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SIMPLIFIED FORMALIZATIONS OF FRAGMENTS OF THE
PROPOSITIONAL CALCULUS

ALAN ROSE

Henkin has given [l] a general method of formalizing 2-valued proposi-
tional calculi whose primitive functors are such that material implication
is definable in terms of them. Let the primitive functors, other than
implication if implication is a primitive functor, be the functors F, of m
arguments (i = 1, . . ., b) and let the formulae Pu . . ., Pni, FiPi . . . Pni

take the truth-values xl9 . . ., xni,fi(
χι, . . , χn{ί respectively (i = 1, . . ., b).

The axiom schemes are

Al CPCQP,
A2 CCPQCCPCQRCPR,
A3 CCPRCCCPQRR,

Λ4 CVXιPxQ . . . CV^.P^QVyFiP, . . . PniQ(y=fi (#i, . . ., *„,-);
Xί = T, F; . . .; xnl = T, F ; i = 1, . . ., b),

S^b n

A4 denoting -̂/, =i 2 ι axiom schemes and the functors F τ , Vψ being defined
by the equations

VjPQ =df CCPQQ,
VFPQ =df CPQ.

The only primitive rule of procedure is

Rl If P and CPQ then Q.

We shall show how to reduce1 the number and lengths of the axiom schemes.

It follows at once from a result of Lukasiewicz [3] that Al-3 may be
replaced by the axiom scheme

Bl CCCPQRCCRPCSP.

1. The axiom schemes C are similar to those obtained by using a general method of
Shoesmith [5], but his completeness proof is non-constructive.
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Since the axiom schemes Λ4 are used in Henkin's completeness proof only
to establish the hypothetical deductions

V^Q, . . ., VXn.PniQ v-VyFiP, . . . Pn.Q

it follows at once that if there exist integers an, . . ., α,-̂ - of the set
{1, . . ., Πj} and truth-values Xau, . . ., Xaik. such that fi(xi, . . ., xni) has the
constant value y* in all the 2n*~ki cases where xa{1 = xίiι9 . . ., xίik. = Xaik.
then the corresponding 2nr ι of the axiom schemes Λ4 may be replaced by
the single axiom scheme

B2 CVxίtilPaiιQ . . . CVx,aih{Paih.QVy,FiPl . . . PniQ

(for any of the &;! ways of assigning values to aiu . . ., α ^ ) . Thus we may
replace A1-A4 by Bl and all the2 axiom schemes B2.

We may assume, without real loss of generality, that

fi(T, . . . ,T) = T(£= 1, . . ., b)

since, if this is not so, we may, for some integer i (1 ^ i^ b), make the
definition

NP=df F{P . . . P

if fi (F, . . ., F) = T or the definition

NP =df CPFiP . . . P

if /, (F, . . ., F) = F. Functional completeness of the propositional calculus
would then follow at once, making the use of the method of Henkin, rather
than that of Kalmar [2], unnecessary. One or more of the axiom schemes
B2 will then be of the form

B2A CVτPaiίQ . . . CVjPa^QVjFiP, . . . PniQ

and, for the remaining axiom schemes, x'aiv . . ., xάik will not all be T.
Thus they will be of one of the forms

B2B CVX< PaiιQ . . . CV^Pa^QVjFiP, . . . Pn.Q,

B2C CVχl PaiιQ CVxίikPaik.QVFFiPι . . . PniQ

and we may assign values to α f l , . . ., α ^ in such a way that, for some
integer j (1 ^ j^aki),

r ' Y1 - F

%ai,j+ι> * " •' Xaiki = T

We shall show that the axiom schemes B2 may be replaced by the axiom
schemes

2. Two or more axiom schemes B2 may replace two or more overlapping groups of
some of the axiom schemes A4.
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C2A CPaiγ . . .CPa^.F P, . . .Pn.,

C2B C 2 ' C P β . / + 1 . . . CPaiki FiPι . . . PniPailPail . . PaijPair

C2C C2i-2CPa.j+1 . . . CPaikiCFiPl . . . PniPaiιPai2Pai2 . P β f 7 P β . .

It will be sufficient to establish that C2A (C2B, C2C) follows from Bl, B2A
(B2B, B2C) and Rl. We shall sometimes abbreviate formulae of the form
CCPQQ by APQ.

By Bl SinάRl

hCCPi . . . CPnRCAPiQ . . . CAPnQARQ (n = 1, 2, . . .).

Thus, by Rl,

CP1 . . . CPnR^CAP.Q . . . CAPnQARQ (w = 1, 2, . . .)

and B2A then follows from C2A.

By Bl and i?l

C2mCP,. . . CPnRQ.Q,. . . Q Λ KCFpQiS . . . CVfQ^CVjP.S. . . CVΊPnSVτRS

(m = 1, 2, . . .; w= 0, 1, . . .)

and £ £ £ then follows from C£J3.

