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RECURSIVE AND RECURSIVELY ENUMERABLE MANIFOLDS. I

VLADETA VUCKOVIC

Foreword In [l] I have presented a sketch of the Local Recursive Theory—
a generalization of the Recursive Theory, which is quite different from
other generalizations: instead of being a study in definability (as, for
example, [6] of Platek), or a concrete interpretation (as the Metarecursive
Theory of Kreisel-Sacks in [7]), or an abstract axiomatization (as the
Theory of Uniformly Reflexive Structures of Wagner in [8]), Local Recur-
sive Theory is the study of sets which admit a local recursive structure-,
this structure is induced via appropriate enumerations of local neighbor-
hoods and an effective patching of such neighborhoods.

Local Recursive Theory, or the Theory of Recursive and Recursively
Enumerable Manifolds, is a further development of the Theory of Enumera-
tions , of an integral part of the Recursive Theory, which was systematically
studied by Malcev and his students, especially by Yu. Ershov; in [l] I
presented a first draft for such a development, considering only a very
special case (of injective local enumerations). Here, I develop the Local
Recursive Theory in its full generality and in many directions which were
not even mentioned in [ l] .

With the exception of a few pages, the material of this monograph has
not been published previously. The monograph was drafted for a course in
Generalized Recursive Theory, at the Graduate School of Mathematics at
the University of Notre Dame in the first semester of 1974/1975 year.

CHAPTER I-BASIC NOTIONS

Every map u: N —> U of the set N of non-negative integers onto an at
most denumerable, non-empty set U, is called an enumeration of U; if it is
bijective it will be called an indexing of U. Using enumerations we can
extend recursive notions to any enumerated set U. For example, a map
f'.U-^UoίU into U will be called u-recursive iff (if and only if) there is
an r. (recursive) function /*: N —> N, such that, for all ne N,

(1.1) f(u(n))=u(f*(n)),

Received July 19, 1975



266 VLADETA VUCKOVIC

i.e., such that the diagram in Figure 1.1 commutes.

ϋ f- >£/
A A

u u

N ίl >N

Figure 1.1

In case u is an indexing, this situation may be expressed by

(1.2) u~ι ofou is an r. function.

(Obviously, u~ι is the inverse of uy and <> denotes composition of functions.)

The Theory of Enumerations is exposed in the fundamental paper [2] of
Malcev, and in the monograph [5] of Ershov. For the results I shall refer
to both of those expositions. The fundamental idea of the Local Recursive
Theory is the following one: suppose, for each peP, ap: N -* Ap is an
enumeration of the set Λp; thus, for each p e P, one can pursue some
recursive theory on Ap, using the enumeration ap; now, if A = [J Ap, can one

peP

use the same enumerations to introduce some recursive theory on A? My
answer is "yes", if one supposes the local neighborhoods Apto be patched
in an effective way—whenever their intersections are not empty. (By φ I
shall denote the empty set.)

Definition 1.1 A non-empty set A is called a Recursive Manifold (an RM)

iff:

(i) There is a family S2I of enumerations ap: N —» Ap, pe P, where each Ap is
a non-empty subset of A and A = \jAp.

peP

(ii) For every pair (p,pι)eP2 such that ApΠAPιΦ09 both a.p

ι{Ap) and
ap*(Ap) are recursive sets, and there are numerical p.r. (partial recursive)
functions

fp: ap

ι{ApJ — apl{Ap) and/^: ap{(Ap) — ap

ι(ApJ

such that

(1.3) atp(n) = aPi(fp(n)), for all ne ap

ι{APι),

and

(1.4) aPι(n) = ap(fPl(n)), for all ne aΓp\Ap).

In Figure 1.2 (see p. 267) the relations (1.3) and (1.4) are represented
graphically.

The sets Ap are called Local Neighborhoods, the enumerations ap are
called Local Enumerations and the family SI = {ap\p eP] is called the Atlas
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Jly^^—^ i^j^k
AT * AT

Figure 1.2

of the RM (A, 21). In general, <A, 31), <£,»), (C, ©•), . . ., will denote RM's
with atlases $1, *S, β, . . ., respectively. We shall call sets A, B, C, . . .,
the Carriers of the corresponding RM's. In case all ap are indexings (i.e.,
injective enumerations), we call (A, lϋl) an Injectίve RM (an IRM). For such
manifolds, (1.3) and (1.4) can be shortened to

(1.5) aPι°ap a n d aV°aPi a r e P r Unctions with r. domains.

Every enumerated set (U, {u}) is an RM; in case u is bijective, (U, {u})
is an IRM. By n I shall denote the IRM (N, {l}), where I is the identity on N.
(In general, \A will denote the identity on the set A.)
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Example 1.1 Let A be a non-empty (infinite) set, and let a: N —• U be an
enumeration (an indexing) of a subset U of A (which is infinite). UA=U,
(A, {a}) is an RM (an IRM). If AΦU, let P = A - U and to every peP
correspond the local neighborhood Ap = U U {p} and the enumeration (the
indexing) ap: N -* Ap, defined by

I p for n = 0

a(n - 1) for n $* 1.

Let 21 = {ctyl̂  € P}. Then (A, %) is an RM (an IRM). Further, for all p Φ pl9

Ap Π APl = Z7, and α ί p 1 ^ ) = ap^(Ap) = N+ = N - {θ}, and α̂ (w) = aPι(n) for all
neN+. Figure 1.3 represents this last case.

Figure 1.3

Example 1.2 Let {A{)UN be a sequence of non-empty recursive subsets of
oθ

N. Let A = U Ai, let α,-: N—> Ai be recursive, with A, as range, and let
i = 0

>2i = {oίi\i e AT}. Then (A, «l> is an RM. Namely, if i ^ j and A/ Π A ; ^ {δ, then
A{ ΠAj is recursive, and both aJ1(Aj) and αf;

7l(A, ) are recursive. Define
then

fiW = μy(αff (») = cϋ, (y)) for all neaJι(Aj)

and

/7 (w) = μy(oij(n) = oti(y)) for all ne aJι(Ai).
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Then oii(n) = oίj(fi(n)) for all ne a~il{Aj), and α; (w) = oii(fj(n)) for all we aJ1(Ai).
In the case in which i Φ j implies A{ Π Aj = φ for all z, j e ΛΓ, we may suppose
that all A{ are only r .e. sets. In the case in which all A{ are infinite and
recursive we may suppose that all OL{ are recursive and increasing; in this
case (A,ty) becomes an IRM.

Example 1.3 Let Ω be the class of all ordinals, and let Ωo be its subclass
consisting of zero and of all limit-ordinals. To every ξ e Ωo there corre-
sponds an enumeration

Oξi N-> {ξ + nlneN}.

Let H = {aξ\ ξ e Ωo}. Then (Ω, H) is an RM, very trivial indeed, since ξ Φ 77,
ξ, η e Ωo, imply Uξ Π Uη = 0, where ί% and C/̂  are ranges of aξ and α^
respectively. In case each a.ξ is injective (for example, if one defines oίξ{n) =
ξ + ̂ ), <Ω, H) is an IRM. Initial segments of <Ω, ̂ ) are RM's too. If Ωσ is
the set of all ordinals <σ, and Ωσ ; o the subset of Ωo consisting of zero and of
all limit-ordinals which are <σ, with Hσ = {aξ\ ξ € Ωσ;o}, (Ώσ, Hσ) is an RM (an
IRM in case all aξ are indexings).

Example 1.4 Let H be a (non-immune and infinite) subset of N. Let
h0: N-* H be a recursive (increasing) function with a recursive (infinite)
range # 0 Let h: N —* H - Ho be an enumeration of H - Ho (an indexing of
# - #0, in which case we suppose it infinite). In a trivial way, (H, {h0, h}) is
an RM (an IRM).

A more interesting manifold is constructed as follows (supposing that h
is injective): define, for n ^ 0, the enumeration (indexing) hn+1 by

hn+i(i) = Hi) for 0 ^ i < «,
hn+ι(ϊ) = ̂ oU - w - 1) for n < z.

