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A COMPLETE CLASSIFICATION OF THREE-PLACE
FUNCTORS IN TWO-VALUED LOGIC

J. C. MUZIO

1 Introduction Sobociήski [5] has shown that there exists a functor of four
arguments which may define any of the functors of one or two arguments by
substitution of the variables £, q or constants 0, 1 into its arguments, this
functor only being used once in any definition. Such a functor is said to
generate all the binary functors, and is said to correspond to a universal
decision element. Sobociήski also proved that no three-place functor can
correspond to a universal decision element, since it is unable to generate
sufficient binary functors. In [3], the present author considered certain
three-place functors which generate particular subsets of the binary
functors and proved some results as to which subsets could be generated.
In the present paper, we consider all 256 three-place functors and classify
them according to the subsets of the binary functors they generate, again
subject to the restriction that the functor is only used once in such a
definition. The 256 functors are divided into 40 basically distinct classes,
it being easily shown that all elements of the same class generate
essentially the same set of binary functors.

The detailed derivation of the classes is achieved by investigating 10
basic classes, all the others being deducible from these. For each of the
classes, a complete listing of all the binary functors generated is given.
Included in this list are all the three-place functors investigated by
previous authors. For instance, Church's conditioned disjunction [l] is our
class 27 and the sole sufficient operator of Wesselkamper [6] is class 43.
The QUDEs given in [3] are classes 45 and 210, which, of course, generate
the largest subsets of binary functors. As will be seen, the class numbers
yield the truth-tables of the members of the class. The list also indicates
which of the classes contain pseudo-Sheffer functions. (Upq is a pseudo-
Sheffer function if the calculus based on U and the constants 0, 1 is
complete. More details will be found in [4], though our definition is slightly
different from that of Rose in that we include the Sheffer functions as a
subset of the pseudo-Sheffer functions.)
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For a binary functor Uxy, we define its value x y Uxy
sequence to be (klmn) where k, I, my n are speci- T Γ
fied by the truth-table shown (k, I, m, ne{0, l};
0, 1 being used for both the logical constants and
the truth-values they assume). . .

1 1 n

Similarly, the three-place f u n c t o r Δxyz x y z Δxyz
specified by the table has a value sequence T 7 "
(abcdefgh). For such a functor, we shall identify
it by a description number, which is just the
decimal e q u i v a l e n t of the binary number n i l ή
(abcdefgh) f where a is the most significant bit.
Thus 107 is the description number of the
functor with value sequence (0 1 1 0 1 0 1 1 ) .
Δ(107) will also be used to denote this functor.

From Δxyz, it is possible to define a maximum of nine binary functors
by substitution of the variables p, q or the constants 0, 1 into its argu-
ments, subject to the following conditions:

a) the resulting functor must contain both p and q;
b) the first substitution of p into Δxyz is in a place preceding the first
substitution of q.

The nine possible substitutions and the resulting binary value sequence are
listed below:

substitution value sequence

x/P, y/P> z/q (abgti)
x/P, y/q, z/p (acfh)
x/P, y/q, z/q {adeh)
x/0, y/p, z/q (abed)
x/P, 3>/0, z/q (abef)
x/P, y/q, z/0 (aceg)
x/P, y/q, z/\ (bdfh)
x/P, y/I, z/q (edgh)
x/l>y/P,z/q (efgh)

2 Notation for the binary functors We shall use Lukasiewicz's notation for
the 16 binary functors, and it is given in the table below:

notation value sequence functor

1 O (0000)
2 K (0001) conjunction
3 L (0010) nonimplication
4 / (0011)
5 M (0100) nonimplication
6 H (0101)
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notation value sequence functor

7 J (0110) exclusive or (nonequivalence)
8 A (0111) disjunction
9 X (1000) joint denial

10 E (1001) equivalence
11 G (1010)
12 B (1011) implication
13 F (1100)
14 C (1101) implication
15 D (1110) incompatibility
16 V (1111)

3 Derivation of the conjugacy classes From a particular three-place
functor Δxyz with value sequence {abcdefgh), it is possible to obtain five
further functors by permutations of the input variables x, y, z. These have
value sequences (abefcdgti), (aecgbfdti), (acbdegfh), (aebfcgdh), (acegbdfh)
resulting from the cycles (xy), (xz), (yz), (xyz), (xzy) respectively. If all
six of these value sequences are distinct, then Axyz is fully conjugated (this
term is introduced in [2]). If all the value sequences are identical, then the
functor is unconjugated while the only other possibility is that there are
three distinct functors amongst the six value sequences. This is shown by
the result below and, in this case, the functor is called half-conjugated. A
class is described as fully conjugated if all its elements are fully con-
jugated, and similarly for the other two terms.

