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A FIRST-ORDER LOGIC OF KNOWLEDGE AND
BELIEF WITH IDENTITY. II

SCOTT K. LEHMANN

Part I* presented a formal first-order, Gentzen-type system of the
logic of knowledge and belief based closely upon the informal work of
Hintikka [1]. In Part II, this system is shown to be semantically complete.

8 Completeness: Preliminary Definitions Formula-sequences can be
regarded as finite sequences of formulae, and sequents as ordered pairs of
such sequences. In what follows we shall accordingly deal with sequences
rather than with expressions, though we shall retain the expression
symbolism already introduced.

If o is a finite sequence of length » (an n-tuple) and 0 < %k < n, then (o),
shall be the 2 + 1’st element of o; if @ and B are such that ((0),)s is defined,
we write (0)asg= ((0),)s; as before, axBxy = (axf)xy. Let D(T, i) = Vi[([j <
i1 2 (D)0 = K) v (D)oo = B))) & ([ <] D [(Djeo # K) & (D0 # B)])). If
X = {T|3iD(T, i)}, define 6:X — w by 6(I) = ¢ iff D(T,¢). Let ¥ = {S] -
i35[(S)ovi = (1] & ~F[((S)1aivo = 1) & ((S)1ajer = (S)1inr)]} and Z = {Se
Y1((S)o € X) & ((S)leX)} Finally, if T has length # +1 and 0 <j<mn, then
®(T, i) is the sequence of formulae defined by VE[([k<i]D [(I")k =
(B(T, D)) & ([i < k] D (D = (&(T, D11

We now define a number of functions f from sequents to sequents such
that f(S) is related to S as premiss to conclusion by a rule of inference,
modulo applications of the enabling rules. These functions will be used to
construct the ‘proof trees’ used in the completeness argument. We assume
throughout this section that q, is the k’th free individual variable.

1. f, shall be the identity function on the set of sequents.
2. If Zn,o=1{S€ Z|3i((S)orss0 = N)}, then fiy o is defined on Zy o by fin,olS) =
(((S),, 7), T, where

*The first part of this paper appeared in Notre Dame Journal of Formal Logic, vol.
XVII (1976), pp. 59-77. An acquaintance with that part and the references given
therein is presupposed.
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a. = uj((S)o,i.o =N).

b. T is defined by

i, ifj <8((S)y), then (T); = (S)..;,

i, (Mssyy) = (osins

iii. if 6((S)1) <7, then (T);y, = ().

3. If Zy,, = {S€Z|3i((S)1io = N)}, then fy , is defined on Zy,, by fn,.(S) =
<Fa (I)((S)ly Z))’ Where

a. i= uj((s)l*]'*O =N).

b. T is defined by

i, if < 5((S)), then (T); = (S)os;,

ii. (F)S((S)o) = (S)I*i‘h

iii. if 8((S)o) <j, then (P)j+l = (S)o:]'-

4. If Zc,o = {S€ Z13i((S)os ;00 = C)}, then f¢,, and fc,, are defined on Zc,, by
£2,0(8) = (T, (8),) and fe oS) = (&((S)o, 9), T',), where

a. ¢ = uj((s)o‘,‘«o = C).

b. Ty is defined by

i.  if j < 6((S),), then (To); = (S)Ot/y

if. (Too(9)g) = (Soniezs

ifi. if 8((S)o) <J, then (To)jyy = (&((S)o, 1));.

c. I') is defined by

i- 1f] < 6((8)1); then (Fl)] = (S)l*jv
ii- (Fl)ﬁ((s)l) = (S)O*i*lv

iii, if 5((S),) <7, then (T'));y; = (S).;.
5. If Z¢,,=1{S€Z|3i((S)1aino = C)}, then fc, is defined on Z,, by fc,:(S) =
(Ty, T';), where

a. i= lij((s)u]"o =C).

b. T’y is defined by

i, if j <6((S)o), then (T'g); = (S)ou;»
il. (Toss)y) = (Srajnr,

iii. if 5((8)0) Sj, then (FO)j+1 = (S)O*i'
c. I'; is defined by

i.  if7<5((S)), then (T); = (S)1.;,

i, (TYss)p= Sisisz,

iil. if 5((S)y) <, then (T');41 = (8((S)y, 0));.

6. If Zgo=1{S€Z|3i((S)ouioo = E)}, then for each free individual variable a,
fE,o(@) is defined on Zg , by fE,0(@)(S) = (T, (S),), where

a. i= Ilj((s)ovwo = E).
b. T is defined by
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i, if § < 5((S)e), then (T); = (S)oa‘,‘,

ii. (1")5((5)0) = (S)osin2(@/(8) guie1)s

iii. (1-')5((5)0)“ = Pa,

iv. if 5((8)0) < jy then (F)j+2 = (‘I)((S)o, i))j~

7. Let T elg(n) iff there exists a strictly increasing function tg(T):n — w
such that (i) if 7 ¢, then (F)LE(P)(,')*O = E, and (ii) if (I');.o= E, then ¢ = 1g(T")())
for some jen. Obviously tg(T") is unique. If Zg ,, ={Se Z|(S), e Ig(m)}
then for each free individual variable a, f§ ,.(a) and fg ,,(a) are defined on
nZﬁi ZE 1,m Y f%, l,n(d)(S) = ((S)o, T') and flE,1,n(a)(S) = <(S)o, T',), where

a. = e((9))).

b. T, is defined by

i if 7 <5((S),), then (T'); = ()1,
ii. (Fo)ﬁ((s)l) = (8) 14142(@/(S) 11 i01)s
iii. if 6((S))) < j, then (T'g) ;1; = (S)1a;.

c. T, is defined by

i. if 1< 6(()y), then (T'); = ().,

ii. (Tsus)y = Pa,

iii. if 6((S))) <j, then (T') 4, = ().

