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NEGATION DISARMED

ROBERT K. MEYER

The purpose of the present note is to extend the methods of [1] to show,
for several interesting systems of quantificational logic, that their nega-
tion-free fragments are determined by their negation-free axioms, even in
the presence of strong classical negation axioms. Among these systems,
as in [1], are the relevant logics of Anderson and Belnap, presented here in
their first-order versions RQ, EQ, etc. We generalize the results of [1] to
the extent that they apply here not merely to positive logics L+ but to
positive L+-theories; i.e., it turns out for the relevant logics (and some
others) that the set of negation-free theorems of a first-order theory all of
whose non-logical axioms are negation-free is completely determined on
applying negation-free logical axioms and rules to these non-logical
axioms.

Aside from its intrinsic interest, the point of this result lies in the
fact that the negation-free part of the relevant logics is intuitionistically
acceptable, though its negation axioms are not. This acceptability extends
to possession of certain interesting structural properties, e.g., if A v B is a
negation-free theorem of one of the relevant logics, so is at least one of A
and B, as was noted at the sentential level in [2]; similarly, as is to be
shown in a paper in preparation, if 3xA(x) is a negation-free theorem, so is
an instance A(t) for some term t\ both properties, of course, are intui-
tionistic. What we want to show, accordingly, is that there are no theorems
in the constructively acceptable negation-free parts of the relevant logics
that are only provable by constructively unacceptable methods, i.e., by
detours through the properties of classical negation. (The point is unlikely
to be missed, but the claim is that relevant logics have certain formal
properties that are intuitionistically acceptable; as is usual in these
matters, no such claim is entered for the informal arguments employed to
establish this result.)

The reader is presumed to have access to [1], and so its methods and
terminology are used freely. Arguments, by and large, are old, being
adapted here only as is necessary for the richer context. References to
axioms (e.g., Al), etc., are to [1].
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1 We deal here only with first-order languages 9 of a particularly simple
kind; they may be complicated to taste in well-known ways without disturb-
ing the arguments. We assume that 9 is built up from denumerably many
individual variables, for which we use 'x', etc., and from an unspecified
number of individual and predicate constants, the latter of any degree from
0 on. Terms and formulas are built up without restriction, using the
quantifiers (( )9 and ' 3 ' , the connectives &, v, —*, and perhaps other
sentential connectives and constants. Ά' , 6B\ etc., are our syntactical
variables for formulas; ζt9, 'u', etc., for terms; A{t/u) is the result of
proper substitution of t for free u in A, bound variables being rewritten if
necessary according to some definite plan to avoid confusion. A sentence
is a formula in which no individual variable occurs free. We shall in gen-
eral identify a language with the set of its formulas.

Let LQ+ be a positive quantificational logic, i.e., one whose language
9+ does not contain the negation sign -. The negation completion LQ of LQ+

is defined following [1] as the result of adding negation to the formation
apparatus to get an enriched language 9, and of taking as new axioms (i) all
instances of old axiom schemes in the richer language, and (ii) all instances
of the strong classical axiom schemes A1-A3 of [l], in conclusion closing
this doubly enriched set of axioms under the rules of LQ+.

As in [l], certain quantificational logics are rigorous. The basic
positive one, BRQ+, builds on the corresponding sentential logic BR+ of [1],
having a language 9+ with primitive connectives &, v, —>, with rules of
modus ponens for —>, adjunction for &, and universal generalization for ( ).
Its axioms are all instances of the schemes B1-B9 of [1], together with all
instances of the following quantificational schemata.

BIO. (x)A->A{t/x).
Bll. A(t/x) -> 3xA.
B12. (x)(A - B) - ((x)A -> (x)B).
B13. (x)(A — B) — (3xA -> 3xB).
B14. A —> (x)A, if x is not free in A.
B15. 3xA —* A, if x is not free in A.

A quantificational logic LQ+ is a positive rigorous logic if it can be
formulated with the same connectives, axiom schemes, and rules of
inference as BRQ+, with perhaps as additional axiom schemes one or more
of C1-C7 of [1] or of the following (C8 and C8f go together, both to be
adopted or neither):

C8. {x)(A v5)-» {{x)A vB), if x is not free in B.
C8'. (3x A & B) -* 3x(A & B), if x is not free in B.
C9. (ΛΓ)NA -> N(x)A.1

Finally, LQ is a rigorous logic if it is the negation-completion of some
positive rigorous logic LQ+. Examples of positive rigorous logics are the
systems EQ+, formulated with sentential axioms as in [l] and all the above
quantificational schemes, and PQ+, sentential axioms as in [1] and all the
above schemes but C9 as quantificational axioms. The Anderson-Belnap
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systems EQ of entailment and PQ of ticket entailment, with quantification,
are the negation-completions of EQ+ and PQ+ respectively; for remarks
about other rigorous logics, consult [1],

