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A DEDUCTION SYSTEM FOR THE FULL FIRST-ORDER
PREDICATE LOGIC

HUBERT H. SCHNEIDER

In [3] H. Hermes and H. Scholz presented an axiomalization which
generates exactly the valid formulas of the restricted first-order predicate
logic. One of the features of that axiomatization is its symmetry in the
underlying deduction rules. In this paper we shall describe an extension
and generalization of the axiomatization given by Hermes and Scholz. The
axiomatization in [3] is limited to the derivation of valid formulas of the
pure first-order predicate logic. Our deduction system Sis formulated for
the full first-order predicate logic with identity, including individual
constants and functional variables; furthermore, our system <£ provides for
the deduction of formulas from sets of formulas. The strong completeness
and soundness of our system S guarantees that in S those and only those
deducibility relations are generated which are consequence relations. A
deducibility concept, formulated in [l] and in some aspects resembling our
formulation, requires a fairly complicated modification in order to obtain
soundness (or even the validity of the Deduction Theorem). A preliminary
version of our system S was first presented at the IV'th International
Congress for Logic, Methodology, and Philosophy of Science; see [4].

1 The vocabulary for the full first-order predicate logic contains (i) a
denumerable set of individual variables, (ii) a countable (i.e., finite or
denumerable) set of individual constants, (Hi) for each integer n > 0 a
countable set of rc-ary functional variables, (iv) for each integer n ^ 0 a
countable set of w-ary predicate variables, (v) the identity symbol =,
(vi) the propositional connectives ~, Λ, V, —•, <->, (vii) the quantifiers V and
Ξ3, and (viii) the parentheses (, ). The set of terms is the smallest set
which contains the individual variables and constants and which with any
w-ary functional variable / and any n terms tl9 . . ., tn also contains
ft1 . . . tn. Atomic formulas are the 0-ary predicate variables, all expres-
sions of the form ptx . . . tn where p is any w-ary predicate variable and
tu . . ., tn are any n terms, and all expressions of the form t± = 4 where tx

and t2 are any terms.
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Formulas are defined inductively by the following conditions:

(1) Each atomic formula is a formula.

(2) If B is a formula then (~B) is a formula.
(3) If B and C are formulas then (BAC), (B VC), (B -> C) and (£<->C) are
formulas.
(4) If £ is a formula and x any individual variable then (VxB) and (Ξtor£) are
formulas.

The notion of free occurrence of a term ί in a formula A can be
described inductively according to the inductive definition of formula as
follows:

(1) Any occurrence of a term t in an atomic formula is a free occurrence.
(2) If t occurs free in the formula B then t occurs free in the formula (~JB).
(3) If t occurs free in the formula B or in the formula C then t occurs free
in each of the formulas (BΛC), (B VC), (B -> C), (£<->C).
(4) If t occurs free in the formula B and x is an individual variable not
occurring in t then t occurs free in the formulas (VxB) and (3xB).

If A is any formula, x any individual variable and t any term, and there
exists a formula B which is the result of replacing in A each free
occurrence of x by a free occurrence of t, then B is said to be obtained by a
free substitution of t for x in A, abbreviated: Subst A x/t B.

2 A deduction Δ in the system ^ is a finite sequence of ordered pairs
(Sk,Ak), l^k^n for some positive integer n, where Sk is a (possibly
empty) set of formulas upon which the formula Ak depends (according to the
regulations set forth below). Each pair (Sk, Ak) of Δ must satisfy (at least)
one of the following ten conditions:

(a) Assumption Introduction: S& = {Ak}.
(b) Assumption Elimination: There is i < k and a formula B such that Sk =
Si -{B}tmdAk = {B->Ai).
(c) Tautological Inference: Either Sk = P and Ak is tautologous, or there
exist zΊ < k, . . ., im < k such that Sk = Sit U . . . U Sim and (A^Λ . . . Λ \ ) -•
AΛ is tautologous.
(d) Free Substitution: There is i < k, an individual variable #, and a term t
such that Sfc = Sif x is not free in any of the formulas of Sf , and Subst Λz x/
tAk.
(e) Antecedent Generalization: There is i < k, formulas B and C, and an
individual variable x such that Sk = Si7 A{ = (B -> C) and Ak= ((VxB) -* C).
(f) Consequent Generalization: There is i < k, formulas B and C, and an
individual variable x such that Sk = Si, x is not free in any of the formulas
of Si U {£}, A; = (B - C), and A^ = ( 5 - (V*C)).
(g) Antecedent Particularization: There is i < k, formulas B and C, and an
individual variable x such that Sk = Si9 x is not free in any of the formulas
of S{ U {C}, Ai =(B-+C), and Ak = ((3*5) - C).
(h) Consequent Particularization: There is i < k, formulas B and C, and an
individual variable x such that Ŝ  = Si,A{ = (B -> C) and A^ = (5 -> (3#C)).



A DEDUCTION SYSTEM 441

(i) Identity Introduction: There is i < k, a formula B, a term t, and an
individual variable x not occurring in t such that Sk = Si, Subst B x/t A, , and
Ak = (Vx(x = f-> B)).
(j) Identity Elimination: There is i < k, a formula B, a term ί, and an
individual variable x not occurring in t such that Sk = S,-, At = (Vx(x =
t -> 5)) and Subst 5 #/* Ak.

A formula A is deducible from a set S of formulas, abbreviated: S \-A,
if and only if there is a deduction Δ whose last pair (Sn, A^ is such that
SnQS and An = A. For "fi\-A" where " 0 " denotes the empty set, we
write "\-A".

3 The notion of deducibility, as formulated here, has the property that
Sk\-Ak for any pair (Sk, Ak) occurring as an element of a deduction.
Furthermore, since any deduction is a finite sequence of pairs (Sk, Ak) and
any formula occurring in Sk must have been introduced originally on
account of condition (a) of a deduction, each set Sk must be a finite set.
Thus we have at once the finiteness property: S \-A if and only if Sf \-A for
some finite subset S' of S.

The condition (b) for deductions concerning assumption eliminations
becomes redundant if the two conditions (i) and (j) concerning identity
introduction and elimination, respectively, are replaced by the following
two conditions:

(if) There is i < k, formulas Bu B2, and C, a term t and an individual
variable x not occurring in t such that Sk = Sif Af = (C —> B2),Ak = (C —>
(Vx{x = t — Bd)) and Subst Bι x/t B2.
(j') There is i < k, formulas Bl9 B2, and C, a term t and an individual
variable x not occurring in t such that Ŝ  = S, , A; = (C —• (VΛ;(ΛΓ Ξ ^ i?i))),
AΛ = (C -> B2) and Subst £]. #/ί B2.

In conjunction with the conditions (a)-(h) for deductions, these conditions
(if) and (j') yield exactly the same deducibility relations as the conditions
(i) and (j). Moreover, any deducibility relation can be established on the
basis of a deduction involving only the conditions (a), (c)-(h), (i f), and (j f),
without using the condition (b).

The condition (b) for a deduction concerning assumption eliminations
leads at once to the so-called Deduction Theorem:

IfS U{A$\-B thenShA — B.

Indeed, given S u {A} \-B, there exists a deduction Δ whose last pair is of
the form (Sn, B) with Sn c S U {A}. The deduction Δ may be extended to a
deduction Δ' by adding to Δ the pair (Sn - {A}, A —> B) on the basis of
condition (b). Since Sn - {A} c S, Δ f is obviously a deduction for S \-A -* B.

The condition (c) of a deduction concerning tautological inferences is
semantical in nature, but could be replaced in a variety of ways by purely
syntactical conditions. For example, appropriate conditions which provide
for the introduction and elimination of propositional connectives as in [2],
could serve the purpose of condition (c). However, since the truth-table
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method provides such a simple means of testing whether or not a formula

is tautologous, it appears that for practical purposes our condition (c) is

preferable.

4 Our notion of deducibility is defined in such a manner that each of the ten

conditions for a deduction leads immediately to a corresponding primary

deducibility rule, as listed in the next theorem:

Theorem:

(a) (AI): IfAe S thenShA.

