A PROOF OF SOBOCIŃSKI'S CONJECTURE CONCERNING A CERTAIN SET OF LATTICE-THEORETICAL FORMULAS

THOMAS A. SUDKAMP

In [1], J. Ričan has proven that any algebraic system

$\mathfrak{A} = \langle A, \cup, \cap \rangle$

where \cup and \cap are two binary operations defined on the carrier set A, which satisfies the following two postulates

$$A1 \quad [abc]: a, b, c \in A : \supset (a \cap b) \cup (a \cap c) = ((c \cap a) \cup b) \cap a$$

and

$$A2 \quad [abc]: a, b, c \in A : \supset a = (c \cup (b \cup a)) \cap a$$

is a modular lattice. In [2] (cf. pp. 311-312, Remark I; pp. 313-314, section 2.2; and p. 315, section 5, Remark II), B. Sobociński has proven that if in Ričan's postulate-system we substitute A2 by

B1
$$[ab]: a, b \in A :\supset a = (b \cup a) \cap a$$

then the resulting system $\{AI; BI\}$ satisfies the conditions of a modular lattice with the probable exception, he conjectures, that the associative laws for \cup and \cap fail to hold.

In this note I shall prove this conjecture using the following algebraic table

	U	0	α	β	γ	δ	1	ſ	ר	0	α	β	γ	δ	1
	0	0	α	β	γ	δ	1	C)	0	0	0	0	0	0
	α	α	α	β	1	1	1	C	χ	0	α	α	0	0	α
M1	β	β	β	β	γ	δ	1	ĥ	3	0	α	β	β	β	β
	γ	Y	1	γ	γ	1	1)	/	0	0	β	γ	β	γ
	δ	δ	1	δ	1	δ	1	5	5	0	0	β	β	δ	δ
	1	1	1	1	1	1	1	i	1	0	α	β	γ	δ	1

which verifies the axioms A1 and B1, but falsifies A2,

Received April 15, 1976

$$P1 \quad [abc]: a, b, c \in A : \supseteq (a \cup b) \cup c = a \cup (b \cup c)$$

and

$$R1 \quad [abc]: a, b, c \in A :\supset (a \cap b) \cap c = a \cap (b \cap c)$$

Namely:

(a) M1 falsifies A2 for a | α, b | β, and c | γ: (i) a = α, (ii) (γ ∪ (β ∪ α)) ∩ α = (γ ∪ β) ∩ α = γ ∩ α = 0.
(b) M1 falsifies P1 for a | α, b | β, and c | γ: (i) (α ∪ β) ∪ γ = β ∪ γ = γ, (ii) α ∪ (β ∪ γ) = α ∪ γ = 1.
(c) M1 falsifies R1 for a | α, b | β, and c | γ: (i) (α ∩ β) ∩ γ = α ∩ γ = 0, (ii) α ∩ (β ∩ γ) = α ∩ β = α.

Thus the system $\{AI; BI\}$ is not a modular lattice and, therefore, the conjecture of Sobociński is proved.

REFERENCES

- [1] Ričan, J., "Zu der Axiomatic der modulären Verbände," Acta Facultatiae Nationalis Universitatis Comenianensis, Mathematica, vol. 2 (1958), pp. 257-262.
- [2] Sobociński, B., "A short equational axiomatization of modular ortholattices," Notre Dame Journal of Formal Logic, vol. XVII (1976), pp. 311-316.

Seminar in Symbolic Logic University of Notre Dame Notre Dame, Indiana