2 With each first-order logic LQ+ or LQ we associate the corresponding
sentential logic L+ or L that results from deleting quantificational
machinery; e.g., we associate E with EQ. Then the notions of possible
%-matrix and $i-matrix as defined in [l] make sense. Let LQ be a first-
order logic (with or without negation, for the moment). Let S be any set of
sentences of the language of LQ. Then [S] shall be the corresponding
regular LQ-theory, i.e., [s] shall be the smallest set of formulas of LQ that
contains all members of S, all theorems of LQ, and which is closed under
modus ponens and adjunction.2 A set T of formulas is an LQ-theory if it is
[S] for some set S of sentences of the language of LQ, and nothing else is an
LQ-theory. There is a smallest LQ-theory (in the sense explained in the
footnote), namely the set (which we simply call LQ) of theorems of LQ.
Certain technical purposes are served by the definitions chosen, worth
calling to the reader's attention (and dropping if other purposes were to be
served). As characterized, members of S serve as non-logical axioms for
the theory [S]; restricting S, though not [S], to sentences assures us that
ζx9

y etc., will function as ambiguous names. Note, too, that each member of
[S] has a derivation from members of S and theorems of LQ, and that
moreover, though we have not specifically required theories to be closed
under generalization, in all logics thus far (and to be) considered, gen-
eralization holds anyway, by a simple inductive argument on length of
derivation.

Let LQ be a first-order logic. Sometimes we look at LQ-theories T as
matrices (F, O, T), where F is the set of formulas of the language of LQ
and 0 is its set of connectives; T is then the set of designated elements of
the matrix. The ambiguity being harmless, we let context determine
whether 'T' means the matrix (F, O, T) or its third (and critical) member.
For the logics LQ considered here, considered as a matrix each LQ-theory
T is trivially an ^-matrix in the sense of [1], i.e., it validates the axioms
and rules, and hence the theorems, of the sentential base L of LQ. As a
matrix, we call LQ itself the canonical %Ω-matrix.

Let SιO+ be a positive quantificational logic, with language 9+, and let
[S] be an LQ+-theory. Let LQ be the negation-completion of LQ+, and let
[[S]] be the corresponding LQ-theory determined by S. We call [[s]] then
the negation-completion of [s]. (In context, if we are just thinking of the
theories and not of axioms for them, we shall write T+ for [S] and cor-
respondingly T for [[S]].) Clearly S c [ s ] c [[s]]; if [S] = F+ Π [[S]], we call
[[s]] a conservative extension of [s\. (Intuitively, [[5]] is what one gets out
of [S] when as explained in motivating remarks one is allowed to use
non-constructive arguments (as respects negation) to derive additional
theorems. The result for which we are aiming, where LQ is a rigorous
logic, is that one gets essentially nothing new, leaving classically accept-
able arguments at one's service in the derivation of constructively accept-
able results.) In fact, for rigorous logics, the result is at hand.



NEGATION DISARMED 187

Theorem 1 Let LQ+ be a positive rigorous logic, and let T+ be a regular
LQ+-theory. Then the negation-completion T of T+ is a conservative
extension of T+. As a special case, the rigorous logic LQ is a conservative
extension of LQ+.

Proof: Trivially, T + is an 8+-matrix. Form the rigorous enlargement
(M, O, D) of T+ as in section 4 of [1]. One gets <M, O, D>,it will be recalled
by adding (intuitively) the least and greatest elements O and I to the set F+

of formulas of LQ+, and then, to account for negation, adding a copy of each
element in the enlarged F+

} getting M; the designated subset D of M
consists of T+, the element I, and all the copies. Moreover (M, O, D), by
the proof of Theorem 1 of [1], is an S-matrix.

It suffices now to finish the proof of Theorem 1 to find an interpreta-
tion I of the set F of formulas of LQ in (M, O, D) such that (1) I{A) e D for
every member of Γ, and (2) I(A)j(D for every member of F+ - T+. Opera-
tions corresponding to the connectives of LQ, including -, being defined on
Λf, the trick is to interpret the quantifiers. We do so, in effect, by
recursively defining / on F as follows:

(a) I(A) = A, if A is atomic.

(b) I(A & B) = I(A) & I(B).
(c) I(AvB) = l(A)vl(B).
(d) I(A) = -I(A).

(e) I(A -> B) = I(A) -> I(B).
(f) If I(A) is one of O, I, -O, - I , I((x)A) =I(A) = I(3xA).
(g) If I(A) e F+, I((x)A) = (x)I(A) and l(3xA) = 3xI(A).
(h) If -I{A) e F+, I((x)A) = -3x - I(A) & 1(3xA) = -(x) - I(A).