8. If k #jand Zix,; = {Se Z|Ji(laa; = (S),.;)}, then £ ;is defined on Zj 4 ; by
fi,6,/(S) = (T, (S)1), where T is defined by

a. if 7 < 6((S),), then (T); = (S)gx;.

b. (D)ss)) = lajar.

c. if 5((S),) <4, then ()4, = (S)g.;.

9. Let I'e Ip ;x(n) iff there exists a strictly increasing function (g ; ;(T"):n —
w such that (i) if m € n, then (F)‘F,i,k(P)("’) is atomic and (T).p ; 4 (D)(m)+i = G, and
(ii) if (T'), is atomic and (T')p.; = ai, then p = g ;k(T)(m) for some m en.
Obviously tp;(T) is unique. If ZgG g )0m = 1S € Zi,1,j1(S)o€ IF,i,(m)}, then
JeG k. ),0,n 18 defined on n%; ZgGi,k )o,m OY TrG,k,),04(8) = (T, (S),), where

a. p = tg,i((S)o) ().
b. T is defined by

i, if ¢ <5((S)o), then () = (S)owgs
it.  (Dss)p)i = aj, and if ¢ # 7, (T)s(($))g = (Sowpags
ilic if 5((S)O) < q’ then (F)q+1 = (S)th'

10. It Zpgapam = {S€Z1s,1(S) € Tpin(m)}, then fri i1, is defined on
E ZF(i,Ie,j),l,m by fF(z’,k,j),1,n(S) = <(S)0, F)} where

a. b= tg,i,:((8))(n).

b. T is defined by

i.  if ¢ <5((9)), then (T)g = (S)1.q»
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il. ((Mss)p)i = j, and if ¢ # i, (Ds)plg = (1epegs
iii. if 6((S);) < g, then (I")qﬂ = (S)l,q.

11. Let T"elkx(n) iff there exists a strictly increasing function tg ,(T"):n —
w such that (i) if ie n, then (F)LK,k@)(i).o = K and (1")4(’,6(”(,.),1 = a, and (ii) if
(T);u0 = K and (T);., = @, then i = 1k,x(T")(j) for some je n. Obviously tk ¢(T")
is unique. If Zk(jom = {S€ Zi1il(S)o€ Ik,a(m)}, then fkw,j), o is defined on
nZﬁ)n ZK(k,j),0,m OY FK(kj),04(S) = (T, (S),), where

a. p= tk((8)o)(n).
b. T is defined by

i if ¢ <5U(9)o), then (T) = (S)ougs
ii.  (D)ss)9))o = K, ((Mss)pN1 = @i, and (T ((s)¢)z = (Shos pezs
ii. if 5((S)o) < g, then (T)y,, = (S

12, I Zkj)m = 1S€ 214 1(S) €l x (M)}, then f¢u yin is defined on
’Q ZK(k, po1.m DY Kk, 1.0(S) = {(S)o, T'), where

a. p = ((S))(n).
b. T is defined by

i. if ¢ <56((S),), then (T)q = (S)l*q,
i, ((Mssrplo = K, (Dssi)r = @j, and ((T)ss)p)z = (S) 1pzs
iii. if 6((S),) < q, then (I")q“ = (S)l*q.

13. Replacing ‘K’ by ‘B’ in (11), we obtain a definition of fB,),0,»-
14. Replacing ‘K’ by ‘B’ in (12), we obtain a definition of fg(,j),1,n-
15. Let I'eIg(n) iff there exists a strictly increasing function tg(I'):n — w
such that (i) if Zen, then (T ko = K, and (ii) if (T = K, then i =
tk(T)(j) for some jen. Obviously tk(T) is unique. I Zyg o, = {Se Z|(S)€
Ix(m)}, then fg , , is defined on 62 Zx.om BY [Ko0a(S) =(T,(S),), where

neém

a. p= k((S)o)(n).
b. T is defined by

i. if ¢ <5((S)o), then (T), = (S)ouq,

il.  (Dss)p) = (Sospezs

iii. if 8((S)o) < ¢, then (T)g,, = (S)ouy-

16. If Zy 4 1m = {S€ Z|(S) € Ig ,(m)}, then fy 4., is defined on 2 Zg 41, by
néEm

fK,k,l,n(S) = <F, ((S)l*i*z»’ where

a. i = tk,r((9))(n).
b. (T} = (S)oe i 4(oX0)-

17. Let ngy 4(T)ew be such that tpg ,(T):n g ((T) — w is a strictly in-

creasing function such that (i) if jeng g ,(T'), then (F)‘(’Bkk(m(f)wz K or

(F)(%'K’k(r)(j)*o = B, and (F)‘OB,K,/@(P)(”“ = a, and (ii) if (), = K or (I);., = B,

and (T);., = @, then i = tp g ,(T)(j) for some je gk o(T). Let ng g 4(T) € w be
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such that tpg 4(T)ing g (T) — w is a strictly increasing function such
that (i) if jenpy ,(T), then My o0 * K and (T).y @0 # B, or

(F)‘E GO # ag, and (ii) if (I') ;.o # K and (T, # B, or (I');,; # a4, then 7 =

g,k #(T)(J) for some jenpyg ). Obviously gk () and gk x(T) are
unique. If Zg 40, = {S€ Z|(S)o€ Ip 4()}, then fB 1, is defined on Y Zg 40, by

0€n
7B,k0lS) = (T, ©), where
a. I'! is defined by

i. if q < n"B’K‘k((S)O), then (F')q = (S)O*L% K k((s)o)(q),
. (T8 ¢ (g = S giororgizs

b. T is defined by

i if ¢ <npg (T, then (T)g = (T3 (oo
o , K. &
ii. (F)”g,K'k(P/)“"I: (r )‘é,K,k(P/)(q)'

18. If Zgpim = {Se Z|(8), ¢ IB,k(m)}, then fp;, , is defined on 2 Zg,k1m Y
nem
fB,k,l,n(S) = <F, ((S)up‘z», where

a. p= LB,k((S)l)(n)-
b. T is defined as in (17).