Let J^ be the range of hn, and § = {hn\neN}. Then, (i/, $> is an RM (an
IRM). This is easily checked: n< m implies Hn Π Hm = # w and

Hm - Hn = {h(n), h(n + 1), . . ., Mm - 1)}.

Thus, defining, for n< m,

I k for 0 ^ k ^ n - 1,
k + n - m for m < fe,
undefined for n^ k ^ m - 1,

and

I fc for 0 < fe ̂  w - 1,

k - n + m for n^ k,

we have

fc»(fe) = Ufmik)) for2LllkeDfm,

and

W « = hm(fn(k)) tor alike Dfn,
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where Df denotes the domain of the function /. (We shall write Rf for the
range of /.) This r. manifold (H, §) has the property that Hn c Hn+1 for all
neN.

Example 1.5 An RM (IRM) (A, SI) will be called an amalgam iff Ap fλAPιΦφ
implies that ap(n) = aPι(n) for both nea^iAp) jmd neap*(Ap). On such a
manifold, in case it is injective, we caji define P additive operations Φp and
P multiplicative operations Θp, p e P, (P = the cardinal of the set P), by

ap(n) Θp ap(m) = ap(n + m),

and

<*p(n) Θp ap(m) = ap(n m).

It is interesting to note: if ap(n), ap{m), and ap(n + m) are in Ap Π APι then
otp(n) Θpap(m) = aPi(n) Θ^ aPl(m), and similarily for (Dp. Thus, one can
consider Ap's as "sheets" of the amalgam (A, SI); on each sheet Ap one can
develop an arithmetic which will be compatible with the arithmetic on
another sheet APi, in case Ap n Ap^ Φ φ.

Let me introduce now some first effective notions on manifolds. In the
following (if not indicated otherwise) <A,Sl), <£,«), <C,<£), . . ., will denote
RM's (or IRM's); then

% = {ap\peP}, X = {βq\qeQ}, ® = {Ύr\reR}, . . .,

Ap, Bq, Crf . . . , will denote respective ranges of enumerations ap, βq, γr, ....

Definition 1.2 (i) The set X^A is ty-recursively enumerable ($|-r.e.),
respective %-recursiυe (SI-r.) iff, for every peP, ap

ι(X)y the inverse
image of X under ap, is an r.e., respective an r. subset of N.
(ii) The map /: X -> B, X c A, is %-%-partial recursive (2l-»-p.r.) iff X is
aniM-r.e. set and, for every pair (/>, q) e P x Q, there is a p.r. arithmetical
function fp>q, with domain Z)Λ = ap

 1{X Π f~1(Bq)), such that

(1.6) M W ) = fy(/M(w)), for BMneDfM.

(iii) If / is both SI-φ-p.r. and total it is called iU-^-recursive (Sl-^-r.).

In Definition 1.2, in case X Πf~1(Bq) = 0, fPιq is meant to be the
nowhere defined p.r. function Λ.

In considering functionals, i.e., maps f:X—*N9 X c A, and anti-
functionals, i.e., maps f:D-+A,DCN, we shall consider AT always as the
IRM n = (N, {l}), where I is the identity on iV. In this way, every ap: N —»^,
as an anti-functional, is {l}-SI-recursive. In case it is injective, its inverse
afι: Ap —> N, as a map from A into N, is an $l-{Impartial recursive
functional, with $1-recursive domain Ap. Also, U, the identity on A, is an
SI-SI-recursive map: if/^ and/^ are as in (1.3) and (1.4) then, in case
Apf)APi Φ0,

\A(otp(n)) = aPι(fp(n)), for all n e a~p

ι{Ap^,
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and

\A(aPι(n)) = ap(fPi(n)), for*all nea~*(Ap).

Similarly, every constant map /: A —> {a\ where a is a fixed element
of A, is $l-$l-recursive.

For subsets of Am and maps from Am we enlarge Definition 1.2.

Definition 1.2' (i) The s e t z c Am, m > 1, is 2l-r.e. (respectively ίl-r.) iff,
for every ra-tuple (ply . . ., />OT) e Pm, the set

(1.7) ^7,...,? m = {<»i, . , «*> € tfΊ^fo), . . ., apjnm)) e X]

is an r.e. (respectively r.) subset of Nm.
(ii) Let Xa Am. The map /: X— B is Sl^-p.r. iff X is <U-r.e. and, for
every (m + l)-tuple (pu . . ., pm; q) e Pm x Q, there is a p.r. function

4 , . . . Λ , with domain apl{f'ι{Bq)) x . . . x a£(f-\Bq))

such that

(1.8) fiotpfa), . . ., α^(nj) = βq{fPv...,Pm;q(nu . . ., wj),

for all <«!, . . ., nje DfPlj...jPm;q.
(iii) Let X be a subset of Am. A map g: X-* Bn, g= (gu . . ., gn), is
5(-^-p.r. iff X is an "iM-r.e. set and each g{: I - ^ ΰ a n $l-*S-p.r. map.

For example, the projection /: A2 —» A, defined by/(^r, 3;) = #, is ̂ ί-̂ U-
recursive. Defining fp>Pι;P{n, m) - n, we have (in case Ap Π APi Φ 0)

f(ap(n), aPι(m)) = ap(fp>Pι.p(n, m)) = ap(n), for all /ze AT.

Similar is the situation with g(x, y) = y. Remark that in case (B, $&) is an
IRM, one can define the p.r. function in (1.8) by

(1.9) fpi,...,ρm;q(ni> •» nm) - ^^(/(^(wi) , - ., otPm(nm)).

Definition 1.3 Let i c A χx ? the characteristic functional of X, is defined
by

Theorem 1.1 (i) T^β set X^A is ^{-recursive iff both X and CX are
$!-r.e.
(ii) The set X^A is ^-recursive iff its characteristic functional χx is
ty-{\}-re cursive.

Proof: (i) If X is Sl-recursive then each ap

λ(X) is recursive; therefore,
each ap

ι(CX) = ap

1(Ap - X) = N - a^iX) is recursive too. Conversely, if
both apX{X) and ap

ι{CX) are r.e. they are recursive, i.e., X is M-recursive,
(ii) Remark that a functional /: A —* N is *2I-{|}-recursive iff to each pe P
there corresponds a recursive arithmetical function fp such that f(otp(n)) =
fp(n), for all ne N. Now, if X is recursive, Xχ°cxp is just the characteristic
function of the recursive set ap

ι(X).
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It is evident that X c A is "il-r.e. iff it is the domain of an ΌI-'iM-p.r.
map from A into A. Also, every such set is the range of such a map.
However, it is not necessarily true that the range of every "Zl- iU-p.r. map
/: X —» A is an Ή-r.e. set. Namely,

(1.11) f(X)=Ό f(XΓ)Ap).
peP y

Consider now Dp = ap

ι(X C\Ap), in case it is not empty. It is a r.e. subset of
N and for every pl9 such that X Πf~1(Ap) Φ 0, there is a p.r. function £, p

with domain ap

ι{X C\f~\Ap^) such that

f(ap(n)) = aPi(fp,Pl(n)), for all rce D, .

This gives:

a^(f(XΠAp)) = a-p\XC\Γ\APι)),

and this proves that each f(X Π Ap) is an Sί-r.e. set, since the setα^CXΊΊ
/"^(A^)), as the domain of a p.r. arithmetical function, is a r.e. set.
However, for each px e P,

(1.12) a;ι(f(X)) = U a-p^fiXΠAp)),
*Ί pep κ l r

and, although each member in the union in (1.12) is a r.e. subset of N, the
union itself is not necessarily a r.e. subset of N.

Example 1.6 Consider the IRM of Example 1.3, with aξ(n) = ξ + n. Let cυ be
the smallest denumerable ordinal, let ξ0 = 0 and ξw = ω-n for rc^ 1. Let
d:N -^ N be any increasing function whose range D is not a r.e. set, and
X = {ζJneN}. Then X is an #-r.e. subset of Ω. (Each ap(X) is either
empty or a singleton.) Define /: X -* Ω by /(|w) = d(n). Then f{aξ{i)) is
defined only if ξ = ξw for some n e N, and z = 0; in such a case

,/ ( .n = ί<xo(d(n)) ϊori = 0,
y l ξnK \ undefined otherwise,

i.e., / i s an H-H-^.r- map. Yet, al\f{X)) = D is not a r.e. set, i.e.,/(X) is
not an H-τ.e. set.