By Bl and i?i

C2""2CΛ . . . CPnCRQ1Q2Q2 . . . QmQm hCVfQ.S . . .
CVfQnSCVjPβ . . . CVτPnSVFRS

(m = 1, 2, . . .; n= 0, 1, . . .)

and ££C then follows from C2C.
As an example of the above simplifications we shall consider the case

where the primitive functors are implication and the functor F of 6
arguments whose truth-table is defined by the equation

FPQRSUV =τ KAPQEERSEUV.

8 of the 64 axiom schemes A4 are

CVJPWCVJQWCVJRWCVJSWCVJUWCVJVWVJFPQRSUVW,

CVJPWCVFQWCVTRWCVJSWCVJUWCVΎVWVJFPQRSUVW,

CVτPWCVτQWCVFRWCVτSWCVFUWCVjVWVΊFPQRSUVW,
CVFPWCVjQWCVFRWCVjSWCVfUWCVjVWVjFPQRSUVW,
CVJPWCVΊQWCVFRWCVFSWCVJUWCVFVWVFFPQRSUVW,

CVjPWCVFQWCVFRWCVFSWCVτUWCVFVWVFFPQRSUVW,
CVFPWCVΊQWCVFRWCVFSWCVTUWCVFVWVFFPQRSUVW,
CVFPWCVFQWCVFRWCVFSWCVjUWCVFVWVFFPQRSUVW.

These give rise3 to

3. These three axiom schemes are not the onty axiom schemes B2. The total number
of such axiom schemes is 25.
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B2A CVJPWCVJRWCVJSWCVJUWCVJVWVJFPQRSUVW,

B2B CVjQWCVfRWCVjSWCVψUWCVjVWVjFPQRSUVW,
B2C CVFRWCVFSWCVTUWCVfVWVFFPQRSUVW.

Alternative forms of B2B, B2C are

B2B1 CVfRWCVfUWCVjQWCVjSWCVjVWVjFPQRSUVW,
B2C CVfRWCVfSWCVfVWCVjUWVfFPQRSUVW.

B2Ay B2Br, B2C may, in turn, be simplified as follows:

C2A CPCRCSCUCVFPQRSUV,
C2B CCCCCQCSCVFPQRSUVRRUU,

C2C CCCCCUCFPQRSUVRSSVV.

In some cases we may use methods somewhat similar to those used
above to replace some of the axiom schemes C by simpler axiom schemes
D. For example, in the propositional calculus with the single primitive
functor G of 4 arguments whose truth-table is defined by the equation

GPQRS = τ ACPQERS,

we may make the definition

CPQ =df GPQPQ

and the methods used above lead us to adopt as some of the axiom schemes,

C2A CQGPQRS,

CRCSGPQRS;
C2B CCGPQRSPP,

CCCCGPQRSRRSS.

We may replace the first (second) of the axiom schemes C2A, C2B by the
axiom scheme D2 (D3) given below.

D2 CCPQGPQRS,
D3 CCRSCCSRGPQRS.

This follows at once from the hypothetical deductions

CCPQR v-CQR, CCRPP;
CCPQCCQPR \- CPCQR, CCCCRPPQQ;

which we can establish by means of Bl and Rl.

If the truth-table of the functor H of 5 arguments is defined by the
equation

HPQRSU =τ ECPQAKRSU

we may, similarly, in the C-H propositional calculus, replace the axiom
schemes

C2C CCCQCHPQRSURUU,

CCCCCHPQRSUPRRUU
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by the axiom scheme

D2 CCCCPQCHPQRSURUU

using the hypothetical deductions

CCCCPQCSRUU k CCCQCSR UU, CCCCCSPRR UU.

The related axiom scheme

D3 CCCCPQCHPQRSUSUU

may be replaced by the axiom scheme

CHPQRSUHPQSRU

since, by Bl and Rl, we may derive the hypothetical deduction

CCCPCSRUU, CVS hCCCPCVRUU.

An alternative approach to the problem of replacing the ^ , =i 2 ι axiom
schemes A4 by simpler axiom schemes is provided by replacing the 2Hι

axiom schemes describing the truth-table of the functor F t by two longer
axiom schemes (i = 1, . . ., b). Since the C-N propositional calculus is
functionally complete, there exists a formula Φj(Pi, . . ., Pni) of this
propositional calculus such that, for all formulae Pi, . . ., Pni,

Φi(Pi, -, Pni) =1 *iPi Pm (*' = 1, . -, &).