W -functions are those defined by (1), (16), (17), and (18); B-functions
are those defined by (4) and (7). #-functions are said to correspond if their
names differ only in superscript; f° and f' will be used to represent
corresponding &-functions with the obvious intent.

Let o be a finite sequence of functions defined by (1) through (18), say
0=(gos - s & I >0, pd(0) = (go, ..., &n1)e 0(S) =il . . go(S) . . ),
provided the functions g; are all defined at the indicated arguments. s,(0)
is the subsequence of ¢ consisting of the W- and £-functions of . s,(0) is
the subsequence of ¢ consisting of the W-functions of ¢. e;(c) is the
subsequence of ¢ consisting of the functions following the last W- or #-
function of 0. e,(s) is the subsequence of o consisting of the functions
following the last W-function of ¢. pd,(0) is the initial segment 7 of ¢ such
that e,(7) = @ and s,(7) = s,(0). r(o) is the set of initial segments of 0. r’(0)
is the set of proper initial segments of 0. t(o) is the set of sequences
differing from o at most by insertion of finite sequences of #£-functions
between A-functions and immediately following W -functions or between
W-functions and immediately following W-functions. 7,*7,€t'(c) iff 7,€t(0)
and 7, is a finite sequence of £-functions.

9 Completeness: The Basic Construction Our aim is to construct, from a
given unprovable sequent S, a kb'-model system £ such that |s|c u for
some pef. In view of Theorems 1 and 3 this will suffice to establish the
semantic completeness of F(K, B). The classical construction must be
ramified to take account of the operators K and B; essentially we must
carry out the usual construction in each possible world. Instead of
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constructing a single ‘tree’ we must construct a series of successively
better approximations thereto from which we derive the desired model
system.

We now define inductively, for any given sequent S, a sequence of sets
P,(S) of finite sequences of the functions defined by (1) through (18) of
section 8. The construction requires that we simultaneously define, for
each ceP,(S), two registers V,(S)(c) and V,.(S}o) of free individual
variables and a well-ordering R,(S)(0) of V,(S)(s). We shall also need to
establish along the way that P,(S) is finite and that for each oe P,(S),
V,(S)(0) and V,(S)(0) are finite. To simplify the notation we shall suppress
the reference to S.

I. Construction of P,, V,, V4, and R,.

P, = {(f o>}
Vol{f o) = V5 fo)) = v( Is])
Ro({fo) is the alphabetical order of the free individual variables restricted

to VI({fo).
Obviously P, is finite and if o € P,, then V(o) and V(o) are finite.

II. Construction of P,, V.4, Vi, and R,y. Suppose that we have con-

structed P,, V,, V), and R,; suppose that P, is finite and if o ¢ P, then V,(0)

and V,(0) are finite. LetV, = Zg V,(0); since P, is finite and V,(0) is finite
o€

for each o¢ P,, V, is also finite. We now define P,,, inductively.

A. The initial element.

(fore Ppu

Vn+1«f o» =V,
V,5+1(<fo>) =v( ' Sl)
Rn+1«f o) = Ro«f o)

Obviously V,.,((fo)) and V!, ((f,)) are finite.

B. The inductive step. We suppose that oe P,,, and that V,,(0) and V},(0)
are finite.

1. Suppose e,(0) = P and suppose there exists ¢ P, such that e,(7) # © and
s.(o*e,(T)) et(s,(1)). Then for any such 7:

oxey(7) € Pyyy

Via(0%€5(7)) = Vyuii(0)

V,(oxe5(1)) = V,i(0) U V,(7)

(@1, az) € Ryiy(oxey(1)) iff [(a; € Vy(1)) & (ay € Vr't(T)) & (ay, ay) € RA1)] v [(a,€
(Vis1(0) = V(7)) & (@z € (Vaa(0) = Va()) & (ay, @5) € Ry(0))] v [(a, € V(7)) &
(az € (Vpi(0) - V;(T)))]

Obviously V,,,(0xe,(7)) and V,,,(c+e,(7)) are finite.

2. Suppose either (a) e,(0) =@, n #0, there is no 7€ P, such that e,(7) # @
and s,(0#e,(7)) et(s,(7)), and there is some 7 ¢ P, such that s,(pd(0)) € t'(s,(7)),
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or (b) there is some 7e P, such that s,(0) e t(s,(7)), e,(0) = e,(7), and if pe P,
and 7Te r'(p), then s,(p) # s,(7). The construction in this case is described
in stages.

a. The propositional construction. Partially order the functions defined by
(2), (3), (4), and (5) of section 8 according to fno < fN1< fe 1 fe.1 < fCo
and f¢1 < feo. If {g,-} is a sequence of these functions such that (i) g, is a
least function defined at o(S), and (ii) for each j, g+ 18 a least function
defined at oxgo* . . . *g;(S), then for each j:

TxZo* . .. *gj € Pyyy

Vn+1(0'*go* . .. *gj) = Vua(0)
Vi(o*go* . .. *gj) = Vya(0)
Ry(okgo* . . . *gj) = R,4(0).