(b) (AE): // S \-A then S - {B} h B — A.

(c) (TA): If A is tautologous then \-A;

(TI): If S1\-Al9 . . ., Sm\-Am and{A1A. . . Λ Λ W ) — A is tautologous then

SiU . . . U Sm\-A.

(d) (FS): If S \-A, Subst A x/t B and x is not free in any formula of S then

ShB.

(e) (AG): If ShA-> B then S\-VxA-> B.

(f) (CG): IfS\-A-> Band x is not free in any formula of Su{A} then

ShA->VxB.

(g) (AP): If S\-A —> B and x is not free in any formula of SO {B} then

S h 3xA — B.

(h) (CP): IfS\-A->B then S \-A — 3xB.

(i) (Π): If ShB, Subst A x/t B and x does not occur in t then St-Vx(x =

t->A).

(j) (IE): If S \-Vx(x Ξ t —* A), Subst A x/t B and x does not occur in t then

S\-B.

5 In order to illustrate the usefulness of these rules we give several

examples.

(I) \-3xVyA-* VyBxA

Proof: 1. \-A — A (TA)

2. \-VyA-+A (AG)

3. \-VyA — 3xA (CP)

4. h-ΞΛΛΛyA-* 3Λ;A (AP)

5. \-3xVyA — Vy3ΛrA (CG)

(II) f-3#.A<e^~V# ~A

Proo/; 1. I — A — - A (TA)

2. hV#~A-* -A (AG)

3. hA-* ~VΛ: - A (TI)

4. h3;cA-- -VΛ - A (AP)

5. hA-*A (TA)

6. f-A — 3xA (CP)

7. I—3xA~* - A (TI)
8. h~3#A-> VAT-A (CG)

9. l-3#A<->~V# - A (TI), 4, 8

(ΠI) H ί Ξ ί
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Proof: Let p be a 0-ary predicate variable and let x be an individual
variable not occurring in t; then we have:

1. ϊ-(p-+p)-(x = t->x = t) (TA)

2. \-(p — / > ) - * Vx(x = t-*x = t) (CG)
3. \-Vχ(x = t-> x = t) (TI)
4. ht = t (IE)

6 For the purpose of demonstrating the completeness of the primary
deducibility rules, we establish several additional deducibility rules for the
system S.

(AI*): IfShA->BthenSu{A}\-B.

Proof: 1. S \-A -> B Hypothesis

2. {A}hA (AI)
3. Su{A}\-B (TI), 1, 2

(VE): |f S h VΛA αwd Subst A #/* # * ^ w S h ΰ .

Proof: 1. S I-VΛ A Hypothesis
2. f-A-*A (TA)
3. hV^Λ->A (AG)
4. hV#A — B (FS), Subst A V* B
5. S h β (TI), 1,4

(VI): If S \- A and x is not free in any formula of S then S \- VΛΓA.

Proof: Let y be an individual variable which is distinct from x and does not
occur in A; then there exists a unique formula B such that Subst A x/y B and
Subst B y/x A; furthermore, x is not free in B. Now:

1. S\-A Hypothesis
2. S h £ - > A (TI)
3. S \-B -> V#A (CG); ΛΓ is not free in S U {β}
4. S h £ (FS); x is not free in S
5. ShVxA (TI), 3, 4

(VI*): if S \-Bt Subst 2? ;y/# A, Subst A ΛΓ/3> I? αwd y is not free in any formula

of S, then S f-V#A.