In view of the previous example, one may ask for the validity of the
Graph-Theorem for maps of one RM into itself. Such a theorem is valid
without additional suppositions for IRM's only; in the general case of RM's
I need one condition more.

Definition 1.4 (i) We say that the atlas $1 is positive' iff, for every pe P, the
numerical predicate ?!p of two variables, defined by

(1.13) WP (n, m) <-> ap(n) = ap(m),

is recursively enumerable, it is negative iff, for every pe P, ~MP, the
negation of fίp, is r.e.; it is solvable iff it is both negative and positive,
(ii) We say that the RM (A,9ί) is positive, negative, and solvable iff its
atlas $1 is positive, negative, and solvable respectively.
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Definition 1.4 leaves a huge number of RM's outside of its scope; I
shall call such RM's neutral. It is evident that all I RM's are solvable.
(For these, %p{n, m) <-» n = m.)

Theorem 1.2 (Graph Theorem) Let C4,3l) be a positive RM, and let X be
an 31-r.e. subset of A. Then, a partial map f:X-*A is ty-ty-partial
recursive iff its graph G/ is an 31-recursively enumerable subset of A2.

Proof: First, let / be 3ί-p.r. For (p, pi) e P2 consider the set (subset of N2)

(Gfrp>

ι

pi = {(n, m)\(ap(n), aPl(m)) e G,} = {<n, m)\aPl(m) = f(ap(n))}.
L e t fp,pλ

 b e P r w i t n domain ap\X Π f~1(APi))f and such that

f(ap{ή)) = aPί(fPιPι(n)), for all n e D ^ .

Then

(Gf)p*Pi = {(n, m)\aPi(m) = aPl(fp,Pι(ή))}
= {<n, m) \%Pι(m, fp,Pι(n)) A n e Dfp>Pil

which proves (since (A, 31) is positive) that each (G/)^ is r.e., i.e., that G/
is 3I-r.e. (The sign Λ above denotes conjunction.)

Conversely, suppose that G/ is 3(-r.e., i.e., that each (Gf)p*p is a r.e.
subset of N2. By definition of this set we have

f(ap(n)) = aPι(m) <-» {n, m) e (Of)'p^.

Define fp>Pι by

fp,p W — some m such that (n, m) e (Gf)p*p -

fρ,ρι i
s P r a n ^ f(ap(n)) = aPl(fp>Pi(n)) for all neDf , which proves that / i s

•iU-̂ i-partial recursive. (The symbol ^ denotes conditional equality.)

Corollary 1.2.1 For every IRM {A, 31) £md arcy 3ί-r.e. s#/ i c ^ ^ ^ partial
map f: X -> A is 3(-3ί-p.r. z)y its graph is 3I-r.e.

Remark that the proof of Theorem 1.2 establishes a sharper one-sided
result: in any RM (A, 31), if D/ is 3I-r.e. and Gf 31-r.e. then f is 31-p.r.

Similar to the case of direct images, we cannot say anything
definite about inverse images of 3l-r.e. sets under 3l-3l-p.r. maps. The
following theorem is the only exception I know.

Theorem 1.3 The inverse image of a r.e. subset of N under an 3l-{l}-p.r.
functional f: X -» N, X c A, is an 3l-r.e. set.

Proof: To each p e P there corresponds a recursive function fp such that
f(<*p(n)) = fp{n), for all neN. Let E c N be r.e. and such that f(X) Γ\Eφφ.
Then ap\f'ι{E)) = /^(E), which is a r.e. subset of N.

Theorem 1.4 If X ^ A is 31-r.e. then there is a map φ: P —* N such that

(1.14) X= U ^ W ) ,
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where ω{ = {n\ VyT^i, n, y)} is the Vth r.e. subset of N in the standard
enumeration of all such subsets.

Proof: Set ωψ(P) = ap\X)9 and remark that ap{all{X)) = APΠX.

The following example exhibits the perils of replacing maps with
functionals for RM's (A,W), where A c N; it illustrates also bad sides of
atlases whose cardinal is larger than the cardinal of the carrier A.

Example 1.7 To every arithmetical function a: N —> N there corre-
sponds its bar-function a by

α ( n ) = I U 1 + β W ,
i<n

where p0 = 2 and pt = the f th odd prime. Let Ua be the range of a and
M = {αlfor all α: JSΓ— N}. Let A = [j ϋa. Obviously, A is the set of all
sequence numbers. a€<n

Let me prove that {A, *f> is an IRM. Since 5(0) = 1 for all a, then for
all functions a, β the intersection Ua Π ί/̂  is not empty; as is easily checked,
ej.ther_ί/α = Uβ or ϋan Uβ is a finite set. In the former case, (β)~loά and
(a)-1°/3 are identities on N, and in the second case they are identities on
their domains. Thus, (A, 9I> is even an amalgam (see Example 1.5).

Consider now a functional /: A —> N. It is recursive iff every foά is a
recursive function (see Figure 1.4). Let now/ be defined by f(x) = x for all
xe A. Then f°a(n) = δ(n), i.e., f°ά is the bar-function 5 itself. Since most
of α's are not recursive, / i s not an 3l-{l}-recursive functional.

However, as identity l A o n i , / i s an ty-ty-recursive map, since

(β)- 1o/o^= (fiyloa,

which is a p.r. function for all a, β.

N

Figure 1.4
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In the theory of enumerations, a set X c U, where (U, {w}) is an
enumerated set (i.e., an RM with singleton-atlas), is called weakly u-r.e.
iff there is a r.e. set ω, c N such that X=u(ω{). We can introduce a
similar notion.

Definition 1.5 The set X c A is weakly 3l-r.e. iff there is a φ: P -* N such
that X = Gύφ, where

(1.15) ωφ= Uαp(ωφ(p)).

By Theorem 1.4, every 3l-r.e. set is also weakly 3ί-r.e.; however, the
converse statement does not hold even in the case of enumerated sets (see,
for example, [5], page 312).

Until now I have imposed the demand that for every RM (A, 31), each Ap

be essentially a "recursive" set (and so Ap Π Ap is also "recursive"). Now
I shall reduce this demand to recursive enumerability only.

Definition 1.6 A set A is called a Recursively Enumerable Manifold (an
REM) iff:

(i) There is a family 31 of enumerations ap: JV—» Ap, pe P, where each Ap is
a subset of A and A = U Ap.

p e P

(ii) For every pair (p,pι)eP2 such that ApΠAp Φ0, both a~p

ι(Ap^ and
apl{Ap) are recursively enumerable subsets of iV, and there are numerical
partial recursive functions

fp\ ap

ι(APi) - apl{Ap) and fPl: ap{(Ap) - ap

ι(APi),

such that (1.3) and (1.4) hold.

(iii) If all ap are injective we say that A is an Injective REM (an I REM).

Example 1.8 Every sequence (A.)UN of non-empty r.e. subsets of iVis an

REM: let αt : N'—» A{ be recursive, with A{ as range, let A= \J A{ and
ί = 0

31 = {α?f U'e iV}. Then (A, tl) is an REM which, in general, is not an RM. In
case all A{ are infinite and all α, injective (and recursive) (A, 31) is
an IREM.

All definitions of this chapter are applicable to REM's, and I shall use
them without further notice. Also all theorems of this chapter hold for
REM's without change; in using them I shall refer to the number of the
theorem for RM's.

Note that a disjoint REM (A, 31), i.e., for which p Φ pι implies ApΠ Ap =
0, is always an RM.

CHAPTER II-GENERATION OF REM's AND RM's

In this chapter I shall exhibit several ways of obtaining new REM's and
RM's from given ones.

Theorem 2.1 (Duplication) Let (A, 31) be an REM {an RM), let B be any set
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of the same cardinality as A, and let f: A —> B be a bijective map of A onto
B. Define the family

W = {βp\peP}of maps by βp = f°ap.

