SIMPLIFIED FORMALIZATIONS OF FRAGMENTS OF THE PROPOSITIONAL CALCULUS

ALAN ROSE

Henkin has given [1] a general method of formalizing 2-valued propositional calculi whose primitive functors are such that material implication is definable in terms of them. Let the primitive functors, other than implication if implication is a primitive functor, be the functors F_{i} of n_{i} arguments ($i=1, \ldots, b$) and let the formulae $P_{1}, \ldots, P_{n_{i}}, F_{i} P_{1} \ldots P_{n_{i}}$ take the truth-values $x_{1}, \ldots, x_{n_{i}}, f_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)$ respectively ($i=1, \ldots, b$). The axiom schemes are

A1 $C P C Q P$,
A2 $C C P Q C C P C Q R C P R$,
A3 CCPRCCCPQRR,
A4 $C V_{x_{1}} P_{1} Q \ldots C V_{x_{n_{i}}} P_{n_{i}} Q V_{y} F_{i} P_{1} \ldots P_{n_{i}} Q\left(y=f_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)\right.$;
$\left.x_{1}=\mathbf{T}, \mathbf{F} ; \ldots ; x_{n_{i}}=\mathbf{T}, \mathbf{F} ; i=1, \ldots, b\right)$,
A4 denoting $\sum_{i=1}^{b} 2^{n_{i}}$ axiom schemes and the functors $V_{\mathrm{T}}, V_{\mathbf{F}}$ being defined by the equations

$$
\begin{aligned}
& V_{\mathbf{T}} P Q=d f C C P Q Q, \\
& V_{\mathbf{F}} P Q=d f C P Q .
\end{aligned}
$$

The only primitive rule of procedure is
$R 1$ If P and $C P Q$ then Q.
We shall show how to reduce ${ }^{1}$ the number and lengths of the axiom schemes.
It follows at once from a result of Łukasiewicz [3] that A1-3 may be replaced by the axiom scheme

B1 CCCPQRCCRPCSP.

[^0]Since the axiom schemes A4 are used in Henkin's completeness proof only to establish the hypothetical deductions

$$
V_{x_{1}} P_{1} Q, \ldots, V_{x_{n_{i}}} P_{n_{i}} Q \vdash V_{y} F_{i} P_{1} \ldots P_{n_{i}} Q
$$

it follows at once that if there exist integers $\alpha_{i 1}, \ldots, \alpha_{i k_{i}}$ of the set $\left\{1, \ldots, n_{i}\right\}$ and truth-values $x_{\alpha_{i 1}}^{\prime}, \ldots, x_{\alpha_{i k_{i}}}^{\prime}$ such that $f_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)$ has the constant value y^{\prime} in all the $2^{n_{i}-k_{i}}$ cases where $x_{\alpha_{i 1}}=x_{\alpha_{i 1}}^{\prime}, \ldots, x_{\alpha_{i k_{i}}}^{\prime}=x_{\alpha_{i k_{i}}}$ then the corresponding $2^{n_{i}-k_{i}}$ of the axiom schemes A4 may be replaced by the single axiom scheme
$B 2 \quad C V_{x_{\alpha_{i 1}}^{\prime}} P_{\alpha_{i 1}} Q \ldots C V_{x_{\alpha_{i k_{i}}^{\prime}}} P_{\alpha_{i k_{i}}} Q V_{y^{\prime}} F_{i} P_{1} \ldots P_{n_{i}} Q$
(for any of the k_{i} ! ways of assigning values to $\alpha_{i 1}, \ldots, \alpha_{i k_{i}}$). Thus we may replace $A 1-A 4$ by $B 1$ and all the ${ }^{2}$ axiom schemes $B 2$.