If the complexity c(S) of a sequent S is defined as the sum of the com-
plexities of the component formulae, each instance of a formula counting as
a formula, then since c(o*go* . . . *g;.1(5) <cloxgox . . . *g;(9)), c(a(9)) is
an upper bound on the length of the sequences {g;}, so c(o(S)) - 2¢@ j5 an
upper bound on their number. Therefore the propositional construction
adds only a finite number of elements to P,;.

b. The quantifier construction.

i. Let 7 be a maximal element resulting from (a), i.e., there is no element
p added to P,,, by (a) such that Ter'(p). Let {a;} be the sequence of free
individual variables such that (@) g, is the first free individual variable not
in V,y(7), (B) for each k, a,, is the first free individual variable not in
V(1) U{a;lj <k}, (7) fEola,) is defined at 7(S), and (5) for each &, fg o(@z1)
is defined at 7fE o(ag)* . . . *fEo(@)(S). Since V,,;(7) is assumed finite, the
length of {a;} is precisely 2J n(i), where n(i) is the number of initially
1

placed existential quantifiers in (7(S)),.;. Then for each k:

THfE,o(@0)* . . . *fE,o(a@r) € Py

Vurd(THE, ol@o)* . . . *E,0(@) = Viuua(T) U {ai l] < k}

Vr;+1(7*fE,0(a0)* e *fE,o(ak)) = Vr:+1(7) U {aj I] < k}

(a, a") e Ry (THfE olag)* . . . *fE,o(ak)) iff [(a € V(7)) & (a’ €Viu(7) & (a, a”)
eR,u(M]v(@e V(1) & Jila' = a))]vIiTjl(a = a;) & (@' = ;) & (i <j)].

Since {a} is finite, we add only a finite number of elements to P,,, and only
a finite number of elements to V,,;(7) and V,..(7) to obtain V,,,(T+fE o(@,)*
*fE,o(ak)) and V. (T+/E o(@o)* . . . *fE, olar)).

ii. Let 7 be a maximal element resulting from (i). Partially order the
functions fg , ,(a) and fg (@) with new and aeV, l(7') as follows if pe2,
p'e2, aeVy (1), a'e Vi (7), mew, and m'ew, thenfg 1m(a) <fE L (@) iff
m<m'or m=m'and (a, a")eR,.(7). Let {gk} be a sequence of these
functions such that (a) g, is a least function f é’,l,,,,(a) defined at 7(S) such
that D(7, m, a, 7, S), and (B) for each k, g, is a least function prll,,,,(a)
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defined at T gg*x . . . *g,(S) such that D(7*gp* . . . *g, M, A, T, S), where
Dlp, m,a, 7,8)=-37'Tp'Im'[(p" € 2) & (m' € ) & (T'+E 1 (@) € ¥(0)) & (85(7") =
$2(7)) & ((77(8)) 14 g ((1(5)) mo 2@/ (TS 1a g ((5) Y1) = (O(SD1eip((pts)1)mval@/

(p(S))luE((p(y))1)(,,,),1))]. Then for each k:

ThGo* . . . ¥8,€Pyyy

V(T go* . . . *gk) = V(1)
Vo7 go* o . *&g) = Viu(7)
Ron(Txgok . . . xg) = Rpu(7).

We easily see that this step adds only a finite number of elements to P,.,,

since if n({) is the number of initially placed existential quantifiers in

(7(S))1.;, then m =V,:+1(T)N, where N =Z_)n(i), is an upper bound on the
1

length of the sequences {g,}, so m - 2" is an upper bound on their number.
c. The identity construction.

i. Let 7 be a maximal element resulting from (b). Well-order the functions
defined by (8) of section 8 by f) s ; < fir,;iff # < k' or k= k'and j <j'. Let
{g,} be the sequence of these functions such that (a) g, is the least function
fi,5,; defined at 7(S) such that D(%, j, 7, 7), and () for each m, g, is the
least function f| x,; defined at Txgo* . . . ¥g,(S) such thatD(k, j, 7, Txgo* . .
*&n), where D(k, j, 7, p) = -37'[(7'+f1 4, € ¥ (p)) & (s5(7") = s5(7))]. Then for
each m:

THGo* . . . *xg, € Ppy

Voia(T¥go* o . . *gy) = Vpu(7)
Vou(Txgox . . . *g,) = V(1)
Ro(Txgo* . . . x&,) = Ryn(7).

Since the number of identity formulae in (7(S)), is an upper bound on the
length of the sequence {g,}, this step adds only a finite number of elements
to P4

ii. Let T be a maximal element resulting from (i). Well-order the
functions defined by (9) and (10) of section 8 by fr¢,&.).p.m < JEG1k1,j1),ptmt ff
E<PRk'ork'=kandj<j'ork=Fk,j=j,andp<p'ork==~k, j=j" p=p
and m<m' or k=k', j=j, p=p', m=m', and i <i'. Let {g,} be the
sequence of these functions such that (@) g, is the least function fr,k,).p.m
defined at 7(S) such that D(7, %, &, j, p, m, 7, S), and (B) for each g, g, is
the least function fr(; s, j),p,m defined at Txgox ... x£,4(S) such that D(7xgo* ...
x&q, i, k, j, b, m, 7, S), where D(p, i, k, j, p, m, 7, S) = -37'3m'[(m' €
w) & (T'*fF(i,k,i).p,m’ € I’(P)) & (52(7') = SZ(T)) & ((T'(S))pu.l:’,-'k((r’(S))p)(m') =

(0(S))pe 1k, i, 1 (5N p)m) )]. Then for each g:

THEo* . . . *¥Zq € Ppyy

Vur(T*80% . . . *gq) = V(1)
Vou(Txgo* . . . *gq) = V(1)
Ron(Txgox . . . xg,) = Ryn(7).
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The sequence {g,} is finite, for if m, is the number of atomic formulae in
7(S), m, is the maximum index of the atomic formulae in 7(S), and m; is the
number of identity formulae in (7(S)),, then #m, . m, - m, is an upper bound on
the length of {g,}. Therefore this step adds only a finite number of
elements to P,;.

iii. Let 7 be a maximal element resulting from (ii). Well-order the
functions defined by (11), (12), (13), and (14) of section 8 by fz(p.p.m <
Fzier,inprm  iff B<Ek' or k=Fk' and j<j or =k, j=j', and p<p'or
E=Fk,j=j,p=p', and m<m'ork=Fk',j=jp=p",m=m', Z=K, and
Z'=B. Let {g;} be the sequence of these functions such that (a) g, is the
least function fz,).p.m defined at 7(S) such that D(7, Z, &, j, p, m, 7, S), and
(B) for each %, g, is the least function fz( j),p» defined at Txgox . . . *g;(S)
such that D(Txgo* . . . *g;, Z, k, j, p, m, 7, S), where D(p, Z, k, j,
p, m, 7, S) = -3 AM'[(m"ew) & (T'% 2z, ppm € ¥(0) & (s2(7) = 8,(7)) &
((7"(SNpacz, g 1)1y = (0(S)ps ez, 1 (ptsNp)m))]. Then for each i:

TxGo* . « . xZ; € Pyyy

Vo Txgo* . o o *%&3) = Vipa(7)
VaulTxgox o o . xg;) = V(1)
RosaT*&o* . . « x&;) = Ryu(7).

The sequence {gi} is finite, for if m, is the number of initial occurrences of
K and B in the formulae of 7(S) and m, is the number of identity formulae in
(7(S))o, then m,-m, is an upper bound on the length of {g;}; therefore the
number of elements added to P, in this step is finite.

d. The operator construction.

i. Let 7 be a maximal element resulting from (¢). Well-order the functions
defined by (15) of section 8 by fi o,m <fKom iff m <m'. Let{g,} be the
sequence of these functions such that (@) g, is the least function fg, ,
defined at 7(S) such that D(r, m, 7, S), and (B8) for each %, g, is the least
function fx o, defined at Txgox ... *g£,(S) such that D(7xgo*...*gy, m, 7, S),
where D(p, m, 7, 8)=-37'3m'[(m" € w) & (T'+ K o,m €F(P)) & (52(7") = 8,(7)) &
((T"(SNow ik (s )m) = (PN ouig((pisio)my) ). Then for each k:

ThGo* o o ¥ € Py

Vo T*80* .« . . *81) = Vuua(T)
Vr;+1(7*go* oo *gk) = Vr;+1('7')
Rpsa(THgo* . o . *gy) = R,u(7).

The sequence {g,} is finite, for if #(i) is the number of initially placed
operators K in (7(S))o.;, then 2 n(i) is an upper bound on the length of {g,};

therefore this step adds only a finite number of elements to P,,;.

ii. Let 7 be a maximal element resulting from (i). Then if g is defined by
(16), (17), or (18) of section 8 and g is defined at 7(S),
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Txg€ Py

Voia(Txg) = Vpia(7)

V(T g) = v([mxg(s) )
Rn+1(T*g) = Ry (7) ’VJ+1(T*g)-

This step adds only a finite number of elements to P,.,, since if m, is the
number of formulae in (7(S)), with initially placed operator B, and m, is the
number of formulae in (7(S)), with initially placed operator K or B, then
my + M is an upper bound on the number of functions defined by (16), (17),
or (18) of section 8 which are defined at 7(S).

If h(n) is the supremum of the lengths of s,(0) for o€ P,, then it is easy
to establish by induction that A(n) < n + 1. Suppose o€ P, and e,(c) = . By
construction there are only finitely many 7e P, such that either oe r'(7),
so(pd(7)) = s5(0), and s,(pd(7)) #s,(7) or cer(r), sx(7) =s,(0), and T is
maximal in P,. Therefore there are only finitely many maximal elements,
hence only finitely many elements, in P,.

To aid the understanding we illustrate below the construction of
maximal elements in P, P,, and P,. The horizontal bars represent
W -functions; the vertical segments represent sequences of functions other
than W-functions; the conditions sanctioning the various component con-
structions are indicated alongside.

-
IIB2a
IIB2b
IIB2b IIB1
— I ITA — I
Po P, P,

Finally, we observe that the structure of P, is determined by {s,(c) /o€
P,} in the sense that if 7 is a finite sequence of #- and W-functions whose
last element is, say, g, then there is at most one element o¢ P, such that
the last element of ¢ is g and s,(0) = 7.

10 Completeness: The Main Lemma As noted, we have had to replace the
single, typically infinite completeness construction with a typically infinite
sequence of finite constructions: since we generally do not actually com-
plete the construction of any world, we cannot begin the construction of
other derivative worlds with a complete set of materials. Unfortunately,
we are now rather far from being able to apply the usual completeness
arguments and have to engage in some rather messy preparations.
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Let oe L,(n) iff ¢ P, and e,(0) = ®. We may think of L,(») as the set of
worlds defined by P,, or the set of ‘z-worlds’. If oe L,(n), define the set
c.(o, n) of n+1-worlds ‘corresponding to o’ by ¢,(o, n) = {reL,(n + 1)|s,(7) €
t(s,(0))}. If o€ L,(n), the set c}(o, #) of #n + m-worlds ‘corresponding to o’
is defined inductively by c%(o, n) = {0} and ¢7*'(0, ) = c.(cT (0, n), n + m).