Since members of F+ are formulas, so that prefacing quantifiers makes
sense, and since all cases have been covered it is clear that / is well-
defined. Moreover, since I(A) = A is obvious for all formulas A of F+, that
(2) above holds is trivial. Accordingly, we may finish the proof of the
theorem by showing that (1) holds.

If A e T9 it has a derivation from theorems of LQ and members of the
subset S of F+ such that [[s]] = T using modus ponens and adjunction. It is
already noted that if A e S then I(A) e D, while on the inductive hypothesis
that premisses of rules belong under I to D, the S-matrixhood of (M, O, D)
assures that their conclusions will. It remains only to show that if A is a
theorem of LQ, I(A) e D. In this case, A has a derivation also, from logical
axioms, by modus ponens, adjunction, and generalization. Sentential axioms
and rules are once more taken care of, in the latter case again on inductive
hypothesis, by the S-matrixhood of (M, O, D). Suppose A comes by gen-
eralization and, on inductive hypothesis, I(A) e D. If I(A) is I, -I, or -O, it is
trivial by (f) that I(A) e D; if I(A) e T+, since generalization holds as noted in
Γ+, by (g) I((x)A) eT+QD. If -l(A) e F+, then by (h) -K(x)A) = 3x - l{A) e F+,
whence I((x)A) e D.

I turn finally to verification of logical, quantificational axioms. As in
[1], this is an argument by cases, of which I do some typical ones and leave
the rest to the reader.
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Ad Bl l . We neglect the clause in the definition of A{t/x) which rested
on rewriting bound variables, forthcoming from the other axioms in any
event. We note next that I(A) and l(A(t/x)), for any term /properly sub-
stitutable for x in A (without rewriting) always end up in the same place,
i.e., under / both together are members of F+ , are negations of members of
F+, or are identical to the same constant among O, I, -O, -I. (This is
proved by induction on the length of A.) This leaves as the most non-trivial
case in the verification of Bll the case -I{A) e F+, in which case by (h) and
the fact just noted I(A(t/x) — 3xA) = I(A(t/x)) — -(x) - I(A), which by defini-
tion of rigorous enlargement is (x) - I(A) -* -I(A(t/x)) 9 another tedious
inductive argument, omitted here, shows this to be an instance of BIO and
so a member of T+ , ending the verification.

Ad C8. We must show l((x)(A v B)) — (l((x)A) vI(B)) e D. The hard case
is when neither I(A) nor I(B) is a constant. Suppose first that I(A) is the
negation of a member of F+ and I(B) e F+. Then -I(A v B) = -I(A) e F+ by
definition of rigorous enlargement, whence left and right sides of C8 both
reduce to -3x - I(A); the case I(A), -I(B) e F+ is similar. If both I(A),
I(B) e F+, the left side of C8 becomes (x)(l(A) v I(B)) and the right becomes
(x)l(A) v I(B); noting that x is free in I(B) only if free in B, C8 belongs to T+

as an instance of the logical axiom C8 of LQ+. The case -I(A), -I(B) e F+ is
similar, requiring some contraposition by appeal to definition in [1] of
rigorous enlargement and verified in the end as an instance of C8'. (This
explains, in case the reader wondered, which is probably doubtful, why we
required C8' to hold if C8 does.)

Ad C9. The point, consulting definitions and [1], is that /(NA) must be
O, a member of F+, or I, as I(A) isO, a member of F+, or anything else. In
the final case, the consequent goes to I, which suffices; in the first case,
the antecedent goes to O, which suffices. The middle case reduces to an
instance of C9, which completes the verification of C9 and the proof of
Theorem 1.

3 Theorem 1 shows that the conservative extension properties of rigorous
logics extend to their quantificational variants, with respect to negation.
This includes all the relevant logics but the system RQ; we recall that the
system R of relevant implication, the strongest and most interesting of the
relevant logics, was not rigorous and accordingly required special tech-
nique in [l] to establish the conservative extension property. It also
required the introduction of an intuitionistically acceptable connective of
intensional conjunction, though this turns out to be eliminable by the some-
what different methods of [4] and [5]; we retain here, for simplicity, the
formulation of R+ and its negation completion R of [1], getting RQ+ and RQ
by adding B10-B15, C8-C8' (C9 proving redundant and, since R is non-
modal, uninteresting.) The hard work having been done, either above or in
[1], we have almost immediately

Theorem 2 Let T+ be a regular RQ+- theory. Then the negation-completion
T of T+ is a conservative extension of T and, as a special case, RQ is a
conservative extension o/RQ+.
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Proof: Like Theorem 1, mutatis mutandis.

