y \in N \text { such that } \alpha_{i_{\mu}}(y)=\beta_{i}(n)
$$

Then each $f_{i \mu}$ is partial recursive, $\mu=0, \ldots, s$, and

$$
\beta_{i}(n)=\alpha_{i_{\mu}}\left(f_{i_{\mu}}(n)\right) \text { for } n \in \beta_{i}^{-1}\left(A_{i_{\mu}}\right),
$$

$\mu=0, \ldots$, s, i.e., $\underset{\mathfrak{F}}{\lessgtr} \mathfrak{M}$. Thus:
(iv) If A is immune, then every atlas $\boldsymbol{\mu}=\left\{\alpha_{i} \mid i \in N\right\}$ on A, where each α_{i} is recursive, with finite range, is principal, and every principal atlas on A is of this type.

At last, suppose A infinite, non-recursively enumerable and nonimmune. Then, no singleton atlas $\{\alpha\}$ on A can satisfy $\{\alpha\} \leqslant\{1\}$, and no finite atlas can do it either. Thus, exactly all genuine infinite atlases $\boldsymbol{\mu}=\left\{\alpha_{i} \mid i \in N\right\}$, with all α_{i} recursive and such that $\left\langle A_{i}\right\rangle_{i \in N}$ is not a recursively enumerable sequence of r.e. sets, satisfy $\mathfrak{A} \leqslant\{1\}$. Here, some A_{i} may be infinite; in fact,

$$
\text { if } \mathfrak{M} \text { is to be principal, at least one } A_{i} \text { must be infinite. }
$$

To see this, remark that A contains an infinite r.e. set, say B, which is the range of the injective, recursive function β_{0}. Now, construct the atlas $\mathfrak{B}=\left\{\beta_{i} \mid i \epsilon N\right\}$ by taking every β_{i} for $i \geqslant 1$ to be identically b_{i}, where

$\mathfrak{B} \underset{\mathcal{F}}{\leq} \mathfrak{A}$; this implies that B_{0} can be covered by finite many A_{i} 's; thus, at least one of those has to be infinite.

It should be obvious that definite characterization of principal atlases in this last case depends very much on the nature of A. Thus, I will leave this characterization for a special study.

Let us say that an atlas \mathfrak{M} on $A \subset M$ is finitary with respect to \mathfrak{M} (the atlas on M) iff each M_{t} meets at most finite many A_{p} 's.
Theorem 3.8 Let \mathfrak{M} be positive and let \mathfrak{M} be a principal atlas on $A \subset M$, which is finitary with respect to \mathfrak{M}. Let $A_{0} \subset A$ and let $\left\langle A_{0}, \mathfrak{B}\right\rangle$ be any REM which is effectively a quasi-manifold of $\langle M, \mathfrak{M}\rangle$. Then $\mathfrak{B} \underset{F}{\lessgtr} \boldsymbol{M}$.
Proof: We suppose $\mathfrak{B}=\left\{\beta_{q} \mid q \in Q\right\}$. If $M_{t_{0}}, \ldots, M_{t_{s}}$ cover B_{q}, let $f_{i}^{(q)}$, $i=0, \ldots, s$, be partial recursive and such that

$$
\beta_{q}(n)=\mu_{t_{i}}\left(f_{i}^{(q)}(n)\right) \text { for } n \in \beta_{q_{i}}^{-1}\left(M_{t_{i}}\right)
$$

Then $\left\{A \cap M_{t_{0}}, \ldots, A \cap M_{t_{s}}\right\}$ covers B_{q}. Now, by the condition on $\boldsymbol{\mathfrak { A }}$,

$$
A \cap M_{t_{i}}=\left\{A_{p_{i, 1}} \cup, \ldots, \cup A_{p_{i, s_{i}}}\right\} \cap M_{t_{i}}
$$

for $i=0, \ldots, s$; thus, $\bigcup_{i=0}^{s} \bigcup_{j=0}^{s_{i}} A_{p_{i, j}}$ covers B_{q}. Moreover, there are partial recursive functions $f_{p_{i, j}}, i=0, \ldots, s, j=1, \ldots, s_{i}$ such that

$$
\alpha_{p_{i, j}}(n)=\mu_{t_{i}}\left(f_{p_{i, j}}(n)\right) \text { for } n \in \alpha_{p_{i, j}}^{-1}\left(M_{t_{i}}\right)
$$

Applying the same method as in the proof of the second part of Theorem 3.6 we obtain the proof of this theorem.

A slight variant of Theorem 3.7 is
Theorem 3.9 Let $\boldsymbol{\mu}=\left\{\alpha_{t} \mid t \in T\right\}$ be such that $A_{t} \subset M_{t}$ and that there is a family $\left\{f_{t} \mid t \in T\right\}$ of p.r. functions, satisfying for all $t \in N$

$$
\mu_{t}^{-1}(A) \subset D_{f t}
$$

and

$$
\mu_{t}(n)=\alpha_{t}\left(f_{t}(n)\right) \text { for all } n \in \mu_{t}^{-1}(A)
$$

Then \mathfrak{A} is principal (on $\left.A=\bigcup_{t \in T} A_{t}\right)$.
Proof: We have to prove only that $\boldsymbol{\mathcal { A }} \underset{\mathrm{F}}{\lessgtr} \mathfrak{M}$. Define g_{t} by

$$
g_{t}(n) \simeq \text { any } y \in N \text { such that } f_{t}(y)=n .
$$

Since $R_{f_{t}}=N, g_{t}$ is recursive and

$$
\alpha_{t}(n)=\mu_{t}\left(g_{t}(n)\right) \text { for all } n \in N \text {, }
$$

i.e., $\mathfrak{M} \underset{F}{\leqslant} \mathfrak{M}$.

REFERENCES

[1] Vučković, V., "Local recursive theory," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 237-246.
[2] Malcev, A. I., "Konstruktivnye Algebry, I," Uspehi Matematickih Nauk, vol. XVI (1961), pp. 3-60 (in Russian).
[3] Malcev, A. I., "Polno Numerovanye Mnozestva," Algebra i Logika, vol. 2 (1963), pp. 4-29 (in Russian).
[4] Malcev, A. I., "K Teorii Vychislimyh Semeistv Obiektov," Algebra i Logika, vol. 3 (19̉64), pp. 5-31 (in Russian).
[5] Ershov, Y., "Theorie der Numerierungen I," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 19 (1973), pp. 289-388.
[6] Platek, R. A., Foundations of Recursion Theory, Ph.D. Thesis, Stanford University (1966).
[7] Kreisel, G., and G. E. Sacks, '"Metarecursive sets," The Journal of Symbolic Logic, vol. 30 (1965), pp. 318-338.
[8] Wagner, E. G., Uniformly Reflexive Structures, Ph.D. Thesis, Columbia University (1963).
[9] Rogers, H., Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).

To be continued

University of Notre Dame
Notre Dame, Indiana

