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A FIRST-ORDER LOGIC OF KNOWLEDGE AND
BELIEF WITH IDENTITY. II

SCOTT K. LEHMANN

Part I* presented a formal first-order, Gentzen-type system of the
logic of knowledge and belief based closely upon the informal work of
Hintikka [l]. In Part II, this system is shown to be semantically complete.

8 Completeness: Preliminary Definitions Formula-sequences can be
regarded as finite sequences of formulae, and sequents as ordered pairs of
such sequences. In what follows we shall accordingly deal with sequences
rather than with expressions, though we shall retain the expression
symbolism already introduced.

If σ is a finite sequence of length n (an n-tuple) and 0 ^ k < n, then (σ)̂
shall be the k + l'st element of σ; if a and β are such that ((σ)a)β is defined,
we write (σ)a*β = ((cr)^; as before, α*j3*y = (of*/3)*y. Let D(Γ, i) = Vj[([j<
i] =>[((Γ)y 0 = K)v((Γ);,0= B)]) & {[i*j] = > [ ( ( I V O * K) & ((Γ)y.o* B)])]. If
X = {Γ\3iD(Γ,i)}9 define δ:X-> ω by δ(Γ) = i iff D(Γ, i). Let Y = {S\ -3

i3j[($o.i = (S)i.; ] & -3z[((S)lM , 0 = I) & ( ( S ) ^ = (S)1M..2)]} and Z = {S e
Y\((S)oeX) & ((S^eX)}. Finally, if Γ has length n + 1 and 0 ^ j ^ n, then
Φ(Γ, i) is the sequence of formulae defined by Vk[([k < i] D [(T)k =
( Φ ( Γ , i ) ) k ] ) & ( [ i ^ k ] ^ [ ( T ) k + 1 = ( Φ ( Γ , i ) ) k ] ) l

We now define a number of functions / from sequents to sequents such
that f(S) is related to S as premiss to conclusion by a rule of inference,
modulo applications of the enabling rules. These functions will be used to
construct the 'proof trees' used in the completeness argument. We assume
throughout this section that α& is the &'th free individual variable.

1. /o shall be the identity function on the set of sequents.
2. If ZN>0 = {SeZ\3i((S)o.i.o = N)}, then /N>0 is defined on ZN>0 by /N,0(S) =
<Φ((S)0, ή, Γ), where

*The first part of this paper appeared in Notre Dame Journal of Formal Logic, vol.
XVII (1976), pp. 59-77. An acquaintance with that part and the references given
therein is presupposed.
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a. i = juj((S)o 7 o = N).
b. Γ is defined by

i. if j < δ ( ( S ) ! ) f then(Γ) ; - (S)uj,

ϋ (r)s((5)i) = ( 5)0 , n
iii. if δ((S)i) ^ h then (Γ) ; + 1 - (S)lmj.

3. If Z N ? 1 = {SeZ\3i((S)lmi.o = N)}, then / N ? 1 is defined on Z N > 1 by /N j l(S) =
(Γ, Φ((s)i, z)>, where

a. * = M/((S)i y o = N).
b. Γ is defined by

i. i f j<δ((S) 0 ) , then(Γ) ; = (S)0.y,
ii. (Γ)δ((5)0) - (S) 1 # ί M ,
iii. if δ((S)0) ^ j , then (Γ) / + 1 = (S)o*; .

4. If Z C ) 0 = {SeZ\3* ((S)o.f .o = C)}, then/c, 0 and / c , 0 are defined on Z c , 0 by
/c,o(S) = <Γ0, (S)i) and /c,o(S) = (Φ((S)0, i), Γ J , where

a. z = μj((s)o*; *o = C).
b. Γo is defined by

i. ί£j < δ((S)0), then (Γ0)y = (S)o*; ,

ϋ . (Γ0)δ((s)0) = (S)0M>2»
iii. if δ((S)0) ^ λ then (Γ0) y + 1 = (Φ((S)0, ί)) ; .

c. Γj is defined by

i. if j < δ((S)!), then ( Γ ^ = (SJx.y,

ϋ . (Γjδίίs)^ = (5)0 , i,
iii. if δίίS)!) ^ j , then (ΓJy+i = (S)1+/ .

5. If ^c, i = {5€^|3z((S)1M . 0 = C)}, then/cμ is defined on ZCfl by fCyl(S) =
<Γ0, Γ\)/where

a. i = w((S)1 y o = C).
b. Γo is defined by

i. if j < δ((S)o), then (Γo)y = (S)0 y,
ii. (Γ0)δ((5)0) = (S) l M l f

iii. if δ((S)0) < j , then (Γo) / + 1 = (S)0.y.

c. Γx is defined by

i. iίj<δ((S)d, thenίΓjy = ( S ) l v ,
ϋ . (Γi)g((s)1)= (S)i , 2 ,
iii. if δ((S)1) < j , then (r\) / + 1 = (Φ((S)χ, t))y.
6. If ^ E 0 = {S e Z I 3&'((S)OM*O = E)}> then for each free individual variable α,
/E,O(«) is defined on ZEf0 by /E,0(«)(S) = <Γ, (S)χ>, where

a. i = M7((S)OΦ/,O = E).
b. Γ is defined by
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i. if j < δ((S)0), then (Γ), = (S)0»y,
ii. (Γ) δ ( ( s ) o ) = (S)o,, .2(«/(S)o., .i),
iii. (Γ)δ((S)o)+1 = Pa,
iv. if δ((S)0) *j, then (Γ)y + 2 = (Φ((S)0, i))j.

7. Let Γe/E(w) iff there exists a strictly increasing function iζ(Γ):n-» ω
such that (i) if ten, then (Γ) 1 E ( Γ ) W , 0 = E, and (ii) if (Γ), . o = E, then i = tE(Γ)ϋ)
for some jen. Obviously ig(Γ) * s unique. If Z^ hm = {Se Z\{S)ιtI^{m)\
then for each free individual variable a, / | l i B(α) a n d / | , i,n(α) are defined on
Σ ZE.I.M by/°E,i,n(«)(S) = ((S)o, Γo) and/fe.^WίS) = <(S)0, Γj, where

a. f = LEiiSMn).
b. Γo is defined by

i. if j<δ((S) ! ) , then(Γ 0) 7 = ( s ) w >

π. (ΓoJδαs)!) = (S)i.i*2(fl/(S)1#iJ,
iii. if δ((S)i) < j , then (Γo) ; + 1 = ( S ) w .

c. Γx is defined by

i. l f j<δ((S)i) , thenίΓjy = (S)1 # /,
ϋ . (Γjδαsv = P«?

iii. if δ((S)J < λ then (Γjy+i - ( S ) w .