Proof: If x is identical to y then this rule (VI*) reduces to the rule (VI).
Thus it can be assumed that x is distinct from y. From S \-B it follows that
there is a finite subset Sr of S, say Sr = {Ax, . . ., A r}, such that S ' h £ . Let
2 be an individual variable distinct from y and not occurring in any formula
of Sr U{VΛΓA}. Then there exist unique formulas Bl9 . . ., Br such that
Subst Ai x/z Bi and Subst B{ z/x A, for i = 1, . . . , r. Letting S" = {Bl9..., Br},
we note that y is not free in any formula of S" since y is not free in any
formula of S f; also x is not free in any formula of S" since x is distinct
from z. Now we have:

1. S' \-B Hypothesis

2. hAL - » ( . . . - > U r -> 5) . . . ) (AE), r applications
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3. 1-Bχ - > ( . . . - (Br - B) . . .) (FS); x/z

4. \-Bι - ( . . . - ( 5 r - A) . . .) (FS); y/*

5. h ( B l A . . . Λ £ r ) - A (TI)

6. h(BiΛ. . .ΛBT) — VΛA (CG)

7. i-UiA. . . Λ A r ) - V*A (FS); z/x

8. K A x - ί . . .->(A r -*V*A) . . .) (TI)

9. S' \- VxA (AI*), r applications

10. S \-VxA definition of h S ' c S

(31): IfS\-B and Subst A x/t B then S h 3xA.

Proof: 1. S h β Hypothesis

2. i-A — A (TA)

3. I-A -> 3#A (CP)

4. 1-5 -• 3#A (FS)

5. Sh-3*A (TI), 1, 4

(3E*): # S u{J5}hC, SubstB^AA, Subst A Λf/y 5 and y is not free in any

formula of S U {c} ίftew S U {3ΛA} I- C.

Proo/; 1. S u {B} \- C Hypothesis

2. S\-B-> C (AE)

3. S h - C - ~B (TI)

4. Su{~C}h-ΰ (AI*)

5. Su{~C}hV* -A (VI*)

6. l—A-> -A (TA)

7. hVtf~A-» -A (AG)

8. hA-> -VΛ; - A (TI)

9. \-3xA -> ~Vx - A (AP)

10. S U { ~ C } Ϊ - ~ 3 Λ A (TI), 5, 9

11. Si—C — ~3*A (AE)

12. S\-3xA->C (TI)

13. Su{3xA}hC (AI*)

(FS*): 7f S h A, Subst S ΛΓ/̂  Sr and Subst A x/t A' then Sr h A' .

Note: Subst S Λ / ^ S ' means that for each £ e S there is 5 ' e S f such that

Subst B x/t Br, and for each B1 eS' there is B e S such that Subst B x/t B*.

Proof: Since ShA, there is a finite subset {Al5 . . . ,A r } of S such that

{A1? . . . , Ar}h-A. Let A{, . . . , A\ be such that Subst A, x/t A\ for i = 1, . . . , r

and hence {A{, . . ., A ' } c Sr. We have now:

1. {Al9 . . ., A r}ι-A Hypothesis

2. H-Ai — (. . . -* (Ar — A) . . .) (AE), r applications

3. HA{ - ( . . . - > (^rf - A') . . .) (FS); x/t
4. {A{, . . .,A r

f}ι-A' (AI*), r applications

5. S' \-A' definition of h; {AI, . . ., A\} c Sf

(II*) //ShA and Subst A Λr/ί 5 then SU{x = t}hB.

Proof: Let £ be an individual variable distinct from x and not occurring in
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A; then there is a unique formula C such that Subst A x/z C and Subst C z/
x A] furthermore, Subst C z/t B since Subst A x/t B. Now:

1. ShA Hypothesis
2. hC -> C (TA)
3. HVΛ:(% = Z -> (A - O ) (II)

4. h# Ξ ^ _> (A-* C) (VE)
5. h * = t - (A - B) (FS); */f
6. {iM}HA-5 (AI*)
7. Su{x= t}hB (TI), 1, 6

The primary deducibility rules together with the rules established so
far for the system £ suffice to guarantee the completeness of our system
S. For example, the rules (AI), (AE), (TI), (VE), (VI), (FS*), (31), (3E*),
and (II*) together with the deducibility relation ht = t are already sufficient
to obtain all consequence relations for the full first-order predicate logic;
except for the rules (AI), (AE), and (TI), the remaining rules of the above
list, dealing with quantification and identity elimination, are generalizations
of rules which in [2] are shown to form a complete set of rules for
first-order predicate logic with identity.
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