Then, (B,y£) is an REM (an RM), / is an %-%-recursive map andf'1 is a
%-y\-recursiυe map.

Proof: Let Ap and Bp denote the respective ranges of ap and βp. It is
obvious that B = U Bp. Suppose that Dp,p = Bp Π Bp is not empty. Then:

PcP

βp\DPtPι) = {foapy
ι{DPtP)

= {n\vf(ap(n))=f(aPl(m))}

= {n\Vap(n) = aPl(m)}

= ap{ApΠAPι) = a;1(APl).

If ap

ι(Ap^) is r .e. (r.) then βp

ι{DPtP^) is r .e. (r.). (V denotes the existential
quantifier.) Let now fP,Pι be partial recursive, with ap

1(Ap^} as domain (and
aPl(Ap) as range), and such that

ap{n) = aPi(fPιPl(n)) for all ne ap

ι(Ap).

Then, for all ne β~p

ι(Dp>p)

βp(n) =f(ap(n)) = f(aPl(fp,Pi(n))) = βPl(fp,Pl(n)),

(and similarily for βPl(n)). This proves that W is an atlas on B. At last, for
all ne N, and px e P

ΛaPl(n)) = βPi(\(n)),

where I is the identity on N; similarly, if Dp>Pι Φ φ then

f(aPι(n)) = fy(fPl(n)), for all nea^(Ap),

where fPl satisfies βPl(n) = βP(fPl(n)) for all ne βp*(DPtPl). The statement
about Z" 1 is proved in a similar way.

Remark: If <A,2I> is an IREM (an IRM) then <£,«$> is an IREM (an IRM).

Construction in Theorem 2.1 is suitable for situations in which we need
replicas of an REM which are disjoint from it. Another simple construction
is given by the next theorem.

Theorem 2.2 Let (A, 91) be a positive REM (a solvable RM). For every
peP define βp by

βp(ή) = (n, ap(n)) for all ne N.

Let Bp be the range of βp, let B = U Bp and% = {βp\pe p}. Then, (B,%$) is
an IREM (an IRM). p€P

Proof: Each βp is obviously injective. Suppose DPtPl = Bp Π BPι is not
empty. Then

βP

ι(DPtPι) = βγ({{n, ap(n))\aPι(n) = ap(n)}) = {n\aH(n) = ap(n)}.
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Let fPl: ap{(Ap) —* ap

1(APι) be partial recursive with r.e. domain (with
r.) and range, and such that aPι(n) = ap(fPl(n)) for all Ne ap{(Ap). Then

β-p\DPtPι) = {n\ap(fPl(n)) = ap(n)}
= {n e aPl\Ap) \Wp(fPl(n), n)},

where typ is the predicate from Definition 1.4. In case (A, $1) is a positive
REM this proves that βp

ι(Dp>Pι) is a r .e. subset of N (and similarly for
βp{(DPιPι)). In case (A, sli) is a solvable RM we must proceed further.
Define gPι by

^(n\ = Wn)i0YneaplMp^gp^n' \b loτnίa$l(Ap),

where b is any fixed element of Cap^(Ap). gPι is recursive, since ap^(Ap) is
now recursive. Then

βγ{Dp,H) = {n\nea^(Ap)AWp(gPl{n), «)}.

Since typ and gPι are recursive, βp

1(DPιPι) is now recursive. (Similarly for
β£(DPtPι).) At las t

β~pl(βPιW) = 0Γ« Λ > apM))) = niίne βPl\DPtPl)

(undefined otherwise), which shows that each β~p

ι°βPι is a p.r. function.

I shall call the I REM (the IRM) (B, » ) from Theorem 2.2 and The Graph
of the REM (of the RM) (AtW).

Example 2.1 I call (B,VS>) from Theorem 2.2 a graph, because, for the
manifold (A, {α?}), where α is an enumeration of A, the corresponding B is
just the graph of of.

Definition 2.1 Let {A, %) and (B, »> be REM's, let 51 = {cfyl̂ p}, « = {β^l^β}
and let Ap and ^ be the respective ranges of ap and βq. Set C = A x £ and,
for each pair (p, q) e P x Q, define the enumeration γp>q: N —* Ap x Bq by

(2.1) ΎP,q(σ2(n, rn)) = {ap{n), βq{m))y

where σ2: N2 -* N is the well-known bijective, recursive map of N2 onto N.
(I shall induce its inverses σ\ and σl by σ2(σ2(n, m)) = n and σl(σ2(n, m)) = m;
they are recursive and of large oscillation: they take each natural number
as value infinitely many times.) Set

<? = {yMl</>, φtPx Q}

and denote the range of γp>q by Cp>q. Then the pair (C, ©) is called the
Direct Product of (A, 91) and <JB,»).

Theorem 2.3 77z£ direct product of two REM's (respectively RM's, IREM's,
α ^ IRM's) zs an REM (respectively RM, IREM, <md IRM).

Proof: Using notations of Definition 2.1, remark first that γp,q's are
injective in case both ap's and β^s are injective. Suppose now that D =
CP,« Π CPi,*i φ β- T h e n :
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Ύp.qW = σ2(ap\Ap nAPι), β'q\Bq Π B9l));

if a.pl{Ap(\Apι) and βql(Bq c\Bqι) are r.e. (r.) so is γp>q(D). Moreover, if
fPl: a;ϊ(Ap) -> ap\APl) and / ? 1 : 0 " ^ ) -> βq\Bqι) satisfy

αf?1(w) = ap(fPl(n)) for all neap{(Ap)

and

β^(m) = βq(fqi(m)) for all m e j3^(B?),

then

Ύpi,qSσ2(n> m)) = (apM), βqι(m))
= (ap(fPl(n)), βq(fqi(m)))
= yM(cτV*1(w)),Λ1(m)),

for all σ2(n, m) € γpϊ,qi(D); thus, with

Λx.ίxW = σ2(fφ\{u)),fqi{σl{u)))

we obtain

Ύpi,qM) = yp.qifpi.qM)),

for all neγPϊ>qi(D).

Example 2.2 Let <A,*|), (B,«> be REM's and let <C, <$> be their direct
product. Define the projections p0: C —> A and^i : C —• 5 by /)0(̂ > ^) = χ and
piU, y) = y> Since

Po(rp,q(<y2(n, m))) =po(ap(n), βq(m)) = α ? (n),

p0 is ©-^(-recursive. Similarily, /?! is ($-$$-recursive.

Let now <D,Φ>, Φ = {δJseS}, Ds = range of δs, be another REM, such
that there are two maps, gy. D —» A which is Φ-$I-recursive, andgΊ: D —> B
which is Φ-SS-recursive. These two maps determine in a unique way the
map /: D -• C, defined by f{x) = (go{x), gi(x)), which satisfies both^0 = Po°f
and^i = pi°f(see Figure 2.1).

C

£ o ^ ^ ^ ^ J >/ gi

D

Figure 2.1

Now,

/(δs(rc)) = <^0(δs(n)), gι(δs(n))) = γp,q(σ2(fs(n)f Λs(n))),
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where fs and hs satisfy

3b(δs(w)) = oίp{fs{n)),

and

gi(δs(n)) = βq(hs(n))

on corresponding domains. This proves that / is ^-©-recursive.

The dual notion to the direct product is the direct sum.

Definition 2.2 Let {A, 31) and (B, «> be REM's. A REM (C, <S) is called the
Direct Sum of (A, 31) and (B, $8) iff there are two maps, f0: A. —> C, which is
3l-<£-recursive, and fγ: B —> C, which is $$-<£-recursive, with the following
property: for any REM (D, Φ) and any two maps, g0: A —» D, which is
3f-Φ-recursive, and gv Z? —* D, which is ^S-Φ-recursive, there is a uniquely
determined <£-φ-recursive map /: C —* D, such that £ 0 =/°/o a n ( ^ ^i =/°/i
(see Figure 2.2).

C

D

Figure 2.2

Theorem 2.4 77z£ direct sum of any two REM's exists; it is of the same
kind (REM, IREM, RM, IRM) as those two.