8. If k Φ j and Z|,A,; = {S € Z | 3i(\akaj = (S)o , )}, then /|# A ι / is defined on Z| f A f / by
f\,k,j(S) = (Γ, (s)i), where Γ is defined by

a. if z<δ((S) 0 ), then(Γ), - (S)o /.
b. (Γ)δ((5)0) = lα;-α*.
c. if δ((S)o) ^ i, then (Γ) ί + 1 = (S)Omi.

9. Let Γe/p ι f f^(») iff there exists a strictly increasing function tF # ί fjfe(Γ):» —*
ω such that (i) if men, then (Γ)tFff.ίA(r)(«) is atomic and (Γ) ι p Λ >k(v)(m)*i = ak, and
(ii) if (T)p is atomic and {T)p*i = a,k, then p = tF,ί^(Γ)(m) for some mew.
Obviously ιF f l f*(Γ) is unique. If ZF(i>k)j)ιOιm = {S e Z\>k>j\ (S)oe Ip,i,k(m)}> then
fFUXjU.n i s defined on Σ ZF{i>k>j)ι0>m by /F(α,/),o,w(S) = <Γ, (S)i>, where

nf-fti

*. P= iF,i,k((S)0)(n).
b. Γ is defined by

i. \iq< δ((S)0), then (Γ% = (S)0.q,
ϋ . ((Γ)δ((s)0)), = «/, and if q Φ i, ((Γ)8«S)0))q = (S)0.pmq,
iii. if δ((S)o) < <7, then (Γ) ί + 1 = (S)o^.

10. If ZHi)k)j)ιlιm = {S€ZUf;.|(S)1€/Ff ίfA(wi)}, then fP(itkιj)ιl,n is defined on
Σ ZFU,k.βi,m by fF{i)k<j)Λιn{S) = <(S)0, Γ), where

a. ί = tF.i.A((S)i)(w).
b. Γ is defined by

i. if ^<δ((S) 1 ) , then (Γ)y = (S)!^,
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ii. ((T)8as)l))i = ah and if q Φ i, ((Γ)m)l))q = (S)lmpmq9

iii. if δ((Sh) < q9 then (Γ) ί + 1 = (S)^q.

11. Let Γe/κ,&(?z) iff there exists a strictly increasing function Lκ,k(Γ):n—*
ω such that (i) if ie n, then (Γ) ί | U(rχ ,-)*(, = K and (Γ)C K f A ( Γ) ( f > 1 = α*, and (ii) if
(Γ)t , 0 = K and (Γ),^ = ak, then i = IK.A(Γ)O') for some j'en. Obviously iκ,*(Γ)
is unique. If Zκ(k,j).o.m = {Se Z\tktj\(S)oeIκtk(rn)}, then fκ(k,j),o,n is defined on
Σ ZK{ktj)ιo,m by fκ(k.j).o.n(S) = <Γ> (5)i), where

a. /> = tκ,*((S)o)(w).
b. Γ is defined by

i. iiq< δ((S)0), then (1% = (S)0 q,
11. ((Γ)δ((5)o))o = K, ((Γ)8«s)0))i = «;', and ((Γ) δ ( ( J ) o ) ) 2 = (S)o,^2,
iii. if δ((S)0) < ^, then (Γ) ? + 1 = (S)o^.

12. If Zm>j)ιlιTn = { S e Z i ^ KsJie/K^ίw)}, then /K(Af/),i.« i s d e f i n e d on
Σ) Zmffitlιm by /κ(A./),i.»CS) = <(S)0, Γ), where
nem ' '

a. p = ικ.*((S)i)(«).
b. Γ is defined by

i. if q < δ((S)i), then (1% = (S)i^,
ϋ . ((^§((5)^)0 = K, ((Γfeαs^))! = au and ((Γ) δ ( ( 5 ) l ) ) 2 = ( S ) ^ ^ ,
iii. if δ((S)d < ^, then (Γ)^+1 = (S)i#ί.

13. Replacing 'K' by Έ * in (11), we obtain a definition of /BU,/),O,«.
14. Replacing 'K' by 'B' in (12), we obtain a definition of /BU,/),I,«
15. Let Γe/K(rc) iff there exists a strictly increasing function ι κ (Γ):n-* ω
such that (i) if ten, then (Γ)tκ(Γ)(t)*o = K, and (ii) if (Γ)f . o = K, then i =
ί-κ(Γ)(j) for some jen. Obviously ι κ ( Γ ) i s unique. If ZK<O>OT = {Se Z\(S)oe
Iκ(m)l then fκ>0>n is defined on Σ ZKι0>m by /Kf0,»(S) = <Γ,(^'1>, where

n€m

a. />= ικ((S)o)(n).
b. Γ is defined by

i. if q < δ((S)o), then (Γ), = (S) o . ?,
ii. (Γ)δ((5)0) = (S)0.p.2 )

iii. if δ((S)0) « ήr, then (Γ) ? + 1 = (S) 0 . f .

16. If Z K i f c l i f l , = {Se ZKSJ^/K.iiίwi)}, then /κ > 4 i l > 1, is defined on Σ ZKιkΛ,m by

fκ,k,US) = <Γ, ((S)1M .2)>, where

a. « = iκ,k((S)i)(n).
b. ( Γ ) € - (S)o.tKfA((i)oXi>-

17. Let n°BKk(T)eω be such that tB,K,^(Γ):WB,K,^Γ) "^ ω i s a strictly in-
creasing function such that (i) if jer^fKtk(T)9 then (Γ)to κ (r)(y)*o = K or

(Γ)to (rχy) o = B, and (Γ)to rΓ)(;)*i = «*, a n d (ϋ) i f (D/ o = K or (Γ)^ o = B,

and (Γ)^! = «£, then z = tβ,κ,/fe(Γ)O) f ° r some je n^^k{T). Let n% κ k(Γ) e ω be
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such that IB,K,£(Γ):WB,K,&(Γ) ~* ω i s a strictly increasing function such
that (i) if Jen^Kk(T), then (Γ) ti cnφ o * K and ( Γ ) μ ( Γ ) ( > 0 * B, or