Some easy consequences of these definitions are the following. (1) If
TeX, let T' be the initial segment of T' of length 5(T") and let I'? be such
that T' = T'«I'%. If oe L,(#) and Tec,(o, n), then by construction, (o(S)), =
(1(8))1, ((0(8))o) € F(((7(S))o)"), and ((5(S))e)* € F((7(S))e)?). (2) If o€ P, and oe
P,.., then ogeP, for each m >n; if ce L,(n) and o€ P,,,, then ¢ (o, n) =
ci(o,n) ={o}. (3) If oe L,( + 1), then there exists at most one Te L,()
such that gecy(r,n). (4) If o€ L,(n), then c\(o, ) = @ iff V7{[(TeP,..) &
p([p et(s:(0))]&[s:1(7) e ¥'(p)])] D I [(7m € Puss) & (T ¥(m) & 3p([p e t(s:(0))] &
[s:(m) er'(p)]) & (7(S) £ N1}

Let o€ Ly(n) iff o€ L,(#) and ci'(o, #) # @ for all m. If oe Ly(n), define
c.(o, ) = ¢,(o, ) N Ly(m + 1) and c5(0, n) = c7(0, n) N Ly(n + m). If o€ Ly(w)
and n = pm(oe Ly(m)), let cy(0) = cy(o, n), c;(0) = c;(o, n), and c(o) =

2 ¢;(a).

mew

If 0e Ly(n), define the set F(o,n) of ‘ways of proceeding from ¢ in P,’
by F(o, n) ={s,(es(7)) [(T€ P,) & (c€¥(7)) & (s:(7) = $,(0))} and the set F"(c, n)
of ‘ways of proceeding from the = + m-worlds corresponding to o’ by
F™o, n) = F(c3(o, n), n +m). If G'(o, ) = 25 F"(c, n), then G(o, n) shall be

mew
the set of finite or infinite sequences p such that (i) each finite initial
segment of p is an element of G'(o, #) and (ii) there is no element of G'(0, %)
of which p is a proper initial segment. If o€ Ly(w) and z = um(o e Ly(m)), let
F(o) = F(o, n) and G(o) = G(o, n).

Some easy consequences of these definitions are the following. (1) If
o€ Ly(n) and o€ P,,, then G'(s, n) = G'(0, n + 1) and G(o, #) = G(o, n + 1).
(2) If oeLy(n) and Tec,(o, n), then G'(1, n + 1) € G'(0, n) and G(7, n + 1) C
G(o, n). (3)If o€ Ly(n) and p € G(o, n), then p e G(c, (o, n), n + 1). (4) If o€ Ly(n)
and 7e G'(o, n), then 7 is an initial segment of some p € G(o, #).

If o€ Ly(n), Tecy (o, ), and peGlo, n) N G(7, n + m), let Mp, T, m, o, n)
be the largest initial segment of p in F(7, n + m) and let 7(p, 7, m, o, n) be
the element 7 of P,,, such that (i) s,(m) = s,(7)*x(p, T, m, o, #) and (ii) if
keP,., and s,(k) = s,(T)*(p, 7, m, 0, n), then rker(m). If oelL,(w), let
7(p, 7, m, 0) = mlp, 7, m, 0, un(o € Ly(n))).

Let o€ Ly(#) and pe G(o, n). Define the set W”(o, %, p) of n + m-worlds
‘reachable by p from the n + m-worlds corresponding to ¢’ by W™(c, %, p) =
{me Ly(n + m)|37[pd(n) = 7(p, T, m, 0, n)]} and the set W(o, n, p) of worlds
‘reachable by p from the worlds corresponding to o’ by W(o, n, p) =
”Q) W7"(o, n, p). If o€ Ly(w) and peGlo), let W(o, p) = W(o, un(o e Ly(n)), p).

Note that if 7e W(o, p), then for each mew there exists exactly one
k€ ¢7(7) such that ke W(o, p).

We now describe the elements %7 of H. To do this we inductively
describe a subset W of L,(w) and a partition [W;] of W;; the domain of %
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shall be [W,;] and if [o] is the element of [W;] to which an element ¢ of W;,
belongs, then %([c]) shall be an element of G(o). First, (f,)eW; and [{f,)] =
L fodl; R{ fo)) shall be any element of G({f,). Now suppose o¢ W and if
ke[o], then 2([c]) e G(k). If Te W((ol, 2([c])), then 7€ W}, and [7] = {ke W([o],
r(o) [ (ree(k) v(kee(n)}. [7] is well-ordered; if k,([7]) is the m + 1’th
element of [7], then «,.([7]) eca(k,([7]) for each new. Since F(k,([7])) C

F(,.(L7]), QG(Kﬂ([T])) # @; accordingly, 2([7]) shall be any element of

N 6 (.

If W({o], 2(c])) =@, then [o] is an h-hypothesis. If [o] is an h-
hypothesis then [o] is an Z-axiom iff w(k([c]), «, 0, k)(S) is an axiom for
some ke[o]. Of course, if [o] is an Z-axiom, then there is some 7 € w such
that if n >m, then 7(2([0]), 5,([0]), 0, K, ([cD)S) = 7(R([0]), Ku([0]), 2, Ke([a]D)(S)
is an axiom. If # is the least such m, let a([o]) = 7(2(c]), x.(o]), 2, k([o])).

The main lemma for completeness can now be stated.

Theorem 6 If S is not provable, then theve is some heH such that no
h-hypothesis is an h-axiom.