Proof: I shall use notations of Definition 2.2. Consider first the case of
disjoint A and B. In this case, set C = A U 5 and © = % U3S. Trivially,
(C, ©) is an REM of the same kind as both (A, 31) and (B, φ ) . (In case those
two are not of the same kind, then (C, ($) is of the kind of the " w o r s e " one
of those two.)

Let / 0 be the identity on A and fγ the identity on B (both maps satisfy
conditions of Definition 2.2). For giveng*0 andgΊ as in Definition 2.2, define
/: C - D by

f(γ\ - ί &o(x) for x e A,
~\gi(x) forxeB.

f is (£-Φ-recursive and g 0 = f°fo, gi = f°fι> Suppose now that AΓ\ B φφ.
Let A1 be any set disjoint from A u B, of the same cardinality as A; take
any bijective φ:A—>Af and construct, as in Theorem 3.1, the replica
{A\ 310 of {Ay 31). (Thus 31' = {a'p\peP} and c^ = ψoap.) Let then (C, <$) be
the direct sum of (A\ 3Γ> and (B, « ) , i.e., C = Af u B and β = 3lf U®.
Define/ 0: A -• C by /0 = ^, and let/i be the identity on B. (By Theorem 3.1
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/o is $!-<$-recursive.) For g0: A —* D and gii B—> D as in Definition 2.2,

construct / as in the first part of this proof. Anew, / is <£-Φ-recursive and

go = f°fo,gi =/°/i.

Definition 2.3 Let (A, 31) and <£, »> be REM's. We say that (B, »> is a
submanίfold of C4, 31) iff i? c A and to every #€ Q there corresponds & peP
such that £ ? c Ap.

(Obviously, I use in Definition 2.3 the notations 31 = {ap\pe P}, %$ = {βq\qe Q}9

Ap = the range of ap and Bq = the range of βq.)

Lemma 2.1 An REM (£, »> is <z submanifold of the REM (A, 3ί) ( # to every

# e Q ίftgrβ corresponds some pe P and a function fp: N-* Nsuch that βq =

<*p°fP

Proof: Define fp(n) = any m such that βq(n) = ap(m).

In view of Lemma 2.1 I shall say that (B9$S>) is effectively a
submanifold of (A,W) iff each fp in Lemma 2.1 is recursive (or can be
chosen recursive). In the case in which (A, 31) and {B, β ) are injective, all
/ ? must be injective.

Example 2.3 One may conjecture that the fact of (B, $&) being an REM would
imply the recursiveness of each fp in Lemma 2.1. Let me give an example
that it is not so.

Let B be any subset of N which is not r .e. and let b be the principal
function of B, i.e., b is an increasing function with B as its range. Then the
IRM (B, {b}) is a'submanifold of the IRM (AT, {l}> (I is the identity on N), and
b = I o/, where / can never be chosen recursive (/= b).

Example 2.4 Let (A, 31) be an REM. Let Po c p be non-empty. To each
pe P o there corresponds an injective recursive function g^; define βp=ap°gp,
W = {βp\pt Po}, £p = range of βp, and B = U £ ? . Then <£, »> is an REM

pcPo

which is effectively a submanifold of (A, 31).

Example 2.5 Let <M, 9W>, SW = { μ j ί e T}, M/ = range of μ.t, be a positive
REM. Define μ,(0) and μ,(1) by μ < % ) = μ ι(2n) and μ,(1)W = μ,(2w + 1). Let
Mί0) and Mί l } be the respective ranges of μ,(0) and μ,(1), set M ( o ) = U M?\

M ( 1 ) = VTM}1\ m{0) = {μί 0 )Ue T] and 5W(l) = { μ ^ l ί e T}. Then <M(0), «W(0))

and (M{1\ 9W(1)) are REM's which are effectively submanifolds of <M, 3W>.

It is enough to prove that <Λ^0), 9W(o)) is an REM. Suppose that

D = M\o) Π M ^ ^ φ. Then

(μ (,0 ))"1(^) = {^lv μί(2») = μ/ l(Su)}..

L e t / ί χ : μ^(Mt) -* μJ^M^) be partial recursive and such that

μtl{n) = μt(ftl(n)) for all neDft .

Then

( μ ^ Γ 1 ^ ) = {n| V μ,(2n) = μίl(/,1(2«))} = {n\ V ^ ( 2 ^ , /ίi(2«))},
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where Wlt{u, u) <r^> μt(u) = μt(u) is a r.e. predicate. Thus, (μl°))~1(D) is
r. ί . The remaining part of the proof is left to the reader.

Let me introduce a less strict notion of submanifold.

Definition 2.4 Let (A, 31) and (B, %) be REM's. We say that (B,») is a
quasi-submanifold of (A, 31) iff I? c A and to every #eQ there corre-
sponds a finite set Pq c p such that

(2.2) Bq = B 0 U Λ .

Lemma 2.2 An REM (5, φ> zs α quasi-submanifold of the REM (A, tl) z#
B c A αrcd to every #e Q ί/zere corresponds a finite family, say {fpf, . . .,
/^} o/ partial functions, sz/c/z ί/tatf

fy(w) = ap.(f(

pf(n)) forneβ-q\APi),

and for i = 1, 2, . . ., m, and ŝ c/? that (2.2) /?oZ(is mί/ί P 9 = {pu . . ., pm}.

Anew, if all /pj in Lemma 2.2 are recursive (or can be chosen recur-
sive), we shall say that (-B, 3$) is effectively a quasi-submanifold of (A, 31).

CHAPTER III-ATLASES AND THEIR DEGREES

In this chapter I shall consider relations between different atlases on
one and the same set, and two fundamental relations between such atlases:
compatibility and reducibility. Compatibility is concerned with the recur-
sive structure imposed by a given atlas, and reducibility helps introduce a
classification of atlases on one and the same set. Both notions can be
introduced with various degrees of strength.

I consider a fixed non-empty set A, and atlases

% = {ap\pe P},9 = \βq\qe Ql G = {γr\re R}, . . .,

which are all atlases on A. I shall say that an atlas 31 is an RE-atlas
(respectively I RE-atlas, R-atlas and IR-atlas) iff (A, 31) is an REM
(respectively IREM, RM, and IRM). If I do not mention the special struc-
ture of the atlas, I always consider it to be an RE-atlas; I shall mainly be
interested in such, most general atlases.

Definition 3.1 Two atlases 31 and *B (on A) are compatible iff they induce
the same " r . e . " , "p . r . " , and "r."-notions for sets and anti-functionals in
both (A, 31) and<A,»).

Thus, compatible atlases induce the same "effective" structures on a
given set A, at least for its subsets and for maps of N into A.

Theorem 3.1 31 and %$ are compatible iff their union 31 U V$ is an atlas on A,
which is compatible with both 31 and%$.

Proof: Suppose first that 31 and % are compatible. Consider ap as an
anti-functional /: N—> A, with Ap as range. It is, trivially, an {l}-3l-
recursive anti-functional. But then it must be also {l}-$&-recursive; thus,
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whenever Ap Π Bq Φ 0 there is a p.r. function fq, with domain ap

ί{Bq)y such
that f{n) = βq(fq(n)), i.e., such that ap(n) = βq{fq{n)) for all we ap

ι{Bq). With a
similar consideration for /3 '̂s, we conclude that 5ί U *S is an atlas on-A. It
is obviously compatible with both % and^B. Converse evident.

Let me point out that the condition on anti-functionals cannot be
omitted from Definition 3.1. To see this, let A be a denumerable set and
of: N -> A, β: N-* A two indexings of A. By Theorem 3.1, {a} and {β} are
compatible iff there is a recursive permutation p: N —> N such that β = a °p.
By a theorem of Kent ([9], p. 233) there exists a non-recursive permutation
f:N-*N such that, for every r.e. set E c N, both f(E) and f"1{E) are r.e.
Thus, if β: N —* A is defined by β = a°f, β and a induce the same notions
" r . e . " and " r . " for subsets of A. However, for anti-functionals this is not
true. Define φ:N-*A by φ=B°f~1. Then φ is not {l}-{/3}-recursive;
namely, if there is a recursive, injective φ*: N —* N such that φ{n) =
β(φ*(n)) for all neN, this would imply that f~ι - β~loφ = φ* is recursive,
and so that / is recursive. However, since ψ = a°\, where I is the identity
on N, we obtain that φ is {l}-{α}-recursive.