(Γ) ti (r)(;).i * αA, a n d (ϋ) i f (Γ)t*o * K and (Γ)^ o Φ B, or ( Γ ) ^ Φ ak, then i =

«-B,κ,*(Γ)(Λ f o r s o m e ί e wB.κ f*(Γ). Obviously IB,K,*(Γ) a n d LB,K,*(Γ) are
unique. If ZBfAf0(« = {St ^I (S)o e /Bf*(«)}, then/ B ,^ 0 is defined on Σ Z^ιk>0>n by

0€Π

/B.*.O(S) = <Γ, 0), where

a. Γ' is defined by

i. if q < nlXΛ((S)0), then ( Γ % = (s)0,(o ( ( 5 ) o ) ( ? ),
• /τ-ιA n _ /o\ B,K,&

l 'ΛB,K,A((5 )o )+? " ^^°*ύB^((^)o)(ί)*2

b. Γ is defined by

i. ^ q < n°BtKtk(T% then (Γ), = (Γ')to κ^(Γ/χ?),

ϋ ^ Γ ^ B , K ^ ( Γ ' ) + ^ = ^Γf^B.κ fA
(Γ/)(ί)"

18. If ^B.A.1.* = {SeZKsJ^/β^ίm)}, then /B # A f l f l l is defined on Σ Z%>k>ι>m by
n€m

fz,kA,n(s) = <Γ

? ((5)i^*2)), where

a. /> = tB,^((5)i)W.
b. Γ is defined as in (17).

W -functions are those defined by (1), (16), (17), and (18); β-functions
are those defined by (4) and (7). <#-functions are said to correspond if their
names differ only in superscript; f° and f1 will be used to represent
corresponding ^-functions with the obvious intent.

Let σ be a finite sequence of functions defined by (1) through (18), say
σ = (go, ., gn). If w > 0, pd(σ) = (^0J . . ., gn^). σ(S) - gn(. . . go(S) . . .),
provided the functions g{ are all defined at the indicated arguments, s^σ)
is the subsequence of σ consisting of the W- and ^-functions of σ. S2(σ) is
the subsequence of σ consisting of the ^-functions of σ. βi(σ) is the
subsequence of σ consisting of the functions following the last W- or £-
function of σ. e2(σ) is the subsequence of σ consisting of the functions
following the last W-function of σ. pd2(σ) is the initial segment r of σ such
that e2(τ) = φ and s2(τ) = s2(σ). r(σ) is the set of initial segments of σ. r'(σ)
is the set of proper initial segments of σ. t(σ) is the set of sequences
differing from σ at most by insertion of finite sequences of ^-functions
between ^-functions and immediately following W-functions or between
^-functions and immediately following W-functions. τ1*τ2€t'(σ) iff TytX(d)
and τ2 is a finite sequence of ^-functions.

9 Completeness: The Basic Construction Our aim is to construct, from a
given unprovable sequent S, a kb'-model system Ω such that \s\ c μ for
some μ e Ω. In view of Theorems 1 and 3 this will suffice to establish the
semantic completeness of 9(K, B). The classical construction must be
ramified to take account of the operators K and B; essentially we must
carry out the usual construction in each possible world. Instead of
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constructing a single ' t ree ' we must construct a series of successively
better approximations thereto from which we derive the desired model
system.

We now define inductively, for any given sequent S, a sequence of sets
Pn(S) of finite sequences of the functions defined by (1) through (18) of
section 8. The construction requires that we simultaneously define, for
each σePk(S)9 two registers VΛ(S)(σ) and Vw'(S)(σ) of free individual
variables and a well-ordering Rn(S)(σ) of V^(S)(σ). We shall also need to
establish along the way that Pn(S) is finite and that for each σePM(S),
Vw(S)(σ) and V^(S)(σ) are finite. To simplify the notation we shall suppress
the reference to S.

I. Construction of P o, Vo, V<5, and Ro.

Po = {</„>}

Vo«/o» = vi«/o»=v(lsl)
Ro((/O)) is the alphabetical order of the free individual variables restricted

to Vi«/o».
Obviously P o is finite and if σe Po, then V0(σ) and V£(σ) are finite.

Π. Construction of PΛ+1, Vn+1, V«+i, and Rn+1. Suppose that we have con-
structed Pw, Vw, V ,̂ and Rn; suppose that Pn is finite and if σ e Pn, then Vw(σ)
and V^(σ) are finite. Let \ίn= Σ/ Vw(σ); since Pn is finite and Vw(σ) is finite

for each σe Pw, Vw is also finite. We now define Pn+1 inductively.

A. The initial element.

</o>ePw+1

Vn+1«/o» = Vw

vi+i«/o»=v(|sl)
Rw+i«/o» = Ro«/o»

Obviously Vβ+i«/o» and VJ+1«/0» are finite.

B. The inductive step. We suppose that σe Pn+1 and that Vw+i(σ) and V^+i(σ)
are finite.

1. Suppose e2(σ) = φ and suppose there exists τ ePn such that e2(τ) Φ Φ and
S1(σ*e2(r))et(s1(τ)). Then for any such r :

σ*e2(τ) e Pn+ί

Vw+I(σ*e2(r)) = Vβ+1(σ)
V^+1(σ*e2(r)) = V^+1(σ) U Vn{τ)
(au a2) e Rw+I(σ*e2(r)) iff [(axe Vn

r(τ)) & (a2 e V^(r)) & ((al9 a2) e R»(τ))] v [{axe
(Vj+1(σ) - Vί(τ))) & (a2e (Vw

f

+1(σ) - VΪ(τ))) & ((a19 a2) e Rn+1(σ))] v [(a.e VΛT)) &

(a2e(VU°)- Vί(τ)))].

Obviously V«+i(σ*e2(τ)) and Vw

f

+1(σ*e2(τ)) are finite.