The following result is very straightforward and we do not include all
the details of the proof.

Theorem 3.1 All three-place binary functors are either fully conjugated,
half-conjugated, or unconjugated.

It is necessary to show that any functor which is not fully conjugated
must either be half-conjugated or unconjugated. Initially, if the six value
sequences are not all distinct, then at least one of the following conditions
must hold:

(i) e = c,d=f,
(ii) e = b,d=g,

(iii) b = c,g=f.

The three cases are similar and we only consider (i). In this case, the
six value sequences reduce to (abcdcgh), (accgbddh), and (acbdcgdh) so that
the functor is half-conjugated, if these are distinct, while any further
identification which makes two of them identical also results in the third
being identical, yielding an unconjugated functor.

The functors defined by the six value sequences form a conjugacy class
which we say is generated by any of these value sequences. It is clear from
the structure of the six value sequences that a number of other classes may
be deduced from any given one. {(abcdefgh)} denotes the conjugacy class
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generated by (abcdefgh), and a, b, . . ., h denote the opposite constants from
a, b, . . ., h respectively.

Clearly, if a = {(abcdefgh)} is a conjugacy class, then so are:

aλ = {(abcdefgh)},
a2 = {(abcdefgh)},
a3 = {(abcdefgh)},
a4 = {(abcdefgh)},
a5 = {(άbcdefgh)},
a6 = {&bcdefg^},
a7 = {(abcdefgh)}.

It is obvious that all eight classes are disjoint and it follows that all
the conjugacy classes may be deduced by limiting consideration to those of
the form {(OOcdefgO)}.

If a denotes a conjugacy class, we shall use β to denote the set
containing all the description numbers of the functors in a. Each conjugacy
class whose members all have description numbers less than 128 will be
identified by the smallest of these numbers, and each class whose members
all have description numbers greater than 127 will be identified by the
largest of these numbers. For a class β, the class identifier is denoted by
β*. Clearly, no class can contain elements with description numbers p, q
such that p < 128 and q ^ 128, since a is the same for all members of a
class. The purpose of making the distinction at 128 in the definition of the
class identifier is to ensure that the dual of a class 0* is 255 - β*.

If a = {(OOcdefgO)}, then the other seven classes may be defined by:

βι = {p\p = q + iy qeβ},
β2 = {p\p= 126 - q, qeβ},
β3 = {p\p= 127 - q9 qeβ},
β* = {p\p= 128 +q, qeβ},
β5 = {p\p = 129 +q, qeβ},
β6 = {p\p = 254 -q,qeβ},
βΊ = {p\p = 2tt-q, qeβ}.

If we use the above to deduce eight conjugacy classes from any given one,
there are only ten distinct classes to consider. These are listed below:

a) fully conjugated functors

10 = {10, 12, 34, 48, 68, 80},
26 = {26, 28, 38, 52, 70, 82};

b) half-conjugated functors

02 = {02, 04, 16},
06 = {06, 18, 20},
08 = {08, 32, 64},
14 = {14, 50, 84},
24 = {24, 36, 66},
30 = {30, 54, 86};
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c) unconjugated functors

0 = {0},
22 = {22}.

These ten classes contain 32 functors and may be used to deduce another 70
classes containing the remaining 224 functors. For example, from 14, we
may deduce the following eight classes:

14 = {14, 50, 84},
15 = {15, 51, 85},
42 -{42, 76, 112},
43 = {43, 77, 113},

212 = {142, 178, 212},
213 = {143, 179, 213},
240 = {170, 204, 240},

241 = {171, 205, 241}.

In the table below, see p. 434, we explicitly list the class that includes Δ(ί)
for 0 ^ i < 127 for those cases in which i is not the class identifier. The
dual functors and their classes are easily deduced from this table, for
example, Δ(205) is the dual of Δ(50) which is in class 14, so Δ(205) is in
class 241. The duals of a class a and a functor U will be denoted aD and UD

respectively.

4 Binary functors generated Initially, it is easy to see that all members of
a conjugacy class generate essentially the same set of binary functors,
except possibly for the order of the variables for the noncommutative
functors. Consequently, for each of the four pairs of noncommutative
binary functors L, M; I, H; G, F; B, C; it is only necessary to generate one
of each pair (since Lxy = Myx etc.) and we shall write L, /, G, B for L or
M, I or H, G or F, B or C respectively in the following work.