We may assume, without real loss of generality, that

$$
f_{i}(\mathbf{T}, \ldots, \mathbf{T})=\mathbf{T}(i=1, \ldots, b)
$$

since, if this is not so, we may, for some integer $i(1 \leqslant i \leqslant b)$, make the definition

$$
N P={ }_{d f} F_{i} P \ldots P
$$

if $f_{i}(\mathbf{F}, \ldots, \mathbf{F})=\mathbf{T}$ or the definition

$$
N P={ }_{d f} C P F_{i} P \ldots P
$$

if $f_{i}(\mathbf{F}, \ldots, \mathbf{F})=\mathbf{F}$. Functional completeness of the propositional calculus would then follow at once, making the use of the method of Henkin, rather than that of Kalmár [2], unnecessary. One or more of the axiom schemes $B 2$ will then be of the form
$B 2 A \quad C V_{\mathbf{T}} P_{\alpha_{i 1}} Q \ldots C V_{\mathbf{T}} P_{\alpha_{i_{i}}} Q V_{\mathbf{T}} F_{i} P_{1} \ldots P_{n i} Q$
and, for the remaining axiom schemes, $x_{\alpha_{i 1}}^{\prime}, \ldots, x_{\alpha_{i k_{i}}}^{\prime}$ will not all be T . Thus they will be of one of the forms
$B 2 B C V_{x_{\alpha_{i 1}}^{\prime}} P_{\alpha_{i 1}} Q \ldots C V_{x_{\alpha_{i k_{i}}^{\prime}}^{\prime}} P_{\alpha_{i_{k}}} Q V_{\mathbf{T}} F_{i} P_{1} \ldots P_{n_{i}} Q$,
$B 2 C \quad C V_{x_{\alpha_{i 1}^{\prime}}^{\prime}} P_{\alpha_{i 1}} Q \ldots C V_{x_{\alpha_{i k_{i}}^{\prime}}} P_{\alpha_{i k_{i}}} Q V_{\mathbf{F}} F_{i} P_{1} \ldots P_{n_{i}} Q$
and we may assign values to $\alpha_{i 1}, \ldots, \alpha_{i k_{i}}$ in such a way that, for some integer $j\left(1 \leqslant j \leqslant \alpha_{k_{i}}\right)$,

$$
\begin{array}{r}
x_{\alpha_{i 1}}^{\prime}, \ldots, x_{\alpha_{i j}}^{\prime}=\mathbf{F} ; \\
x_{\alpha_{i, j+1}}^{\prime}, \ldots, x_{\alpha_{i k_{i}}}^{\prime}=\mathbf{T} .
\end{array}
$$

We shall show that the axiom schemes $B 2$ may be replaced by the axiom schemes
2. Two or more axiom schemes $B 2$ may replace two or more overlapping groups of some of the axiom schemes $A 4$.
$C 2 A \quad C P_{\alpha_{i_{1}}} \ldots C P_{\alpha_{i_{k}}} F_{i} P_{1} \ldots P_{n_{i}}$,
$C 2 B \quad C^{2 j} C P_{\alpha_{i, j+1}} \ldots C P_{\alpha_{i, k_{i}}} F_{i} P_{1} \ldots P_{n_{i}} P_{\alpha_{i 1}} P_{\alpha_{i 1}} \ldots P_{\alpha_{i j}} P_{\alpha_{i j}}$,
C2C $\quad C^{2 j-2} C P_{\alpha_{i, j+1}} \ldots C P_{\alpha_{i, k}} C F_{i} P_{1} \ldots P_{n_{i}} P_{\alpha_{i 1}} P_{\alpha_{i 2}} P_{\alpha_{i 2}} \ldots P_{\alpha_{i j}} P_{\alpha_{i j}}$.
It will be sufficient to establish that $C 2 A(C 2 B, C 2 C)$ follows from $B 1, B 2 A$ ($B 2 B, B 2 C$) and $R 1$. We shall sometimes abbreviate formulae of the form $C C P Q Q$ by $A P Q$.