Proof: Suppose, on the contrary, that if % € H, then the set A(%) of Z-axioms
is not empty. We construct a proof of S. Well-order A(%) and let a(%) be
the least element. Define a'(z) = a(a(k)) and let A = {s,(a'(%)) |2 eH}.

Lemma 1 Suppose 7w is a maximal element of P,, pe P, s,(m)er'(sip)),
pdo(n) € Lo(n), and pd,(p) e Ly(m). Then m =n +p for some p >0, and if
Ter'(p) is defined by s,(7) = s,(pdy(n)) and e (1) = D, then ck(pdy(n), n) = {7}.

Proof: Suppose m =n. There is just one maximal element 7 of P, such that
s.(7) = s,(n), viz. 7. But s,(m)et'(s,(0)) implies that 7 is not maximal.
Suppose that n = m + p, where p > 0. s,(m) € r'(s,(p)) implies that s,(pd,(7)) €
r(sy(pds(p))). Let k() be the element ke ¥'(p) such that s,(x) = s,(pds(m)) and
e,(k) = P. Then pd,(p) € Lo(m) implies x(m) € Lo(m); since s ,(pdy(7)) = s,(k(7)),
pda(m) € cf(fc(w), m). pda(m) € Ly(n), so pda(n) e c(k(r), m), and in fact ¢2((n),
m) = {pd,(m)}, as is easily verified. Suppose s;(pd,(7)) = s,(pd2(p)). Then
k() = pda(p) and €i(pdy(p), m) = {pd2(m}. By construction, there is an
element 7 of P, such that 7 = pd,(m)*e,(p), so mer’(r), contradicting the
maximality of w. Suppose s,(pdy(m)) € r'(s,(pd2(p))). pda(p) € Lo(m), so
cg(pdz(p), m) +®. But by construction, if 7eci(pdy(p), m), then mer'(7),
contradicting the maximality of 7. The other assertion follows from the
same kind of considerations. Q.E.D.

Lemma 2 If ce Aand Te A, thenafvr'(7).

Proof: Suppose, on the contrary, thatce A, Te A,and oer'(7). If yeA, let
H(y) ={rheH|y = sy(a'(k))} and q(y) = hrr;'i(n){nfa'(h) eP,}; let hyeH be such
eH(y

that a'(7,) € Pg;). Then a'(h;) is a maximal element of Py, a'(k;) is a
maximal element of Pg), pdx(a')i,)) € Lo(q(0)), pds(a’(h)) € Lo(q(7)), and
s(a'(n,)) = oer'(1) = r'(sy(a'(n,))). By Lemma 1, q(7) = q(0) + p, where
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p >0, and c5(pdy(a'(h,)), q(0)) = {«}, where « is the initial segment of a'(k,)
such that si(pdy(a’(%,))) = si(k) and e,(k) =@. But then kxey(a'(k,))(S) is
an axiom, while s(kxey(a'(k,))) = s,(pds(a’(h,)))*si(ex('(h,))) = ger'(r) =
r'(s.(a'(k,))). Thus by construction a'(%,) £ Py, a contradiction. Q.E.D.

Lemma 3 If f and g ave B-functions but not covvesponding K-functions and
aoxfe A" = r(A), then oxg¢ A'.

Proof: We first note that the assertion is true if A' is replaced by P,.

Suppose that oxfe A’ and oxge A'. If ye A', let H(y) = {Z e H|y er(s,(a'())}

and q(y) = hm‘j?,){nla'(h)eP,,}. Let 7(f) be the element of Pgo,; with
H(y

s(7(f)) = o%f and e (7(f)) = @, and 7(g) the element of Py(osg) With s.(7(g)) =
oxg and e,(7(g)) = ©. By our note, q(oxg) # q(oxf). Suppose q(oxg) = q(oxf) +
p, where p > 0. pdy(7(f)) € Ly(q(oxf)) and pd,(7(g)) € Lo(a(oxg)). It is easy to
verify that c5(7(f), q(o%f)) = {pda(7(£))}. But then by construction, pd(7(g))*
e (7(f)) e Pg(osg)- Since pd (pdo(7(g)) *ex(1(f))) = pd(7(g)), this is impossible
by our note. Q.E.D.

By Lemma 3, the ‘branch points’ of A’ are of the following kinds:
1. A-function

2. Corresponding #&-functions

3. W-functions Y

4. £-function, W-functions
5. Corresponding &£-functions, W-functions

Define Xe 2A' as follows: (i) if ae A, then X(a) = 1; (ii) if a¢ A, then
X(a) = 1 iff either (a) x(axg) = 1 for some W-function g such that axge A’, or
(b) X(axf° = X(axf') = 1 for some corresponding £-functions f° and f' such
that ax°ec A" and a*f'e A'. By Lemma 2, X is well-defined.

Lemma 4 X({ fo)) = 1.

Proof: Suppose, on the contrary, that X({ f,)) = 0. Define A" inductively as
follows:

i. (feA”.
ii. Suppose o€ A’ and X(o) = 0.

a. Suppose oxfe A’ and X(o#f) = 0 for some HK-function f. If f is the first of
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the pair (f° f') of corresponding £-functions, then oxfeA"; if f is the
second of the pair and ox/°¢ A’ or X(o%f°) = 1, then g*fe A",

b. Suppose for each #-function f that either oxf¢A’ or X(o*f) = 1. If gis a
W-function and o*xge A’, then oxgeA",

Evidently, if ce A", then X(o) = 0.