2. Suppose either (a) e2(σ) = 0 , n Φ 0, there is no r e Pn such that e2(τ) Φ Φ
and Si(σ*e2(τ)) etίs^r)), and there is some τ e Pn such that Si(pd(σ)) e t'Cs^r)),
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or (b) there is some r e Pn such that s^σ) e tίs^r)), e2(σ) = e2(τ), and if p e Pn

and re rf(p), then s2(p) Φ S2(τ). The construction in this case is described
in stages.

a. The propositional construction. Partially order the functions defined by
(2), (3), (4), and (5) of section 8 according to /N,o < /N,I < fc.i> fc.i< /Co,
and /c,i < /c.o I f {gj} i s a sequence of these functions such that (i) g0 is a
least function defined at σ(S), and (ii) for each j , gj+1 is a least function
defined at σ*g0* *gj(S)> then for each j :

σ*£b* . . . *gj€ Pn+1

V w + i ( σ * ^ 0 * . . . *gj) = Vw +i(σ)

Vw '+ 1(σ*£Ό* . . . *gj) = V»f+i(σ)

*n+i(σ*go* *gj) = R«+i(σ).

If the complexity c(S) of a sequent S is defined as the sum of the com-
plexities of the component formulae, each instance of a formula counting as
a formula, then since c(σ*^0* . . *£/+i(S)) < c(σ*^0* . . . *gj(S)), c(σ(S)) is
an upper bound on the length of the sequences {gy}, so c(σ(S)) 2c(σ(5))is an
upper bound on their number. Therefore the propositional construction
adds only a finite number of elements to Pn+ί.

b. The quantifier construction.

i. Let r be a maximal element resulting from (a), i.e., there is no element
p added to Pn+1 by (a) such that re r'(p). Let {ak} be the sequence of free
individual variables such that (a) a0 is the first free individual variable not
in Vw+i(τ), (β) for each k9 ak+1 is the first free individual variable not in
V«+i(τ) U {«/ \j < k}, (γ) /E,O(«O) is defined at τ(S), and (δ) for each k, fE,0(ak+1)
is defined at T*/E,O(«O)* */E.O(^)(S). Since Vw+i(τ) is assumed finite, the
length of {α; } is precisely Σ) n{ί), where n(i) is the number of initially

i

placed existential quantifiers in (τ(S))0 j . Then for each k:

T*/E,O(«O)* . . */E,o(«fe)e Pn+ι

VW +I(T*/E,O(«O)* - */E,ofe)) = Vw+i(τ) U {«; \j ̂  k}
Vi+1(τ*/Efo(βo)* */E.o(«*)) = Vn

f

+1(τ) U {αy I j ^ fe}
<α, α f) € Rw + I(τ*/E,o(αo)* . . . */E,ofe)) iff [foe Vί+1(τ)) & (fl 'eV^(τ)) & «α, αf>
e R»+i(τ))] v[foe V,ί+1(τ)) & 3z fof = α j ] v 3t'3j[fo = at) & (αf = α ; ) & (i < j)].

Since {«&} is finite, we add only a finite number of elements to P n + 1 and only
a finite number of elements to Vn+i(τ) and V»+i(τ) to obtain VW+I(T*/E>0(a0)* . . .
*fE,o(ak)) and Vw

f

+1(τ*/Eo(«o)* . . . */E.O(«A))

ii. Let T be a maximal element resulting from (i). Partially order the
functions/|, ln(a) and /E,I, W («) with neω and αeVw'+i(τ) as follows: if pe 2,
£ ' e 2 , α€V^+1(τ), βfeVw

f

+1(τ), m e ω , and m f e ω, then / E , I > W ( « ) </I.Ί.«/fo f) iff
m < mf or m = mr and (α, α f)e R^+^r). Let {̂  fe} be a sequence of these
functions such that fo) g 0 is a least function /^l.mfo) defined at τ(S) such
that D(τ, m, a, r, S), and (β) for each &, ^ + 1 is a least function / E , I , ^ ( « )
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defined at τ*g 0 * . . . *gk(S) such that D(τ*gQ* . . . *gk, m, a, r, 5), where

Dip, m, a, T, S) = -3τ'3/>'3m'[(/>F e 2) & (mf e ω) & ( T ' * / E ! I , » ' (β) e r(p)) & (s2(τ r) -
S 2 (τ) ) & ((τ'(S))1 # t E((Γ/(5))1)(w 20*2(«/('7" f(5))i ί, ι E(( r/(5))1)(w/) ! l t l) = (p(S))i* t E((p(5))1)(W 2)*2(β/

(p(S))i.tE<Wί))i)<«) i))] Then for each k:

T*gθ* . . . * & € Pw+1

Vw +i(τ*^ 0 * . . . *gk) = Vn+1(τ)

v^+ 1(τ*^ 0*... * a ) = v^(τ)
R«+l(τ*£ 0* . . . *&) = R«+i(τ).

We easily see that this step adds only a finite number of elements to Pn+ι,
since if w(z) is the number of initially placed existential quantifiers in
(τ(s))iM , then m = V«+i(τ) , where N = Σ) «(z), is an upper bound on the

i

length of the sequences {,§&}, so m 2m is an upper bound on their number,

c. The identity construction.

i. Let r be a maximal element resulting from (b). Well-order the functions
defined by (8) of section 8 by f\fk,j<f\,k>,j> iff k < k1 or k = kr and j < j \ Let
{gn} be the sequence of these functions such that (a) g0 is the least function
f\tkfj defined at τ(S) such that D(k, j , T, T), and (β) for each m, ^ OT+1 is the
least function f\χj defined at τ * ^ 0 * . . . *gm(S) such thatD(^, j , r, τ * ^ 0 * . . .
*gm), where D(fe, j , r, p) = -3τ f [ ( τ f * / u # ; e r(p)) & (s2(τ') = s2(τ))]. Then for
each m:

T*g0* ' *gm

e Pn+l

Vn+ι(τ*g0* . . . *gj = VΛ+1(τ)

V,'+1(τ*^0* . . . * Λ ) = Vβ

f

+1(τ)

fWτ*£Ό* . * Λ ) = R«+i(τ).