By $B 1$ and $R 1$

$$
\vdash C C P_{1} \ldots C P_{n} R C A P_{1} Q \ldots C A P_{n} Q A R Q(n=1,2, \ldots)
$$

Thus, by R1,

$$
C P_{1} \ldots C P_{n} R \vdash C A P_{1} Q \ldots C A P_{n} Q A R Q(n=1,2, \ldots)
$$

and $B 2 A$ then follows from $C 2 A$.
By $B 1$ and $R 1$

$$
\begin{array}{r}
C^{2 m} C P_{1} \ldots C P_{n} R Q_{1} Q_{1} \ldots Q_{m} Q_{m} \vdash C V_{\mathbf{F}} Q_{1} S \ldots C V_{\mathbf{F}} Q_{m} S C V_{\mathbf{T}} P_{1} S \ldots C V_{\mathbf{T}} P_{n} S V_{\mathbf{T}} R S \\
(m=1,2, \ldots ; n=0,1, \ldots)
\end{array}
$$

and $B 2 B$ then follows from $C 2 B$.
By B1 and R1

$$
\begin{aligned}
& C^{2 m-2} C P_{1} \ldots C P_{n} C R Q_{1} Q_{2} Q_{2} \ldots Q_{m} Q_{m}+C V_{\mathbf{F}} Q_{1} S \ldots \\
& C V_{\mathbf{F}} Q_{m} S C V_{\mathbf{T}} P_{1} S \ldots C V_{\mathbf{T}} P_{n} S V_{\mathbf{F}} R S \\
& \quad(m=1,2, \ldots ; n=0,1, \ldots)
\end{aligned}
$$

and $B 2 C$ then follows from $C 2 C$.
As an example of the above simplifications we shall consider the case where the primitive functors are implication and the functor F of 6 arguments whose truth-table is defined by the equation

$$
F P Q R S U V=_{\boldsymbol{\top}} K A P Q E E R S E U V .
$$

8 of the 64 axiom schemes $A 4$ are

$$
\begin{aligned}
& C V_{\mathbf{T}} P W C V_{\mathbf{T}} Q W C V_{\mathbf{T}} R W C V_{\mathbf{T}} S W C V_{\mathbf{T}} U W C V_{\mathbf{T}} V W V_{\mathbf{T}} F P Q R S U V W, \\
& C V_{\mathbf{T}} P W C V_{\mathbf{F}} Q W C V_{\mathbf{T}} R W C V_{\mathbf{T}} S W C V_{\mathbf{T}} U W C V_{\mathbf{T}} V W V_{\mathbf{T}} F P Q R S U V W, \\
& C V_{\mathbf{T}} P W C V_{\mathbf{T}} Q W C V_{\mathbf{F}} R W C V_{\mathbf{T}} S W C V_{\mathbf{F}} U W C V_{\mathbf{T}} V W V_{\mathbf{T}} F P Q R S U V W, \\
& C V_{\mathbf{F}} P W C V_{\mathbf{T}} Q W C V_{\mathbf{F}} R W C V_{\mathbf{T}} S W C V_{\mathbf{F}} U W C V_{\mathbf{T}} V W V_{\mathbf{T}} F P Q R S U V W, \\
& C V_{\mathbf{T}} P W C V_{\mathbf{T}} Q W C V_{\mathbf{F}} R W C V_{\mathbf{F}} S W C V_{\mathbf{T}} U W C V_{\mathbf{F}} V W V_{\mathbf{F}} F P Q R S U V W, \\
& C V_{\mathbf{T}} P W C V_{\mathbf{F}} Q W C V_{\mathbf{F}} R W C V_{\mathbf{F}} S W C V_{\mathbf{T}} U W C V_{\mathbf{F}} V W V_{\mathbf{F}} F P Q R S U V W, \\
& C V_{\mathbf{F}} P W C V_{\mathbf{T}} Q W C V_{\mathbf{F}} R W C C V_{\mathbf{F}} S W C V_{\mathbf{T}} U W C V_{\mathbf{F}} V W W V_{\mathbf{F}} F P Q R S U U V W, \\
& C V_{\mathbf{F}} P W C V_{\mathbf{T}} U W C V_{\mathbf{F}} V W V_{\mathbf{F}} F P Q R S U V W,
\end{aligned}
$$

These give rise ${ }^{3}$ to

[^1]$B 2 A \quad C V_{\mathbf{T}} P W C V_{\mathbf{T}} R W C V_{\mathbf{T}} S W C V_{\mathbf{T}} U W C V_{\mathbf{T}} V W V_{\mathbf{T}} F P Q R S U V W$, $B 2 B \quad C V_{\mathbf{T}} Q W C V_{\mathbf{F}} R W C V_{\mathbf{T}} S W C V_{\mathbf{F}} U W C V_{\mathbf{T}} V W V_{\mathbf{T}} F P Q R S U V W$, $B 2 C \quad C V_{\mathbf{F}} R W C V_{\mathbf{F}} S W C V_{\mathbf{T}} U W C V_{\mathbf{F}} V W V_{\mathbf{F}} F P Q R S U V W$.