Although there are 80 distinct conjugacy classes, it is only necessary
to consider 40 of them since it is clear that if class a generates binary
functor U (meaning every element of a generates £/), then aD will generate
UD. In the classification below, see p. 435, we list all of these 40 classes
and the binary functors they generate. Results for the dual classes are
easily deduced; for example, Δ(205) is the dual of Δ(50) which is in class
14. Consequently, Δ(205) generates K, G, B, and V being the duals of
D, I, L, and O.

However, a more useful classification than this can be made. Initially,
we define a true k-place functor (k > 1) to be one which does not reduce
to an m-place functor for some m < k. In the table, see p. 435,

a) no distinction is made between fully conjugated, half-conjugated, and
unconjugated functors;
b) /, being just an input variable regenerated, is not a true binary functor;
c) similarly, G, an inverted input variable, is not a true binary functor.
Further, if we are interested in generating N (negation), then there are Δ's
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class binary functors class binary functors

00 O 40 O L JX

01 OK 41 KLIJE

02 OK L 42 O LA G

03 OKI 43 KLIAB

06 OKLJ 44 OLIJXG

07 OϋΓ/A 45 KLIJAEB

08 O i l 46 LIJAGD

09 OKLIE 47 L / A 5 F

10 O L IG 60 O / J G

11 OKLIB 61 KIJAB

14 OLID 62 LIJAD

15 O/F 63 /A F

22 #LJ 104 LJI

23 #/A 105 /J£

24 OKLJX 106 LJAXG

25 KLJAE 107 IJAEB

26 OKLIJG 110 LJAGD

27 KLIAB 111 7 J A £ 7

30 KLIJD 126 JAD
31 #/A F 127 A 7

which generate AT, but not G (since G is obtained as a degenerate binary

functor, and we did not include unary functors in our substitutions), such as

Δ(41).

Hence, the following table is divided into three sections, one for fully

conjugated, one for half-conjugated, and one for unconjugated functors.

Further, for each class, the list of functors generated is restricted to

K, L, J, A, X, E, By D, and N; that is, all the true binary functors and

negation. Because of negation, it is necessary to list the dual classes

explicitly.

Two further items are also included. Those functors which are

pseudo-Sheffer are indicated by 'P' following the class identifer, and

finally, those functors which are not true three-place functors are marked

by an *.

a) Fully conjugated

class functors dual class functors

10*P LN 245*P B N

IIP KLBN 244P LBDN

26 P KLJN 229 P EBDN

27P KLABN 228 P LXBDN

44P LJXN 211P AEBN

45P KL J A E B N 210P L J X E B D K

46P LJADN 209P KXEBN

47 P LABN 208 P L X B N
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b) Half-conjugated

class functors dual class functors

02P KLN 253P BDN
03* K 252*P DN
06P KLJN 249P EBDN
07 KA 248P XDN
08 P LXN 247P A B N
09P KLEN 246P JBDN
14P LDiV 241P tf £ JV
15* 240* N
24P KLJXN 231P AEBDN
25P KLAEN 230P JXBDN
30P KLJDN 225P KEBDN
31 tfA 224P XDiV
40P LJXN 215P AEBN
41P KLJEN 214P JEBDN
42P LAiV 213P X £ AT
43P KLABN 212P LXBDN
60* JiV 195* £ΛT
61P KJABN 194P LXEDN
62P LJADN 193P KXEBN
63* A 192*P XiV

106P LJAXN 149P AXEBN
107P JAEBN 148P LJXEN
HOP LJADN 145P KXEBN
HIP JABN 144P LXEN

c) Unconjugated

class functors dual class functors

0* 255*

01 if 254P DΛΓ
22 P KLJN 233 P EBDN
23P ϋΓA 232P X D J\Γ

104P LXEN 151P JABN
105 J£i\Γ 150 J£N
126P JADN 129P KXEN
127 A 128 P XiV

A number of immediate results may now be stated concerning three-
place binary functors. Of the 256 such functors, 226 are pseudo-Sheffer,
and this sort of ratio appears also to be true for w-valued logic (w > 2).

Of the 256 functors, 238 will generate JV immediately, and the r e -
mainder are unable to do so, even if more occurrences of Δ are allowed.

It is also interesting to note that all fully conjugated functors are
pseudo-Sheffer and it is thought that this result is true in general for
n-valued logic.
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