Let Φ, (Pi, . . ., Pm, Q) denote the formula obtained from Φ, (Pi, . . ., P W | ) by
replacing4 each sub-formula of the form NP, starting from the innermost,
by CPQ. We shall show that the Σ/;=1 2

W* axiom schemes A4 may be
replaced by the 2b axiom schemes

El ACFiP, . . . Pn^άPu , P«i9 Q)Q V = 1, , &),
£2 ACΦίίPi, ., P Λ f , Q ) ^ Pi . PniQ (i = 1, . . ., 6).

For example, if ^ is Kthen suitable choices for ΦZ (P 1 ? P2),Φ, (Pi,P2, Q)
are

NCPιNP2, CCPιCP2QQ

respectively and the corresponding two axiom schemes are

ACKPιP2CCPιCP2QQQ, ACCCP^P^QKP^Q.

We note that, by Bl and Rl,

hCCP, . . . CPnVjRQCACRSQCP, . . . CPnVΊSQ (w = 1, 2, . . .),
hCCPi . . . CPnV?RQCACSRQCPι . . . CPWFFSQ (n = 1, 2, . . .).

Hence, by i?i,

4. In some cases we must, of course, replace occurrences of the primitive symbol C
by the corresponding abbreviations.



260 ALAN ROSE

CP1 . . . CPnVΊRQ, ACRSQh-CP, . . . CPnVΎSQ (n = 1, 2, . . .),
CPi . . . CPnVFRQ, ACSRQ hCPi . . . CPnV?SQ (n = 1, 2, . . .).

Thus, by £ i and ££

CVXιPxQ . . . CF X w .P w .QF y *, CPi, . . ., P«, Q)Q*-
CV^P.Q . . . CV^PmQVyFiP, . . . Pn.Q (y = ffa, . . ., *„.);
xι = T, F; . . .; #„. = T, F; i = 1, . . ., δ).

Since the assumption formula of the last hypothetical deduction contains no
functors other than C (with the possible exceptions of functors occurring in
Piy ., Pni, Q) it is derivable from Bl and Rl. In all the Σ/f=1 2W*' cases
A4 then follows at once.

In some cases (such as, for example, that where F, is K, discussed
above) the formula scheme

EV CFiP, . . . P^iiPu ., P»i9 Q)

will have the property that every instance of it is a tautology. In all these
cases it may replace El since, by Bl and Rl

P \-APQ.

Similarly we may, in some cases, replace the axiom scheme E2 by

E2' CΦf (Pi, . . ., Pnu Q)FιPχ . . . P^.

If the symbol Ndoes not occur in the formula Φx (Pi, . . ., Pn) (for example,
if b = 1, nx = 3 and FXPQR = τ CPCQR, when we may make the definition
CPQ =df F^PPQ) both simplifications are, of course, always permissible.

Corresponding to the replacement of some of the axiom schemes
A4 by the corresponding axiom schemes C2B, we may replace the axiom
scheme A3 (i.e., CV^PRVjCPQR) by

A3' CCCPQPP.

In order to prove5 this we first note that, since Alt A2f and Rl are
unchanged, the Deduction Theorem remains valid.

By Rl

P, CPQ, CQR \-R. (1)

By (1) and the Deduction Theorem

CPQ, CQR H CPR. (2)

By (2)

CCPQQ, CQPhCCPQP. (3)

5. For the case where 6 = 0 this result has already been proved by Schumm [4], but
his proof is entirely different from that given here.
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By A3' andtfl

CCPQPy-P. (4)

By (3), (4) and the Deduction Theorem

CCPQQ\-CCQPP (5)

By (2)

CPR, CRCPQ\-CPCPQ (6)

By Rl

P, CPCPQ I- Q. (7)

By (7) and the Deduction Theorem

CPCPQ f- CPQ. (8)

By (6), (8) and the Deduction Theorem

CPR \- CCRCPQCPQ. (9)

By (9) and (5)

CPR\-CCCPQRR. (10)

By (10) and the Deduction Theorem

\-CCPRCCCPQRR.

REFERENCES

[1] Henkin, L., "Fragments of the propositional calculus," The Journal of Symbolic
Logic, vol. 14 (1949), pp. 42-48.

[2] Kalmar, L., " ϋ b e r die Axiomatisierbarkeit des Aussagenkalkϋls," Ada scien-
tarum mathematicarum, vol. 7 (1935), pp. 222-243.

[3] Lukasiewicz, J., "The shortest axiom of the implicational calculus of proposi-
t ions," Proceedings of the Royal Irish Academy (A), vol. 52 (1948), pp. 25-33.

[4] Schumm, G. F., "A Henkin-style completeness proof for the pure implicational
calculus," Notre Dame Journal of Formal Logic, vol. XVI (1975), pp. 402-404.

[5] Shoesmith, D. J., Ph.D. Dissertation, University of Cambridge, 1962.

The University of Nottingham

Nottingham, England