Alternative forms of $B 2 B, B 2 C$ are
$B 2 B^{\prime} C V_{\mathbf{F}} R W C V_{\mathbf{F}} U W C V_{\mathbf{T}} Q W C V_{\mathbf{T}} S W C V_{\mathbf{T}} V W V_{\mathbf{T}} F P Q R S U V W$, $B 2 C^{\prime} C V_{\mathbf{F}} R W C V_{\mathbf{F}} S W C V_{\mathbf{F}} V W C V_{\mathbf{T}} U W V_{\mathbf{F}} F P Q R S U V W$.
$B 2 A, B 2 B^{\prime}, B 2 C^{\prime}$ may, in turn, be simplified as follows:
C2A CPCRCSCUCVFPQRSUV,
C2B CCCCCQCSCVFPQRSUVRRUU,
C2C CCCCCUCFPQRSUVRSSVV.
In some cases we may use methods somewhat similar to those used above to replace some of the axiom schemes C by simpler axiom schemes D. For example, in the propositional calculus with the single primitive functor G of 4 arguments whose truth-table is defined by the equation

$$
G P Q R S=\mathbf{\tau} A C P Q E R S,
$$

we may make the definition

$$
C P Q=d f \quad G P Q P Q
$$

and the methods used above lead us to adopt as some of the axiom schemes, C2A CQGPQRS, CRCSGPQRS;
C2B CCGPQRSPP, $C C C C G P Q R S R R S S$.

We may replace the first (second) of the axiom schemes $C 2 A, C 2 B$ by the axiom scheme $D 2(D 3)$ given below.

D2 $C C P Q G P Q R S$,
D3 CCRSCCSRGPQRS.
This follows at once from the hypothetical deductions

```
CCPQR 卜 CQR, CCRPP;
CCPQCCQPR\vdashCPCQR,CCCCRPPQQ;
```

which we can establish by means of $B 1$ and $R 1$.
If the truth-table of the functor H of 5 arguments is defined by the equation

$$
H P Q R S U=\mathbf{\top} E C P Q A K R S U
$$

we may, similarly, in the $C-H$ propositional calculus, replace the axiom schemes

C2C CCCQCHPQRSURUU, CCCCCHPQRSUPRRUU
by the axiom scheme

D2 CCCCPQCHPQRSURUU

using the hypothetical deductions
$C C C C P Q C S R U U \vdash C C C Q C S R U U, C C C C C S P R R U U$.
The related axiom scheme
D3 CCCCPQCHPQRSUSUU
may be replaced by the axiom scheme
CHPQRSUHPQSRU
since, by $B 1$ and $R 1$, we may derive the hypothetical deduction
CCCPCSRUU, CVS $\vdash C C C P C V R U U$.
An alternative approach to the problem of replacing the $\sum_{i=1}^{b} 2^{n_{i}}$ axiom schemes $A 4$ by simpler axiom schemes is provided by replacing the $2^{n_{i}}$ axiom schemes describing the truth-table of the functor F_{i} by two longer axiom schemes $(i=1, \ldots, b)$. Since the $C-N$ propositional calculus is functionally complete, there exists a formula $\Phi_{i}\left(P_{1}, \ldots, P_{n_{i}}\right)$ of this propositional calculus such that, for all formulae $P_{1}, \ldots, P_{n_{i}}$,

$$
\Phi_{i}\left(P_{1}, \ldots, P_{n_{i}}\right)=\uparrow F_{i} P_{1} \ldots P_{n_{i}}(i=1, \ldots, b) .
$$