Since the number of identity formulae in (τ(S))0 is an upper bound on the
length of the sequence {gm}, this step adds only a finite number of elements

to Pw + 1.

ii. Let T be a maximal element resulting from (i). Well-order the
functions defined by (9) and (10) of section 8 by fpu.k.jlp.m < fF(i>,k',j>),p',m' iff
k <kr o r k' = k sinάj <j' o r k = k',j =j', and/? < p1 o r k = k\ j =j',p =p',

a n d m < mf o r k = kr, j = j r , p = pr, m - mr, a n d i < V. L e t { g ^ } b e t h e

sequence of these functions such that (a) g0 is the least function fF(i,k,j),ρ,m
defined at r(S) such that D(τ, i, k, j , p, m, r, S), and (β) for each q, gq+1 is
the least function fF(i,k,j),ρ,m defined at τ*g 0 * . . . *gqiS) such that D(τ*g0* . . .
*gq, i> k> h P> m> τ> 5), where D(p, i, k, j , />, m, r, S) = - 3 τ f 3 m f [ ( m f e
ω) & i*r'*fp{i.k.j),p.m> € «^(P)) & ( s 2 ( τ 0 = S 2 (τ) ) & iiτ'iS))pmιp>itk((τi(s))p)(m>) =

(p(S))p*LFιitk((p(s))p)(m) )]• Then for e a c h q:

τ * ^ o * . . . *gqe Pn+i

Vn+l(τ*g0* . *gq) = VΛ + i(τ)

Vw

f

+ 1(τ*^o* . . * f t ) = VJ+ΛT)

R « + I ( T * ^ O * . . . * ^ ) = R«+i(τ).
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The sequence {gq} is finite, for if m1 is the number of atomic formulae in
τ(S), m2 is the maximum index of the atomic formulae in τ(S), and m3 is the
number of identity formulae in (τ(S))0, then m1. m2 m3 is an upper bound on
the length of {g^» Therefore this step adds only a finite number of
elements to P w + i .

iii. Let r be a maximal element resulting from (ii). Well-order the
functions defined by (11), (12), (13), and (14) of section 8 by fz{k,j),ρ,m<
fz'(k',j'\p',m' iff k < kf or k = k1 and j < j ' or k = k', j = j f , and p < pf or

k = k', j = y, p = pr, and m < m' or k = kr, j = j \ p = p', m = m\ Z = K, and

Zr = B. Let {£;•} be the sequence of these functions such that (a) g0 is the
least function fz(k,j),ρ,m defined at τ(S) such that D(τ, Z, /?, j , /?, m, r, 5), and
(β) for each i, gi+1 is the least function fz(k,j),ρ,m defined at τ*g 0 * *^Ί (S)
such that D(τ*£ 0 * *gi, Z, k, h P> m, τ> S), where D(p, Z, ^, j ,
/>, m, r, S) s -3τ f 3m'[(m'eα)) & (τ'*fz(k,j),p,m>e r(p)) & (s2(τ f) = s2(τ)) &
((^r(S))^.lZfA((r/(5))p)(w/) = (p(S))p LZιk«p(s))pXm))]. Then for each z:

τ*^o* . . * ^ ^ P»+i
Vw+I(τ*^o* . . . *gi) = VΛ+i(τ)
V^+1(τ*^0* . . . *£-,) = V»f

+i(τ)

R*+i(τ*go* *gi) = R«+i(τ).

The sequence {gt} is finite, for if m1 is the number of initial occurrences of
K and B in the formulae of τ(S) and m2 is the number of identity formulae in
MS))o, t n e n ^ i * ^ 2 is an upper bound on the length of {gi}; therefore the
number of elements added to Pn+1 in this step is finite.

d. The operator construction.

i. Let r be a maximal element resulting from (c). Well-order the functions

defined by (15) of section 8 by fκιOttn <fκ,0,m' iff m < r a \ Let {gk} be the

sequence of these functions such that (a) g0 is the least function /κ,o,m

defined at τ(S) such that D(T, m, τ,S), and (β) for each k, gk+ι is the least

function fκ,o>m defined at τ * ^ 0 * . . . *^(S) such that D(τ*^ 0 * . *gk> m> τ> $h

where D(p, m, r, s ) Ξ - 3 τ ' 3 m ' [ ( w ' e ω ) & (τf*/κ,o,m' tr(ρ)) & (s2(τ f) = s2(τ)) &

((τ'(S))o*ικ((r,(5))o)U0 = (p(S))o*tK((p(s))oX»))]- T h e n f o r e a c h k :

τ*g0* . . . *gk e Pn+ι

Vw+I(τ*^o* . . *gk) = VΛ+1(τ)
Vw

f

+1(τ*^0* . . . *gk) = Vί+i(τ)
R«+i(τ*^o* . . *£i) = R«+i(τ).

The sequence {^} is finite, for if w(z) is the number of initially placed
operators K in (r(S))0 , > then ^) ^(0 is an upper bound on the length of {gk};

ί

therefore this step adds only a finite number of elements to PΛ+i

ii. Let T be a maximal element resulting from (i). Then if g is defined by
(16), (17), or (18) of section 8 and^ is defined at τ(S),
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τ*gePn+ι

Vw + 1(τ*^) = Vβ + 1(τ)

Vi+1(τ*g) = v(\τ*g(S)\)
K+l(τ*g) = Rn+l(τ)\\fi+1(τ*g).

This step adds only a finite number of elements to Pw+1, since if mι is the
number of formulae in (τ(S))0 with initially placed operator B, and π^ is the
number of formulae in (j(S))x with initially placed operator K or B, then
mi + m2 is an upper bound on the number of functions defined by (16), (17),
or (18) of section 8 which are defined at τ(S).

If h(ή) is the supremum of the lengths of s2(σ) for σ e Pw, then it is easy
to establish by induction that h(ή) ̂  n + 1. Suppose σe Pn and e2(σ) = φ. By
construction there are only finitely many τePn such that either σe r'{τ),
s2(pd(τ)) = S2(σ), and s2(pd(τ)) Φ S2(T) or σer(τ), s2(τ) = s2(σ), and r is
maximal in Pn. Therefore there are only finitely many maximal elements,
hence only finitely many elements, in Pn.

To aid the understanding we illustrate below the construction of
maximal elements in Po, Pl9 and P2. The horizontal bars represent
W-functions; the vertical segments represent sequences of functions other
than W-functions; the conditions sanctioning the various component con-
structions are indicated alongside.

IIB2a

ΠB2b

IIB2b IIB1

— I -L HA ~L II

Po Pi P2

Finally, we observe that the structure of Pn is determined by {s^σjlσe
Pw} in the sense that if r is a finite sequence of £- and W-functions whose
last element is, say, g, then there is at most one element σ e Pn such that
the last element of σ is g and s^σ) = r.