Corollary 3.1.1 IfSU and SB are compatible {on A) then IΛ, the identity on A,
is both %-%-recursive and y$-%-recursiυe.

Proof: I A: A —» A is % -%- recursive iff for every pe P and qe Q, such that
Ap Π Bq Φ 0, there is a p.r. function fp,q with domain Dp>q = ap

ι{Bq) such that
\A(ap(n)) = βq(fp,q(n)) for all neDp>q, i.e., such that ap(n) = βq{fP,q{n)) for all
ne a^iBq). Since 51 and %$ are compatible such fp,qs always exist.

Definition 3.2 Two atlases 51 and $& (on A) are strongly compatible iff they
are compatible and, for every REM <M, 9W), " / i s 5!-30ί-p.r. map" <̂-> " / i s
*-9W-p.r. map" and " / i s m-5ί-p.r. map" ^ ^ " / i s 9W-«-p.r. map".

It is difficult to find necessary and sufficient conditions for strong
compatibility; they may depend on the structure of atlases in question. I
am able to provide a fairly general sufficient condition in Corollary 3.2.1.

Theorem 3.2 Let % and% be compatible {on A), and suppose that each Bq

meets only finite many Aps. Then, for any REM (M, 30J), every 5l-9W-p.r.
map is also «^-9W-p.r. map, and every 30J-5l-p.r. map is also an 9W-Sβ-p.r.
map.

Proof: Let / : I - » I , I C A , be an 5l-S0l-p.r. map. Thus, for every pair
(p, t) e P x T (we suppose Wl = {μt\te T}) there is a p.r. function fp>u with
domain Dp>t = ap

γ{X Πf~1{Mt))f where Mt = range of μt, and such that

f{θίp{n)) = μt{fp>t{n)) for al l ne Dp>t.

Let qe Q be such that Ap Π Bq Φ 0 . By supposition, there is a p.r. function
gqj with domain βql{Ap), such that

βq{m) = ap{gq{m)) for all m e βq

ι{Ap).

Now, if Bq is covered by APl, Ap2, . . ., APs, we have s p.r. functions gq.,

j - 1, 2, . . ., 5, such that
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(3.1) βq(m) = aPj(gq.(m)) for all m e β'q
ι{AP]).

Then,

f(βqM) = μt(fPjt(gqj(m))) for all meβq

ι(APj Πf-ι(Mt)),

and j = 1, . . ., s. By the uniformization theorem of the classical recursive
theory there is a p.r. function fq>t defined on

s

β-ι(xnr1(Mt))= Uβq

ι{xnAPjc\Γι{Mt))

such that, for every ne β~q

ι{X Πf~1(Mt))y fq>t(n) is one of the values
fpt{gq(n)) which are defined at the point n. Then

f(βq(n)) = μt{fq,t(n)) for all ne Dfqt.

Suppose now that /: Y —» A, Y c M, is an 9W-5I-p.r. map. Thus, for
every pair (t, p) e T x P there is a p.r. function ft)P, with domain DtιP =
μ-ι{YΓ\f-\Ap)), such that

f(μt(n)) = θp(ft,p(n)) for all neDtιP.

Suppose now anew that APl, . . ., APs cover Bq. Since 51 and Ŝ are
compatible, there are p.r. functions hi such that

oίPi(m) = βq{hi(m)) for m e ap}(Bq).

Then

f(μt(n)) = βq(hi(ft>Pi(n)))

for ne μ~ι{Y C\f~ι{Bq Π Api)), i = 1, . . ., s. As in the first part of the proof,
there is a p.r. function ftιq, with domain μJ1(Y Πf~1(Bq)) such that

f(μtW) = βq(ft,q(n)) for all neDftq,

which proves that / is also an SPΊ-̂ K-p.r. map.

Corollary 3.2.1 Let 51 and ^ be compatible and such that each Ap meets at
most finite many Bqs and each Bq meets at most finite many Aps. Then $1
and % are strongly compatible.

Most pleasant atlases are the finite ones. The following theorem dem-
onstrates why it is so.

Theorem 3.3 If >U = {αz |θ ^ i < n] is a finite atlas on A, then there is an
enumeration a: N —> A of A such that SK and {en} are strongly compatible.

Proof: By induction. Let n = 1, i.e., $1 = {a0, oil}. Set a(2ή) = ao{n) and
a(2n + 1) = ot\{n). % and {a} are trivially compatible; by Corollary 3.2.1 they
are strongly compatible. Induction now completes the proof.

If we apply the construction in the proof of Theorem 3.3 to the case in
which (A, 51) is an IREM, the corresponding a will be not an indexing but an
enumeration only. I can prove that in the case in which (A, 51) is an IRM the
corresponding a may be chosen so as to be an indexing.
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Theorem 3.4 If (Λ,3I) is an IRM with finite atlas % = {α, |θ ̂  i < w}, ίfcew
£ft£r# z's #w indexing a: N —> A such that 21 and {a} are strongly compatible.

Proof: By induction. Let n = 1, i.e., 21 = {α0, aλ}. Consider Z) = Ao Π ^
(A* = range of otj). £ = odι(D) is either empty, finite or infinite and recur-
sive; if it is empty apply the construction in the proof of Theorem 3.3, and
if it is not empty consider N - E. This is a recursive set. If it is finite,
say N - E = {e0, . . ., es}, define a(i) = ax{ei) for i = 0, . . ., s and a(s +1 +i) =
ao(i) for i^O. If N - E is infinite, let /: N -* N - E be recursive, increas-
ing, with N - E as range. Set α(2ί) = αo(e) and α(2z + 1) = oii(f(i)). It is easy
to show that 51 and {a} are compatible. Then, they are strongly compatible.
Now, apply induction.

Theorems 3.3 and 3.4 show that, as far as "effective" structure is in
question, finite atlases can always be replaced by enumerations, respec-
tively by indexings. However, this situation should not suggest that
denumerable sets A should be considered only as REM's (A, {α}), where a
is an enumeration or an indexing. I shall give later important instances in
which denumerable atlases on such a set A are essentially different from
possible enumerations of A (i.e., from singleton-atlases on A).

In the Theory of Enumerations one of the fundamental problems is the
so-called problem of reducibility for enumerations of one and the same set.
If a: N-* A and β: N-+ A are enumerations of the set A, and there is a
recursive (and injective) function /, such that a = β°f, then we say that a is
reducible (uni-reducible) to β. In a natural way, this notion leads to a
notion of equivalence {and uni-equivalence) and to the notion of degrees
{one-degrees) of enumerations of A. (For example, the whole content of [5]
consists in an elaboration of this notion of reducibility.)

In the Theory of REM's we have several possible notions of reducibility
of atlases, all of which fall back to the reducibility of enumerations in
case of singleton-atlases. I shall expose now some of these possibilities.

We consider a non-empty set A and the class aΛ of all atlases
21, SB, <£, . . ., on A. (See the beginning of this chapter for notations.)

Definition 3.3 % is strongly reducible {strongly one-reducible) to 3$, in
symbol 2 1 « « («| « x » ) , iff %={ap\peP}, « = {βp\pe P] and there is a
family F = {fp\peP} of recursive (and injective) arithmetical functions,
such that

(3.2) ap = βpofp, for all/>eP.

Strong reducibility is an immediate generalization of the reducibility of
enumerations, and it is not difficult to pursue its study along the same lines
as in the classical recursive theory. In the next chapter I shall show the
naturalness of the demand that atlases be enumerated by same indices—at
least for the sake of comparison of REM's; however, I will not enter into
any detailed discussion of the strong reducibility.
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Definition 3.4 51 is finitely reducible {finitely one-reducible) to Φ, in
symbol 51 |SS (51 ̂ 3$) , iff each Ap can be covered by finite many Bq's, say

by B%*, . . ., B%\ and there are (injective) p.r. functions fip\ . . .,f(

s

p\
such that for every i = 1, 2, . . ., s

(3.3) α,(») = βqi{ήp\n)) for ntaΓp\Bqi).