We leave the reader with a thought, and a corollary. The thought is
that, although in this and related papers we have been proving Brouwerian
facts about relevant logics, in the sense that relevant logics are in many
ways closely related to intuitionist logic and share many of its most
striking properties, these Brouwerian facts have Hilbertian import. For
the fact that, unlike intuitionist calculi, relevant logics do not break down in
the presence of classical negation suggests that there may have been
something wrong with intuitionist formulation of intuitionist insight in the
first place, and that a correction which preserves what is right about the
formulation is most welcome to, of all people, the formalists.

What is wrong with intuitionist logic, of course, is its indifference to
relevance as a motivating condition in the analysis of inference. Heyting
et al. are hardly to be blamed for this; even the beginnings of a clear
formal approach to the problem of relevance required twenty years more,
and probably would not have been undertaken at all but for the light thrown
on the deduction theorem by the intuitionist sentential calculus. But, with
the advantage of hindsight, it may very plausibly be argued that it is
precisely disregard for relevance, not the success of intuitionist logic in
catching intuitionist views about, say, excluded middle or double negation,
that makes it impossible for intuitionist logic to accommodate classical
negation.3 Take, e.g., the classical theorem pv (/>—> q), which is certainly
intuitionistically unacceptable but which would become provable, even in
Johansson's minimal logic, in the presence of double negation and excluded
middle; indeed, double negation alone will do.

An examination of an intuitive proof of the formula in question, which
pretty well reconstructs the formal proof in Johansson's system, shows
what is going wrong. Suppose p is either true or false. In the latter case,
clearly there is something false that it implies—itself, for example.
Letting/ be the intuitive disjunction of all falsehoods, accordingly p is
either true or p implies / . (if we had analyzed negation inferentially to
begin with, which seems more in the spirit of Johansson and indeed of
Heyting, we would have started here.) But / implies that q's implying/ im-
plies / , whence, by double negation, / implies q. (Intuitionist negation being
absurd to begin with, in Curry's phrase, this step is not necessary for it.)
Accordingly, by elementary properties of disjunction and implication,
either p is true or p implies q.

This argument fails, relevantly, on the point/-^ q. Once relevance is
considered at all, it certainly is not to be accepted as an evident principle,
as in intuitionist logic proper. Nor does it follow from double negation,
since the necessary theorem, / - * ((<7—»/)-*/), is an instance of the
relevantly fallacious A —> (B -»A). Note, however, that what one might take
to be the central feature of a constructive analysis of negation, i.e., that it
be analyzed inferentially, is quite compatible with relevant insights. Nor
do any basic relevant insights require double negation or excluded middle;
the point is that they do not forbid them, and insofar as there is an
argument that a constructive implication ought to forbid such principles on
pain of collapse, it is fallacious.
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It is, I have suggested, formalism which gets a boost from results like
the present one. For formalists, no less than intuitionists, are attached to
constructive techniques (though differently). Unlike the intuitionist, how-
ever, the formalist has no objection to non-constructive arguments, so long
as he is assured that he gets into no trouble. That is what we have assured
him. To balance accounts, we conclude with a Brouwerian fact.

Corollary 2.1 Suppose Ay B is a theorem of RQ, where A and B are
negation-free then one of A and B is a theorem of RQ. Moreover, if A is
negation-free in RQ, and if Ĥ Q BXA, then for some term t, ĥ Q A(t/x).

Proof: By Theorem 2 above, [2], and Theorem 5 of [3].4

NOTES

1. 'N' is presumed defined, as in [1] (following Anderson-Belnap) by NA =jy {A -• A)
•—A, Anderson and Belnap take C9 as an axiom of EQ, but, as is well-known,
there is philosophical debate about whether it, or its converse, is wanted; I do not
join this debate here, noting merely that the converse of C9 holds for EQ and that,
were we to follow Ackermann in principle by adding a sentential constant t, the
intuitive conjunction of all logical truths, and to formalizeNA as t —A, both C9
and its converse would hold without special quantificational assumptions. On
other technical maneuvers, e.g., taking fN' as primitive—C9 would of course fail.

2. Regular LQ -theory' means what on the usage of [3] and preceding papers would
have been called just ' LQ-theory'. But Routley, as is noted in [4], has discovered
a use for irregular theories—theories that do not contain all the logical truths; no
such use is relevant here, so that here ' LQ -theory' is always tacitly understood
as * regular LQ-theory'.

3. For a beautiful analysis of intuitionist and related negations, cf. H. B. Curry's
chapter on negation in his Foundations of Mathematical Logic, McGraw-Hill, New
York (1963).

4. My thanks are due to the National Science Foundation, for partial support of this
research through grant GS-2648.
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