10 Completeness: The Main Lemma As noted, we have had to replace the
single, typically infinite completeness construction with a typically infinite
sequence of finite constructions: since we generally do not actually com-
plete the construction of any world, we cannot begin the construction of
other derivative worlds with a complete set of materials. Unfortunately,
we are now rather far from being able to apply the usual completeness
arguments and have to engage in some rather messy preparations.
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Let σe L^ή) iff σe Pn and e2(σ) = 0 . We may think of Li(rc) as the set of
worlds defined by Pn, or the set of '^-worlds'. If σe Li(rc), define the set
Ci(σ, n) of n + 1-worlds 'corresponding to σ' by c^σ, ή) = {re Lι(n + 1) |si(τ) e
t(Si(σ))}. If σe Mrc), the set c?(σ, n) of w + w-worlds 'corresponding to σ'
is defined inductively by c?(σ, n) = {σ} and c™+1(σ, w) = Ci(c?(σ, n), n+ m).

Some easy consequences of these definitions are the following. (1) If
ΓeX, let Γ 1 be the initial segment of Γ of length δ(Γ) and let Γ2 be such
that Γ = Γ ^ Γ 2 . If σe Lλ(n) and r e c ^ σ , n), then by construction, (σ(S))1 =
(τ(S))l9 ((σtSDol^rtίfrtSJlo)1), and ((σ(S))0)

2e r((τ(S))0)
2). (2) If σ e P w a n d σe

Pn+1, then σe Pm for each m > n\ if σe Li(») and σe Pn + 1, then d(σ, w) =
c^(σ, «) = {σ}. (3) If σe Li(w + 1), then there exists at most one r e Li(rc)
such that σ e d ( τ , n). (4) If σe Li(w), then Ci(σ, w) = 0 iff Vτ{[(τe Pn+1) &
3p([pet(s 1 (σ))]&[s 1 (τ)er'(p)])]:3 3π[(π e Pw+1) &(τe r(π)) &3p([p e t ( s » ) ] &
[sMer'(p)])&MS)tY)}}.

Let σe L2(») iff σe Li(») and cΓ(σ, w) ^ 0 for all m. If σe L2(w), define
C2(σ, n) = Ci(σ, w) Π L2(n + 1) and c^ίσ, n) = cf(σ, «) Π L2(n + m). If σe L2(ω)
and n = μm(σe L2(m)), let c2(σ) = C2(σ, n), cJΓ(σ) = c^(σ, w), and c(σ) =
Σc2».

m€(ύ

If σe L2(n), define the set F(σ, n) of 'ways of proceeding from σ in Pn

9

by F(σ, n) ={s1(θ2(τ)) I (re Pn) & (σe r(τ)) & (s2(τ) = S2(σ))} and the set Fm(σ, n)
of 'ways of proceeding from the n + m-worlds corresponding to σ' by
Fm(σ, n) = F(c?(σ, w), n + m). If G'(σ, n) = Σ fm(σ, n), then G(σ, n) shall be

m€Cύ

the set of finite or infinite sequences p such that (i) each finite initial
segment of p is an element of G'(σ, ή) and (ii) there is no element of G'(σ, n)
of which p is a proper initial segment. If σ e L2(ω) and n - μm(σ e L2(m)), let
F(σ) = F(σ, n) and G(σ) = G(σ, n).

Some easy consequences of these definitions are the following. (1) If
σe L2(ή) and σe Pw+1, then G'(σ, n) = Gf(σ, n + 1) and G(σ, n) = G(σ, n + 1).
(2) If σe L2(n) and τec 2 (σ, ή), then G f(τ, n + 1) c Gf(o", n) and G(τ, ̂  + 1) c
G(σ, n). (3) If σ e L2(w) and p e G(σ, »), then p e G(c2(σ, ^), w + 1). (4) If σ e L2(»)
and Te Gf(σ, ̂ ), then r is an initial segment of some p e G(σ, rc).

If σe L2(w), TeCgfσ, *z), and p e G(σ, n) Π G(τ, ̂  + m), let λ(p, r, m, σ, n)
be the largest initial segment of p in F(τ, n + m) and let π(p, r, m, σ, n) be
the element ir of Pn+m such that (i) s^π) = S!(τ)*λ(p, r, m, σ, n) and (ii) if
Ke Pn+m and S^K:) = S!(τ)*λ(p, T, m, σ, /2), then κer(π). If σe L2(ω), let
π(p, r, w, σ) = 7r(p, T, m, σ, μ φ e L2(n))).

Let σe L2(^) and p e G(σ, ^ ) . Define the set W^(σ, w, p) of n + m-worlds
'reachable by p from the rc + m-worlds corresponding to σ' by W^(σ, n, p) =
{π e L2(w + m) |3τ[pd(7ί) = π(p, T, m, σ, ή)]} and the set W(σ, n, p) of worlds
'reachable by p from the worlds corresponding to σ' by W(σ, n, p) =
Σ WOT(σ, «, p). If σe L2(ω) and peG(σ), let W(σ, p) = W(σ, μn(σe L2(»)), p).

Note that if r e W(σ, p), then for each meω there exists exactly one
Ke c?(τ) such that /ce W(σ, p).

We now describe the elements ft of H. To do this we inductively
describe a subset W^ of L2(ω) and a partition [W/J of W ;̂ the domain of ft
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shall be [W/J and if [σ] is the element of [\Nh] to which an element σ of W^
belongs, then h([σ]) shall be an element of G(σ). First, </0) e W/> and [</„>] =
\(fo)}', H[(f0)]) shall be any element of G « / o » . Now suppose σe W/, and if
κe[σ], then h([σ])eC(κ). If r e W([σ], h([σ])), then τeWA and [r] = {/ce W([σ],
h([σ]))\(τec(κ))v(κec(τ))}. [r] is well-ordered; if κm([τ]) is the ra + l'th
element of [r], then /ς+i([τ])ec2(/ί»([τ])) f o r each fteω. Since F(κw([τ])) c

F(«w+i([τ])), MG(/cw([τ])) ^ 0; accordingly, h([τ]) shall be any element of
neω

Π G(/ς,([τ])).

If W([σ], h([σ])) = 0, then [σ] is an h-hypothesis. If [σ] is an h-
hypothesis then [σ] is an h-axiom iff π(h([σ]), K, 0, κ)(S) is an axiom for
some Kβ [σ]. Of course, if [σ] is an /z-axiom, then there is some m e ω such
that if ft ^ m , then τr(A([σ]), ^([σ]),0, κ«([σ]))(S) = τr(A([σ]), U[σ]), ft, κo([σ]))(S)
is an axiom. If ft is the least such my let α([σ]) = π(/z([σ]), /^([σ]), ft, κo([σ])).