We now define an element % of H. If oxfe A', let x(oxf) be the element
K of Py, Such that sy(x) = oxf and e,(x) = ®. Let o be a maximal element
of A". Then o¢A and there is a #-function f such that oxfe A’ - A" and if
f' is the corresponding #-function, then oxf'¢A’. pd,(k(o%f)) € W, ; and
e,(0)*f ' € F(pdy(k(axf)), qloxf)). If mer'(pdy(k(oxf))) and en(m) = @, then
W([7)) = hoy([7]); ex(0)xf' shall be an initial segment of A([pd.(k(ox/))]);
elsewhere 7 shall be defined arbitrarily.

This kind of assignment is possible because (1) if ¢ and 7 are maximal
elements of A", then pd,(0) # pdys(7), and (2) if oxfeA’ and T+ge A" for
W -functions f and g, then x(o%f) e c(x(7%2)) or xk(7g) e c(x(o%f)) iff oxf = Txg.

Now s,(a'(h)eA. Some ocer(s,(a'(k))) is a maximal element of A",
Thus there is a #&-function f such that oxfe A’ - A’ and if f' is the
corresponding A&-function, then oxf'¢ A'. But by the definition of %, oxf ¢
r(s.(a'(n)), so oxf '€ A', RAA. Q.E.D.

We define B' inductively as follows:

i. {fyeB'.
ii. Suppose o€ B' and X(o) = 1.

a. Suppose oxge A’ and X(o*g) = 1 for some W-function g. Then oxge B' for
the least such W-function g (the W-functions are countable).
b. Suppose that if g is a W-function such that oxge A’, then X(oxg) = 0.
Then if o¢ A, there exist corresponding #-functions f° and f' such that
oxf%e A", oxf'eA’, and X(oxf® = X(o#f") = 1; in this case, o*f°e B' and
oxfle B'.
Evidently, if ce B', then X(¢) = 1. We let B be the maximal elements of B',
We now derive from B' a set Pf' of sequences such that (f;) € Pf' and if
ge Pf', then o(S) is provable. B’ is essentially a tree with at most two
branches at each node; since each branch is finite, B' is finite. Ac-
cordingly, if oce B, let i(0) = chEx)q(T), where B(0) = {re Bloer(n)}. We see
1=
that if o,€ B, 0,¢ B', and 0, € ¥(0,), then i(0,) < i(0,).
If oe B', then ¢(0) shall be a finite sequence of functions other than
W -functions and &-functions defined as follows:

i. If o€ B, there is just one maximal element { of P;,) such that s,({) = o;
then £(0) = e,(%).

ii. If oxfeB', there is just one £ e P, such that s,(¢) = oxf and e,(¢) = P
then £(0) = ey(pd(£)).

If 0={(gy,...,8)€eB", define I(0) = g:*x8(g)x224L(g14g2)* . . . **
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t(o). Let Pf' = r(I(B")). Since B' is finite, so is Pf'. Pf shall be the
maximal elements of Pf'.

Lemma 5 If Te Pf', then 7(S) is provable.

Proof: The proof is by induction on g(7), where ge w’ " is defined by (i) if
7€ Pf, then g(7) =0, and (ii) if 7€ Pf' - Pf, then g(7) is the least integer
greater than n;\ox/ g(7+f). g is well-defined by Lemma 2.

r+fePf!

We verify first that if g(7) = 0, then 7(S) is an axiom. Let o be the
element of A such that o = s,(7). a = a'(h,) differs from 7 at most in having
finite sequences of functions other than W-functions or £-functions inserted
before W-functions. If f is a W-function, a'xfer(a), 7'+fe r(7), and sy(a’) =
s.(7"), then (a'+/(S)), = ("4 (9)1, ((a'+f(S))o)" € F(((T'4f(S))o)"), and ((a'x
F()o)? e r(((T'%£(S))0)?). But then ey(a) = e,(7) and 7(S) is an axiom.

As for the inductive step, it is easy to verify that the functions defined
by (1) through (18) of section 8 generate premisses from conclusions
according to the rules of inference, modulo applications of the enabling
rules. We note with respect to (E,) that in constructing oxf from ¢ in P,
where f is a function defined by (6) of section 8, the instantiating variable

does not occur in o(S). Q.E.D.
To complete the proof of Theorem 6 we need only note that since
{fo) € Pf', (fo)(S) = S is provable by Lemma 5, RAA. Q.E.D.

Theorem 7 If S is valid, then S is provable.

Proof: In view of Theorems 1 and 3, it suffices to prove that if S is not
provable, then |S| is kb'-defensible.

By Theorem 6, there is some e H such that no Z-hypothesis is an
h-axiom. If oceWp and mew, let C(7, o, m) = [Ter(m(a(o]), x,(c]), m,
k[oD)] & [s2(7) = so(n(i(0]), Kku(0]), m, k((c])))], and define v([c]) =
2 22 |7(9)|. 1t is easy to verify that v([c]) is a model set for each

mew C(r,0,m)
oeW,. Let @ = {v(o]) loe W}

If 7e W([o], #(o])), then there is exactly one W-function f such that if
pe[7], then s,(pd(p)+f) = s;(p). Let this W-function be f([7]). We define
Ry, R, € (P(Q9))'CD) as follows:

i. I f(7]) = fe.ro0r F([7]) =fB k1m then (v([o]), v([T]) e Ry(a).

ii. If F([7]) =Sk p1,m then (W([a]), v([7]) € Ry(ay).

iii. If aev(2Q) and R, is not defined at a by (i) or (ii), then R,,, shall be
the empty relation on Q.

It is a simple if tedious matter to verify from the definitions of the
functions of section 8 and the construction of section 9 that (Q, R,, R,) is a
kb'-model system. But of course |S|C v([(fo)]), so |S| is kb'-defensible.

Q.E.D.
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