One should remark that the Definition 3.4 does not demand the covering
neighborhoods B$\ . . ., B{pJ to be disjoint in pairs. Thus, if neoΓp\B{£ Π
£^ } ), we will have

<*p(n) = βqi(fίp)(n)) = βqj(fjp\n)).

It is evident that < and ^ are both reflexive and transitive. Defining

(3.4) 5l=<8 <^5f|2$Λ«|5l,

and

(3.5) 51 p ^ * ^ 5 1 ^ ^ * 5 F^5l,

we define Finitary Atlas -Degrees (on A), respectively Finitary Atlas -One -
Degrees (on A), in short FAD's, respective FAOD's, as equivalence classes
of aA under =, respectively under F = r The FAD of 51 will be denoted by 51F,
and its FAOD will be denoted by 5 1 ^ .

By Corollary 3.2.1 if two compatible atlases are in the same FAD,
then they may eventually be strongly compatible. In principle, one may
expect that a FAD contains non-compatible atlases. For example, if in
(3.3) one of the sets ay{Bqι)y i = 1, . . ., s, is not r.e., then 51 and Ŝ are not
compatible.

Example 3.1 Let me consider FAD's on N, the set of non-negative integers.
In order to eliminate pathological atlases, I shall consider only at most
denumerable atlases 5ί, 3$, <£,. . ., on N, which are genuine in the following
sense: if just one of Ap's, or i^'s, o r C/s, . . ., is removed, the remaining
local neighborhoods of the respective atlas do not cover N.

A singleton-atlas {a} is an atlas on iViff αis an enumeration of N; thus

{a}f{β}±^a = βof,

where / is a recursive function.

Now, suppose that a is an indexing of N. If β is another indexing of N
and {a} f {β}, then a = β o p, where p is a recursive permutation. This
implies also that β = a°p~ι, i.e., {β}f {«}. Thus, we have the result:

(i) If two singleton injective atlases on {a} and on {β} are comparable (under
<) then they are in the same FAD.

In particular, all singleton-atlases each consisting of one recursive
permutation are in the same FAD, say {l}F; this FAD is incomparable
(under the obvious sense of this word) with any FAD which contains a
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singleton-atlas consisting of one non-recursive permutation. This already
proves:

(ii) There is a continuum of mutually incomparable FAD's on N.

Now consider a genuine denumerable atlas 21 = {α* U e N] on N, and a
singleton-atlas {a} on N. We can never have {a} ̂ 21, since no finite
number of A 's (A, = range of α,-) can cover N (which has to be the case if
{α}|2t). Thus, we obtain:

(iii) The FAD's of genuine denumerable atlases on N never contain finite
atlases and, if comparable with FAD's of finite atlases, the FAD's of
genuine denumerable atlases are smaller than the FAD's of finite atlases.

(I have taken for granted that the reader realizes that, by Theorem 3.3,
finite atlases fall into FAD's of singleton-atlases, i.e., they do not produce
any new FAD's on AT.)

Let now {a} be an injective singleton-atlas on N. Let (Ei)i£N be a
oo

sequence of infinite recursive sets, such that N = vJ E{, but such that for
i = 0

every j e N, N - Ej Φ N. Let Ei be the range of the increasing recursive
function /,-, let a\ = a °fι and 21 = {α* \i e N}. Then 21 is a genuine atlas on N,
and 211 {a}. This gives:

(iv) To every injective singleton-atlas on N one can correspond a genuine
denumerable atlas of a lower FAD.

Theorem 3.5 The FAD's on a fixed set A form an upper semi-lattice, i.e.,
to every two FAD's 2ίF and 3$F there corresponds their least upper bound
SlF v«F.

Proof: If the atlases % _and ^ are given^ 9!_= {apIp e p}, W = {βq\qeQ},
consider the cardinalities P and Q. Suppose P ^ Q; then we can assume that
P C Q . Define ® = {γq\qeQ} as follows: if qeP then γq(2ή) = aq(n) and
γq(2n + 1) = βq(n); and if q e Q - P then γq = βq. Trivially, % f ® and ^ | ©.
Suppose now that an atlas φ = {δs \s e S} is such that both $1 ̂  Φ and 3$ ̂  Φ.
Then one obtains easily that (£ ̂  Φ i.e., ($F = s2ίF v^SF.

In an analogy with the notion of a cylinder I shall introduce a notion of
cylindrification for atlases.

Definition 3.5 Let M = {ap\pe P} be an atlas on A. Then, CyL,, the
cylindrification of 21, is the atlas Cyl̂  = {5>l/> e P}, where

(3.6) 'άp{σ2{nf m)) = ap(m) for all n, me N.

(σ2, σf, and σ2, and σ2 are as in Definition 2.1.)

Since ap(m) = ά?(σ2(0, m)) and ap(n) = α (̂σ2(n)) we have always SH ^ CyL2l and
Cyl*f«.

Lemma 3.1 Let 21 and Φ 5^ atlases on A. Then:

(i) 21 F^i Cy\^and CyL} ||2l.
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(ii) « | 21 implies « ^ CylΛ.

( i i i ) * | S I < - » Cyl^ F^"Cylβ.

Proof: (i) was already proved, (ii) Let qe Q and let APl, . . ., APscover Bq

so that

(3.7) βq(n) = ap.{fiq\n))f for ne β'q
ι{APι)y

where f[q\ . . ., f{

s

q) are p.r. functions. Define gtq\n) = An,fiq\n)), i =
1, . . ., s. Then:

βq(n) = ar{g\q\n)), for neβ~ι{Apι),

which proves that s$ ̂  Cyl^.

(iii) If « | « l then Cyϊ^21, since C y l β | « . Thus, by (ii), Cyl̂  ̂  Cyl*.
Conversely, if Cyl̂  F ^ Cyl̂  we have

* F 1 I C ^ F 1 I Cyl« f «, i.e., » ^ * .

Theorem 3.6 Every FAD (on A) contains a maximal FAOD.

Proof: Consider 2fF and Cyl̂ F-i Obviously, Cyl̂ F-i is contained in ?lF.
Now, let % e MF be in any FAOD, say in ̂ F _ ! . Since φ e ?IF, we have ^ | tl,
and by (ii) of Lemma 3.1 ̂  ^ Cyl«.

Let us remark that (iii) of Lemma 3.1 establishes an order-homomor-
phism from the ordering < into the ordering ^ All this shows that finitary
reducibility of atlases is an appropriate extension of the reducibility of
enumerations. Let me remark that "$&<9I" is equivalent with "{A, $&) is
effectively a quasi-submanifold of (A, 21)". This suggests placing our
manifolds {A, %\ {A, <S), (A, <£), . . ., inside one fixed larger manifold.

Thus, I should now have a fixed REM {M, SW), M = {μt \te τ}9 Mt

range of μίf M - \j Mt, and that A ^ M. I shall consider atlases on A

(obviously, I suppose that A is non-empty) which axe finitely reducible to Wl
in the obvious sense: 2ί ̂  9W iff each Ap can be covered by finite many Mt's,
say by Mt , . . ., Mts, and there are p.r. functions ff, i = 1, . . ., s, such
that

otpM = μti(flp\n)) for ncα^M,.-),

and i = 1, . . ., 5. (Consequently, I shall suppose that REM's (A, 21), (A, 3$),
(A, (§), . . ., are effectively quasi-submanifoIds of (M, 3W).)

In a similar way I can extend the notion of finitary reducibility to
subsets Ao of A, i.e., to the atlases on such subsets.

Definition 3.6 The atlas 21 (on A c M) is principal iff 21 ̂  9W and, for every
atlas *& on A, the relation 3$ | m implies « | 21.

The existence of principal atlases on A depends on the recursive
structure of A in (M, 9W), and on the structure of 9W.