The main lemma for completeness can now be stated.

T h e o r e m 6 If S is not provable, then there is some heH such that no

h-hypothesis is an h-axiom.

Proof: Suppose, on the contrary, that if h e H, then the set A(h) of /z-axioms
is not empty. We construct a proof of S. Well-order Δ(h) and let a(h) be
the least element. Define a'(h) = o(a(h)) and let A = {s^a'Qi)) \h e H}.

Lemma 1 Suppose π is a maximal element of Pn, pePm S^TΓ) e r ' ίs^p)),
pd2(π) e L2(ft), and pd2(p) e L2(m). Then m = n +p for some p > 0, and if
τ€ r'(p) is defined by s^r) = sΛpd^π)) and e2(τ) = 0, then C2(pd2(7τ), ft) = {T}.

Proof: Suppose m = n. There is just one maximal element r of Pn such that
Si(τ) = s^π), viz. π. But s^π) € r'(si(p)) implies that π is not maximal.
Suppose that n = m + p, where p > 0. s^π) e r'ίs^p)) implies that s^pd^π)) e
r(s1(pd2(p))). Let κ(π) be the element /ce r'(ρ) such that s^/c) = s1(pd2(π)) and
e2(κ:) = 0 . Then pd2(p) e L2(m) implies κ(π) e L2(m); since s^pdaίπ)) = s^/cίπ)),
pd2(ττ) 6 Ci(/<(π), m). pd2(π) e L2(ft), so pd2(π) e cζ(κ(τr), m), and in fact cζ(κ(τr),
m) = {pd2(^)}? as is easily verified. Suppose s^pd^π)) = S!(pd2(p)). Then
κ{τι) = pd2(p) and cf(pd2(p), m) = {pd2(π)}. By construction, there is an
element r of Pn such that τ = pd2(7r)*e2(p), so τrer f (τ), contradicting the
maximality of π. Suppose Si(pd2(π)) e rr(s1(pό2(ρ))). pd2(p) e L2(m), so
cζ(pd2(p), w) ^ φ. But by construction, if τecf(pd2(p), m), t h e n π e r ' ( τ ) ,
contradicting the maximality of π. The other assertion follows from the
same kind of considerations. Q.E.D.

Lemma 2 If σe A and Te A, £/z£ft σ/r'{τ).

Proof: Suppose, on the contrary, that σe A, r e A, and σe rr(τ). If ye A, let
H(y) ={fteH|y = s^a'ik))} and q( y) = min {n \a'(h) e Pn}; let hye\λ be such

/ίfH(y)

that af(hγ) ePq(γ). Then α ' ^ ) is a maximal element of Pq(σ), ctr(hΓ) is a
maximal element of Pq(Γ), pd2(αf)^σ)) e L2(q(σ)), pd2(αι'(Λr)) e L2(q(τ)), and
Si(«f(/zσ)) = σer'(τ) = rf(si(αf(fcr))). By Lemma 1, q(τ) = q(σ) + p, where
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p > 0, and cζ(p62{a'(hσ))9 q(σ)) = {K}, where K is the initial segment of af{hτ)
such that Sι(p62(ar(hσ))) = Si(/c) and e2(κ) = 0 . But then κ*e2(ot'(hσ))(S) is
an axiom, while s^K^aiha))) = s,(pό2{at{hσ)))*s1(e2(at(hσ))) = σer'(τ) =
rf(s!(Q!f(/zΓ))). Thus by construction a'(hτ)jίPψ), a contradiction. Q.E.D.

Lemma 3 If f and g are £-functions but not corresponding ^-functions and
σ*/e A' = r(A), then σ*^/A f.

Proof: We first note that the assertion is true if A' is replaced by Pw.
Suppose that σ*/e A' and σ*ge A'. If ye A', let H(y) = {/z e Hlye ris^ar(h)))}
and q(y) = min {«|αff(Λ) e Pw}. Let τ(f) be the element of Pq(σ*/) with

feeH(y)

Si(τ(/)) = σ*/ and e^rί/)) = 0, and τ(^) the element of Pq(σ*g) with s^r^)) =
σ*g and e^g)) = ft. By our note, q(σ*£ ) Φ q(σ*/). Suppose q(σ*^) = q(σ*/) +
p9 where p > 0. pd2(r(/)) e L2(q(σ*/)) and pd2(τ(^)) e L2(q(σ*^)). It is easy to
verify that c§(τ(/), q(σ*/)) = {pd2(τ(^))}. But then by construction, pd2(τ(g ))*
e2(τ(/)) e P q ( σ^). Since pd(pd2(τ(^))*e2(τ(/))) = pd(τ(^)), this is impossible
by our note. Q.E.D.

By Lemma 3, the 'branch points' of A' are of the following kinds:

1. ^-function \

2. Corresponding ^-functions y'^

3. W-functions ^ /

4. ^-function, 2^-functions N^

5. Corresponding ^-functions, W-functions ŷ ^

Define Xe2A' as follows: (i) if αeA, then X(a) = 1; (ii) if α/A, then
χ(a) = 1 iff either (a) X(a*g) = 1 for some W-functiong such that a*ge A', or
(b) X(α*/°) = X(a*fι) = 1 for some corresponding ^-functions/0 and/ 1 such
that α*/°e Af and α*/1€ A'. By Lemma 2, X is well-defined.

Lemma 4 X((/o» = 1.

Proof: Suppose, on the contrary, that X((/o)) = 0. Define A" inductively as
follows:

i. </o>€A".
ii. Suppose σe A" and X(σ) = 0.

a. Suppose σ*/e A' and X(σ*/) = 0 for some ^-function/. If / i s the first of
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the pair </°, f1) of corresponding ^-functions, then σ*/e Aff; if / is the
second of the pair and σ*/V A' or X(σ*/°) = 1, then σ*/e A",
b. Suppose for each ^-function / that either σ*//A' or χ(σ*/) = 1. If g is a
W-function and σ*ge Af, then σ*^eA".

Evidently, if σe A", then X(σ) = 0.