Let $\Psi_{i}\left(P_{1}, \ldots, P_{n i}, Q\right)$ denote the formula obtained from $\Phi_{i}\left(P_{1}, \ldots, P_{n i}\right)$ by replacing ${ }^{4}$ each sub-formula of the form $N P$, starting from the innermost, by $C P Q$. We shall show that the $\sum_{i=1}^{b} 2^{n_{i}}$ axiom schemes $A 4$ may be replaced by the $2 b$ axiom schemes
E1 $\quad A C F_{i} P_{1} \ldots P_{n_{i}} \Psi_{i}\left(P_{1}, \ldots, P_{n_{i}}, Q\right) Q(i=1, \ldots, b)$, E2 $\quad A C \Psi_{i}\left(P_{1}, \ldots, P_{n_{i}}, Q\right) F_{i} P_{1} \ldots P_{n_{i}} Q(i=1, \ldots, b)$.

For example, if F_{i} is K then suitable choices for $\Phi_{i}\left(P_{1}, P_{2}\right), \Psi_{i}\left(P_{1}, P_{2}, Q\right)$ are

$$
N C P_{1} N P_{2}, C C P_{1} C P_{2} Q Q
$$

respectively and the corresponding two axiom schemes are

$$
A C K P_{1} P_{2} C C P_{1} C P_{2} Q Q Q, A C C C P_{1} C P_{2} Q Q K P_{1} P_{2} Q .
$$

We note that, by $B 1$ and $R 1$,

$$
\begin{aligned}
& \vdash C C P_{1} \ldots C P_{n} V_{\mathbf{\top}} R Q C A C R S Q C P_{1} \ldots C P_{n} V_{\mathbf{T}} S Q(n=1,2, \ldots), \\
& \vdash C C P_{1} \ldots C P_{n} V_{\mathbf{F}} R Q C A C S R Q C P_{1} \ldots C P_{n} V_{\mathbf{F}} S Q(n=1,2, \ldots) .
\end{aligned}
$$

Hence, by R1,

[^2]\[

$$
\begin{aligned}
& C P_{1} \ldots C P_{n} V_{\mathrm{T}} R Q, A C R S Q \vdash C P_{1} \ldots C P_{n} V_{\mathrm{T}} S Q(n=1,2, \ldots), \\
& C P_{1} \ldots C P_{n} V_{\mathrm{F}} R Q, A C S R Q \vdash C P_{1} \ldots C P_{n} V_{\mathbf{F}} S Q(n=1,2, \ldots .) .
\end{aligned}
$$
\]

Thus, by $E 1$ and $E 2$

$$
\begin{aligned}
& C V_{x_{1}} P_{1} Q \ldots C V_{x_{n_{i}}} P_{n_{i}} Q V_{y} \Psi_{i}\left(P_{1}, \ldots, P_{n_{i}}, Q\right) Q \vdash \\
& C V_{x_{1}} P_{1} Q \ldots C V_{n_{i}} P_{n_{i}} Q V_{y} F_{i} P_{1} \ldots P_{n_{i}} Q\left(y=f_{i}\left(x_{1}, \ldots, x_{n_{i}}\right) ;\right. \\
& \left.x_{1}=\mathrm{T}, \mathrm{~F} ; \ldots ; x_{n_{i}}=\mathrm{T}, \mathrm{~F} ; i=1, \ldots, b\right) .
\end{aligned}
$$

Since the assumption formula of the last hypothetical deduction contains no functors other than C (with the possible exceptions of functors occurring in $\left.P_{1}, \ldots, P_{n_{i}}, Q\right)$ it is derivable from $B 1$ and $R 1$. In all the $\sum_{i=1}^{b} 2^{n_{i}}$ cases $A 4$ then follows at once.