Theorem 3.7 If (M, M) is positive and A is an 9W-r.e. set, then there
exists at least one principal atlas on A.
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Proof: Let To c T be the set of alWe T such that μ^ι(A) * 0 . Then, every
set i±^l(A), for ί e To, is a non-empty r.e. subset of N. Let it be the range
of the recursive function mt. Then, A Π Mt = μt(Mt(N)) for all ίe To, and
A = U A f, where A, = range of at= μt <>Mt. At last, set 31 = {at \te JΓ0}. I

shall prove that 31 is principal.

Suppose *8 = {βq\q e Q} is an atlas on A, such that 8̂ ^ SP1. Let q e Q be
fixed and let {ί0, tl9 . . ., ί s}

 c T be such that {M / Q, M/]L, . . ., M,s} covers Bq;
let /0

(ί?), /i ( ? ), . . .9f
{

s

q) be p.r. and such that, for i = 0, 1, . . ., s,

βf(») = μ/f (Λ ( ί )W)for«€j3;1(M / .) .

Since ^ c A, we have -B? Π Mt. = Bq nAti. Thus,

(3.8) ^(w) = βti(fjq\n)) for n€ β^(A, ),

(i = 0, 1, . . ., 5) and {A/Q, A t l , . . ., A ί s} covers Bq. For z = 0, 1, . . ., s,
define gi by gi(n) ^ some j eiV such that μti(y) = μtii^uM); since 9W is
positive, each ^, is a p.r. function, and we have

μt.(n) = at.{gi(n)) for all ne Dgi.

Then, by (3.8), we obtain

βq(n) = ati(gH{flq\n))) for ne β'q\At.)9

and i = 0, 1, . . ., s, which proves that 3$ ^ 31.

Corollary 3.7.1 If <M, 3W) zs αw IREM (an IRM) and A a M an 3W-r.e. sβί,
such that each non-empty μ]ι(A) is infinite, then there is a principal atlas
21 on A, such that (A,%) is an IREM {an IRM).

If both 31 and %$ are principal, they are in the same FAD; this FAD is
the maximal element of the family of FAD's of all REM's (A, <S), which are
effectively quasi- submanifolds of (M, 9W).

Example 3.2 Consider (N, {l}>, where I is the identity on N, as the fixed
REM (M, 9W>. (To be precise, (N, {l}> is an IRM.) Let A be any non-empty
subset of N. We shall consider at most denumerable genuine atlases on A.

oo

Let 31 = {ofj \ie JV}, A{ = range of au A = U Ai9 be such an atlas. Suppose it

is principal. Consider any REM (A, {α}). If {αf}^{l}, of must be a recursive
function with range A, i.e.,

(i) // a singleton atlas {a} on A is finitely reducible to {l}, then A must be a
r.e. set and a a recursive function.

Therefore, let us start with the case in which A is a r .e. set. Then any
recursive function a: N —> A, with A as range, defines an atlas {en} on A such
that {a} < {l}. Since 31 is principal, we obtain at once: A must be covered
by at most finite many A/s. However, this contradicts the supposition that
31 is genuine. So, we have:

(ii) If A is r .e. then no genuine infinite atlas 31 = {ccjze JV} on A can be
principal.
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Thus, if principal, 31 must be finite. But then, by Theorem 3.3, 31 can
be replaced by a singleton atlas {#}, where a is recursive and has A as
range. Now, let 3Ϊ = {a}, a: N —* A, a recursive. Let δ̂ = {βi\i eN} be any
atlas on A, such that *B ̂  {l}. This implies: each βι is recursive. Define
then

fi(n) = μy(a(y) = β, (n)).

Then βi(n) = a(fi(n)), i.e., ^ ^ {a}, and we obtain

(iii) Every principal atlas on A, in case A is r.e., can be reduced to a
singleton atlas {a}, with recursive a. Every such atlas is then principal.

(The last statement in (iii) should not be astonishing, in view of
Theorem 3.6.) Now suppose that A is not r.e. Remark that it cannot be
immune if it admits any atlas 31 ̂  {l} which contains at least one infinite
local neighborhood Ap (since, then ap must be recursive). Thus, we have to
consider two cases: A immune, and A non-immune.

Let first A be immune. Then, every atlas 31 ̂  {l} on A, must contain
only finite local neighborhoods Ap, and so must be infinite. Let 3ί =
{oii lie N}, where each α,- is recursive, with finite range, and suppose that 3ί
is genuine. Thus, if δ̂ = {βi\ie N} is any atlas on A which is finitely
reducible to {l}, we will have B{ < °o, for all ie N. Also the relation W < {l}
implies that each βi is recursive (with finite range). Therefore, to each
ieN there corresponds finite many numbers i0, iu . . ., is, such that AiQ,
Aiv . . ., Ais cover B{. Define fiμ by

fiμ(n) ^ any y e N such that aiμ(y) = β, (w).

Then each fiμ is partial recursive, μ = 0, . . ., s, and

βdn) = aiμ(fiμ(ή)) for ne βϊι(Aiμ),

μ = 0, . . ., 5, i.e., *S | 31. Thus:

(iv) If A is immune, then every atlas 31 = {oii \ie N} on A, where each αz is
recursive, with finite range, is principal, and every principal atlas on A is
of this type.

At last, suppose A infinite, non-recursively enumerable and non-
immune. Then, no singleton atlas {a} on A can satisfy {a} ^ {l}, and no
finite atlas can do it either. Thus, exactly all genuine infinite atlases
31 = {aii \ie N}, with all aι recursive and such that (Ai)i€N is not a recursively
enumerable sequence of r.e. sets, satisfy 31 ̂  {l}. Here, some At^ may be
infinite; in fact,

if % is to be principal, at least one Ai must be infinite.

To see this, remark that A contains an infinite r .e . set, say B, which is the
range of the injective, recursive function β0. Now, construct the atlas
y& = {βilie N} by taking every β, for z ^ l to be identically bi, where
b\, b2, δ3, . . ., is an enumeration of A - Bo. Since *S ̂  {l} we must have
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$$<$l; this implies that Bo can be covered by finite many A. 's; thus, at
least one of those has to be infinite.

It should be obvious that definite characterization of principal atlases
in this last case depends very much on the nature of A. Thus, I will leave
this characterization for a special study.

Let us say that an atlas $1 on A c M is finitary with respect to Wl (the
atlas on M) iff each Mt meets at most finite many Ap's.

Theorem 3.8 Let Wi be positive and let % be a principal atlas on A C M,
which is finitary with respect to Wl. Let Ao c. A and let (Ao, SB) be any REM
which is effectively a quasi-manifold of (M, 9W). Then *B ̂  $1.

Proof: We suppose & = {βq\qeQ}. If M / Q , . . ., Mίs cover Bq, let // ? ),
i = 0, . . ., s, be partial recursive and such that

βq(n) = μti(f}q\n)) for ne β'q}(Mu).

Then {A Π MtQi . . ., A Π Mts} covers Bq. Now, by the condition on 31,

A Π M,. - {AP|. ι U, . . ., U A,,. s.} Π M,.

s s/

for i = 0, . . ., s; thus, U U APi . covers Bq. Moreover, there are partial

recursive functions fPi^ i = 0, . . ., s, j = 1, . . ., s{ such that

^ )7 W = μ.ti(fpi,j(n)) for nea;}.(Mti).

Applying the same method as in the proof of the second part of Theorem 3.6
we obtain the proof of this theorem.

A slight variant of Theorem 3.7 is

Theorem 3.9 Let % = {at\te T} be such that At c Mt and that there is a
family {ft \te T} o/p.r. functions, satisfying for all te N

μ;
ι(A) c Dft

and

M/(w) = oίΛftin)) for all ne μ~t

ι{A).

Then$ϊ is principal [on A =\J AΛ.
\ t€T I

Proof: We have to prove only that % ̂  ffl. Define gt by

gt(n) ^ any ye Nsuch that ft(y) =* n.

Since R\t - AT, gt is recursive and

<Xt(n) = μλsλn)) for all ne N,

i.e., $ 1 | m.
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