We now define an element h of H. If σ*/e A', let κ(σ*f) be the element
K of Pq(<7*/) such that S^K) = σ*/ and eι(κ) = {δ. Let σ be a maximal element
of A". Then σ/A and there is a ^-function / such that σ*/e A' - A" and if
/ ' is the corresponding ^-function, then σ*/'/Af. pd2(/c(σ*/)) e W/>σ , and
e2(σ)*/fe F(pd2(fc(σ*/)), q(σ*/)). If πe r'(Pd2(/c(σ*/))) and e2(π) = 0, then
MM) = #σ*/([π]); e2(σ)*/f shall be an initial segment of /z([Pd2(/c(σ*/))]);
elsewhere & shall be defined arbitrarily.

This kind of assignment is possible because (1) if σ and r are maximal
elements of A", then pd2(σ) Φ pd2(τ), and (2) if σ*/eA" and τ*geA" for
W-functions/andg, then κ(σ*/) ec(κ(τ*g)) or κ(τ*§ ) ec(κ(σ*/)) iff σ*/ = τ*g\

Now Sxία'ί^)) e A. Some αerfs^'f/z))) is a maximal element of A".
Thus there is a ^-function / such that σ*/eA'- A" and if / ' is the
corresponding ^-function, then σ*/f/Af. But by the definition of h, σ*/f e
risάa'ih))), soσ*/feAf,RAA. Q.E.D.

We define Bf inductively as follows:

i. </o>€ Bf.
ii. Suppose σe B' and X(σ) = 1.

a. Suppose σ*ge Af and X(σ*§*) = 1 for some W-functiong\ Then σ*g e Bf for
the least such W - function g (the W -functions are countable).
b. Suppose that if g is a ^-function such that σ*ge Af, then X(σ*g) = 0.
Then if σ/A, there exist corresponding ^-functions f° and f1 such that
σ*/°eA', σ ^ ^ A ' , and X(σ*/°) = X(σ*/1) = 1; in this case, σ*/°e B' and
σ*f1e Bf.

Evidently, if σe B', then X(σ) = 1. We let B be the maximal elements of Bf.

We now derive from Bf a set Pfr of sequences such that (/0) e Pf and if
σePf, then σ(S) is provable. Bf is essentially a tree with at most two
branches at each node; since each branch is finite, Bf is finite. Ac-
cordingly, if σe B', let i(σ) = max q(τ), where B(σ) = | τ e B |σe Y{Ύ)}. We see

reB(σ)

that if σx e Bf, σ2 e B \ and σλ e r(σ2), then {(σj ^ i(σ2).

If σe Br, then ζ(σ) shall be a finite sequence of functions other than
W -functions and ^-functions defined as follows:

i. If σe B, there is just one maximal element ζ of Pi((7) such that s^ζ) = σ;
thenζ(σ) ^e^ζ) .
ii. If σ*/e B', there is just one ζ e P i ( σ ) such that s^ζ) = σ*f and e^ζ) = 0;
thenζ(σ) = θi(pd(ζ)).

If or = (gl9 . . .,gk)e B;, define Π(σ) = ̂ i*ζ(^i)^2*^(^1*^2)* . . . •&*
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ζ(σ). Let Pf = r(Π(Bf)). Since B' is finite, so is Pf. Pf shall be the
maximal elements of Pf.

Lemma 5 If re Pf, then τ(S) is provable.

Proof: The proof is by induction ong{τ), where ge ωpf> is defined by (i) if
τePf, then g(r) = 0, and (ii) if rePf - Pf, then g{τ) is the least integer
greater than max g(τ*f). g is well-defined by Lemma 2.

τ*fePf

We verify first that if g(τ) = 0, then r(S) is an axiom. Let σ be the
element of A such that σ = s^r). a = α'(^σ) differs from r at most in having
finite sequences of functions other than W-functions or <#-functions inserted
before W-functions. If / is a ^-function, a'*fe r(α), τf*/e r(τ), and s^a') =

S l (τ ' ) , then («'*/(«))! = (τ'*/(S))i, ( ( α ' ^ J J 1 € r(((τ'*f(S)W9 and ((<*'*
/(S))0)

2 e r(((τ'*/(s))0)
2). But then e2(α) = e2(τ) and τ(S) is an axiom.

As for the inductive step, it is easy to verify that the functions defined
by (1) through (18) of section 8 generate premisses from conclusions
according to the rules of inference, modulo applications of the enabling
rules. We note with respect to (Eo) that in constructing σ*/ from σ in Pw,
where / is a function defined by (6) of section 8, the instantiating variable
does not occur in σ(S). Q.E.D.

To complete the proof of Theorem 6 we need only note that since
</o>€ Pf, (fo)(S) = S is provable by Lemma 5, RAA. Q.E.D.

Theorem 7 If S is valid, then S is provable.

Proof: In view of Theorems 1 and 3, it suffices to prove that if S is not
provable, then \s\ is kb'-defensible.

By Theorem 6, there is some he H such that no /z-hypothesis is an
/z-axiom. If σeWfc and rneω, let C(τ, σ, m) = [re r(π(h([σ]), κm([σ]), m,
Ko(M)))] & [s2(τ) = s2(π(/z([σ]), κm([σ\), m, κo([σ])))], and define i;([σ]) =
Σ) Σ) |τ(S)|. It is easy to verify that v([σ]) is a model set for each

meω C(τ,σ,m)

σeWfe. LetΩ = Mσ])|σeWA}.
If r e W([σ], h([σ])), then there is exactly one W-function/ such that if

ρe[τ], then s^pdίp)*/) = Si(p). Let this W-function be / ( [ T ] ) . We define
Rk9 Rb e (^(Ω2))v ( 2 ; Ω ) as follows:

i. If f([r]) = /BfA,O or /([r]) = / B ι U f β I , then <!/([σ]), i/([τ])> ei?,(^).
ii. If / ( [ T ] ) =/K i i k fi i l ) l, then (^[σ]), !/([τ])> 6 Rk(ak).
iii. If flev(ΣΩ) and Rk/b is not defined at a by (i) or (ii), then Rk/b shall be
the empty relation on Ω.

It is a simple if tedious matter to verify from the definitions of the
functions of section 8 and the construction of section 9 that (Ω, Rk, Rh) is a
kb '-model system. But of course \s\ c v([(f0)]), so \s\ is &δ'-defensible.

Q.E.D.
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