Notre Dame Journal of Formal Logic Volume XVIII, Number 1, January 1977 NDJFAM

NEXT P ADMISSIBLE SETS ARE OF COFINALITY ω

JUDY GREEN

The first and most direct generalization of the Barwise compactness theorem to the uncountable case was the cofinality ω compactness theorem of Barwise and Karp [1], [2]—a power set admissible set which can be written as a union of countably many of its elements is Σ_1 (in the graph of the power set) compact. Thus, in order to directly generalize the many situations in which the Barwise compactness theorem is applied to a next admissible set, we need to know that all next power set admissible sets can be written as appropriate countable unions. In this paper* we show, using elementary methods, that they can. A modification of the proof of Theorem 5.3 of [1] can also be used but involves higher order predicates.

We assume familiarity with the notion of power set admissibility, presented for example in [2], and the fact that any power set admissible set can be written as a $\vee(\kappa)$. We also will use the obvious fact that there are only countably many formulas which are Δ_0 in the graph of the power set and abuse notation slightly by calling these Δ_0 in \mathscr{P} formulas. For each cardinal λ we let $\beth_0(\lambda) = \lambda$, $\beth_{n+1}(\lambda) = 2^{\beth_n(\lambda)}$, and $\beth_{\omega}(\lambda) = \bigcup_{n \in \mathcal{N}} \beth_n(\lambda)$.

Theorem Every next power set admissible set is of cofinality ω .

Proof: Suppose $\forall(\kappa)$ is the smallest power set admissible set containing the set A and $\kappa_0 = \beth_{\omega}(\rho)$ where ρ is the cardinality of the rank of A. Clearly $A \in \forall(\kappa)$ and $\forall(\kappa) P$ admissible implies $\kappa_0 < \kappa$. Starting with κ_0 we construct a sequence of cardinals, each of cofinality ω , such that for each n, $\kappa_{n-1} < \kappa_n \leq \kappa$. If at any time we find $\kappa_n = \kappa$ we are done so we may assume $\kappa_0 < \kappa_1 < \ldots < \kappa_n < \kappa$ and for $j \leq n$, $\kappa_j = \bigcup_{m \in \omega} \kappa_{j,m}$. Since we will eventually want to show that $\forall(\bigcup \kappa_n)$ is P admissible (and hence $\kappa = \bigcup \kappa_n$) we want to construct the sequence to satisfy:

if Q is any k + 2 place Δ_0 in P formula and $a, b_1, \ldots, b_k \in \vee (\bigcup \kappa_n)$ then $\forall x \in a \exists y \in \vee (\bigcup \kappa_n) Q(x, y, b_1, \ldots, b_k)$ implies there is an $n \in \omega$ such that $\forall x \in a \exists y \in \vee (\kappa_n) Q(x, y, b_1, \ldots, b_k).$

^{*}Partially supported by the Rutgers University Research Council.

Let $Q_{k,0}, Q_{k,1}, \ldots$ be a list of the k + 2 place Δ_0 in P formulas and let $B_{k,i}(n, m) = \{(x, z_1, \ldots, z_k) \in \vee(\kappa_{n,m}) | \exists y \in \vee(\kappa) Q_{k,i}(x, y, z_1, \ldots, z_k)\}$. Since each $B_{k,i}(n, m) \in \vee(\kappa)$ we may use Δ_0 in P collection on $\forall (x, z_1, \ldots, z_k) \in B_{k,i}(n, m) \exists \zeta \in \vee(\kappa) \exists y \in \vee(\zeta) Q_{k,i}(x, y, z_1, \ldots, z_k)$ to show $\exists \xi \in \kappa \forall (x, z_1, \ldots, z_k) \in B_{k,i}(n, m) \exists \zeta \in \xi \exists y \in \vee(\zeta) Q_{k,i}(x, y, z_1, \ldots, z_k)$. But then $\alpha_{k,i}(n, m) = \bigcup \{\min \zeta \exists y \in \vee(\zeta) Q_{k,i}(x, y, z_1, \ldots, z_k) \mid (x, z_1, \ldots, z_k) \in B_{k,i}(n, m)\} < \kappa$ so that $\lambda_{n,m} = \bigcup_{k,i \leq n} \alpha_{k,i}(n, m) < \kappa$. We now let $\lambda_n = \bigcup_{m \in \omega} (\kappa_{n,m} \cup \lambda_{n,m})$. If $\lambda_n = \kappa$ we are done so assume $\lambda_n < \kappa$ and $\kappa_{n+1,m} = \beth_m(\lambda_n)$. Thus $\kappa_{n+1} = \bigcup \kappa_{n+1,m}$ is constructed as desired.

To show $\vee (\bigcup \kappa_n)$ is \mathscr{P} admissible we need only show it satisfies Δ_0 in \mathscr{P} collection. So suppose $Q_{k,i}$ is a k+2 place Δ_0 in \mathscr{P} formula and a, b_1, \ldots, b_k are elements of $\vee (\bigcup \kappa_n)$ such that $\forall x \in a \exists y \in \vee (\bigcup \kappa_n) Q_{k,i}(x, y, b_1, \ldots, b_k)$. Since a, b_1, \ldots, b_k are elements of $\vee (\bigcup \kappa_n)$ and hence $\forall x \in a (x, b_1, \ldots, b_k) \in B_{k,i}(n, m)$. But then $\forall x \in a \exists y \in \vee (\alpha_{k,i}(n, m)) Q_{k,i}(x, y, b_1, \ldots, b_k)$ and therefore $\forall x \in a \exists y \in \vee (\kappa_{n+k+i}) Q_{k,i}(x, y, b_1, \ldots, b_k)$. Thus $\vee (\bigcup \kappa_n)$ satisfies Δ_0 in \mathscr{P} collection.

REFERENCES

- [1] Barwise, J., "Applications of strict- Π_1^1 predicates to infinitary logic," The Journal of Symbolic Logic, vol. 34 (1969), pp. 409-423.
- [2] Karp, C., "An algebraic proof of the Barwise compactness theorem," in *Lecture Notes in Mathematics*, No. 72, Springer-Verlag, Berlin (1968), pp. 80-95.

Rutgers, The State University of New Jersey Camden, New Jersey