In some cases (such as, for example, that where F_{i} is K, discussed above) the formula scheme

E1' $\quad C F_{i} P_{1} \ldots P_{n_{i}} \Psi_{i}\left(P_{1}, \ldots, P_{n_{i}}, Q\right)$
will have the property that every instance of it is a tautology. In all these cases it may replace $E 1$ since, by $B 1$ and $R 1$

$$
P \vdash A P Q .
$$

Similarly we may, in some cases, replace the axiom scheme E2 by
$E 2^{\prime} \quad C \Psi_{i}\left(P_{1}, \ldots, P_{n_{i}}, Q\right) F_{i} P_{1} \ldots P_{n_{i}}$.
If the symbol N does not occur in the formula $\Phi_{i}\left(P_{1}, \ldots, P_{n_{i}}\right)$ (for example, if $b=1, n_{1}=3$ and $F_{1} P Q R=\mathrm{T} C P C Q R$, when we may make the definition $C P Q={ }_{d f} F_{1} P P Q$) both simplifications are, of course, always permissible.

Corresponding to the replacement of some of the axiom schemes $A 4$ by the corresponding axiom schemes $C 2 B$, we may replace the axiom scheme $A 3$ (i.e., $C V_{\mathbf{F}} P R V_{\mathrm{T}} C P Q R$) by
$A 3^{\prime} \quad C C C P Q P P$.
In order to prove ${ }^{5}$ this we first note that, since $A 1, A 2$, and $R 1$ are unchanged, the Deduction Theorem remains valid.

By R1

$$
\begin{equation*}
P, C P Q, C Q R \vdash R . \tag{1}
\end{equation*}
$$

By (1) and the Deduction Theorem

$$
\begin{equation*}
C P Q, C Q R \vdash C P R . \tag{2}
\end{equation*}
$$

By (2)

$$
\begin{equation*}
C C P Q Q, C Q P \vdash C C P Q P . \tag{3}
\end{equation*}
$$

[^3]By $A 3^{\prime}$ and $R 1$

$$
\begin{equation*}
C C P Q P \vdash P . \tag{4}
\end{equation*}
$$

By (3), (4) and the Deduction Theorem

$$
\begin{equation*}
C C P Q Q \vdash C C Q P P \tag{5}
\end{equation*}
$$

By (2)

$$
\begin{equation*}
C P R, C R C P Q \vdash C P C P Q \tag{6}
\end{equation*}
$$

By $R 1$

$$
\begin{equation*}
P, C P C P Q \vdash Q . \tag{7}
\end{equation*}
$$

By (7) and the Deduction Theorem

$$
\begin{equation*}
C P C P Q \vdash C P Q . \tag{8}
\end{equation*}
$$

By (6), (8) and the Deduction Theorem

$$
\begin{equation*}
C P R \vdash C C R C P Q C P Q . \tag{9}
\end{equation*}
$$

By (9) and (5)

$$
\begin{equation*}
C P R \vdash C C C P Q R R . \tag{10}
\end{equation*}
$$

By (10) and the Deduction Theorem

$$
\vdash C C P R C C C P Q R R
$$

REFERENCES

[1] Henkin, L., "Fragments of the propositional calculus," The Journal of Symbolic Logic, vol. 14 (1949), pp. 42-48.
[2] Kalmár, L., "Über die Axiomatisierbarkeit des Aussagenkalküls," Acta scientarum mathematicarum, vol. 7 (1935), pp. 222-243.
[3] Łukasiewicz, J., "The shortest axiom of the implicational calculus of propositions," Proceedings of the Royal Irish Academy (A), vol. 52 (1948), pp. 25-33.
[4] Schumm, G. F., "A Henkin-style completeness proof for the pure implicational calculus," Notre Dame Journal of Formal Logic, vol. XVI (1975), pp. 402-404.
[5] Shoesmith, D. J., Ph.D. Dissertation, University of Cambridge, 1962.

[^0]: 1. The axiom schemes C are similar to those obtained by using a general method of Shoesmith [5], but his completeness proof is non-constructive.
[^1]: 3. These three axiom schemes are not the only axiom schemes $B 2$. The total number of such axiom schemes is 25 .
[^2]: 4. In some cases we must, of course, replace occurrences of the primitive symbol C by the corresponding abbreviations.
[^3]: 5. For the case where $b=0$ this result has already been proved by Schumm [4], but his proof is entirely different from that given here.
