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Fifty Years of Self-Reference

in Arithmetic

C. SMORYNSKI

It is now fifty years since Hans Hahn first presented an abstract of the
then unknown Kurt Godel to the Vienna Academy of Sciences. The rest, as
it is said, is history. Much of this history is well-known and I do not propose
to repeat the usual platitudes. On any golden anniversary, however, it is natural
to look back and I am not one to rebel against nature. On this occasion I will
sing the hitherto unsung song of diagonalisation. While self-reference is one
of the more outstanding features of GodePs work and self-reference in arith-
metic has had some no-table success, this success is neither so widely known
nor so great that my message should bore the average reader.

One of the great curiosities of my topic is how long it took (perhaps
better: is taking) for the subject to develop. Even the most obvious and central
fact—the Diagonalisation Theorem—seems to have had difficulty in surfacing.
It is not to be found in many of the basic textbooks (e.g., Kleene [20], Mendel-
son [25], Shoenfield [38], Bell and Machover [1], and Manin [24]) and it is
only stated in its most rudimentary form in most others (e.g., Boolos and
Jeffrey [31, Enderton [4], and Monk [26]). The two most substantial exposi-
tions of Incompleteness Theory (Mostowski [28] and Stegmuller [47]) offer
no explicit statement of the Diagonalisation Theorem in any form. Indeed,
it is only in a recent more advanced exposition (Boolos [2]) that the full
Diagonalisation Theorem has finally graced the pages of a book. Yet, diag-
onalisation in arithmetic is fifty years old and was stated in proper generality
in print in 1962 [27]—long before most of the available textbooks were
written.

Perhaps, before writing another word, I should outline the history of the
Diagonalisation Theorem. While I have not made an exhaustive search of the
literature, I can report that a cursory examination of the more important
papers yields the following development:
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1931: Godel [9] produces a specific instance of self-reference: There is a
sentence 0 such that h 0 «> - | /V( r0 n) .

1939: Rosser [35] makes explicit the Diagonalisation Lemma for sentences:
For any \pu with only u free, there is a sentence 0 such that h"0 o
i//( r0n). This comes a year after Kleene [19] has stated and proved the
Recursion Theorem in full generality.

1960: Ehrenfeucht and Feferman [5] prove a free-variable form of the
theorem: For ^JVQVX with only vo,Vi free> there is a formula (j>u with
only v free such that \~<t>v *> \jj(r(j)v~1

iv). (v is Feferman's dot notation,
[6].) However, they only explicitly state the conclusion: For all
x e co, t~03c «> i//(r0xn,3c).

1962: Montague [27] states the final result—the Diagonalisation Theorem:
For \jjvov with only vo,u free, there is a formula <j>v with only v free
(and with no occurrence of v0) such that \~<j)u <* vKr0i>o~\i;)- This
is precisely the form analogous to Kleene's original formulation of the
Recursion Theorem back in 1938.

Concomitant with this slow unfolding of the fundamental theorem of
the subject was, of course, a slow realisation of its utility and a lack of depth
in its application. The reasons for this are sociological rather than mathe-
matical. My pet theory is that development was hindered by diffidence in the
face of philosophical issues. Be that as it may, the growth of recursion theory
also had a substantial negative effect. First, originating partly from Godel's
work, the rapid development of recursive function theory under Kleene drew
attention away from the linguistic aspects of the Incompleteness Theorems.
(Freudian adherents to the Diffidence Theory would even submit the thesis
that this offered a "safe" outlet for one's interest in incompleteness and
undecidability.) Second, the relatively easy use of nonrecursive r.e. sets,
creative sets, and pairs of effectively inseparable r.e. sets in deriving basic
results of Incompleteness Theory misled many researchers into believing the
definitive work to have been done—that all interesting questions were many-
one reducible to one's favourite pair of effectively inseparable r.e. sets.

The celebrant who chooses to extol the glories of five decades of arith-
metical egotism must decide upon the most virtuous path to follow. In view
of the popularity of the above-cited misinformation, I have made the perverse
decision to concentrate on a few usable general fixed points and some of
their applications. Before discussing the positive side to my choice, I will
first document my fall from grace.

Unquestionably the most solid accomplishment to report on in any
survey of "fifty years of self-reference in arithmetic" is the modal analysis
of the definability of fixed points. Having taken part in this analysis myself,
I am fully aware of its beauty and would criticise most severely any scoundrel
who would contrive to survey "fifty years of self-reference in arithmetic"
without discussing it. I do not discuss it here. To temper any judgment of
hypocrisy, I hastily note that I have already published one exposition of this
aspect of self-reference [41] and that I am slated to write another [45].
I also refer the reader to [12] and [11] for further information. Indeed, I
note that via [11] and, to some extent, [44] the modal material has become
directly relevant to the material I have chosen to discuss.
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As I have already said, I shall concentrate on a few usable general fixed
points. Together with some of their applications and a few comparative
remarks, I hope to demonstrate these fixed points to be not only no less
powerful than the usual1 recursion theoretic tools, but perhaps even more
powerful. The study of self-referential statements has reached a stage where
we can recognise certain fixed points to transcend their individuality and
embody unifying concepts analogous to those unifying recursion theoretic
concepts embodied by particular r.e. sets. The Shepherdson fixed point, to
cite the most outstanding example, codifies something like the utility of
effective inseparability. The exact correspondence between fixed points and
recursion theoretic concepts is a long way off. Indeed, at the present time, we
do not even have weak transfer principles.2 It follows that my discussion will
be only slightly better than anecdotal. But it should at least illustrate the
possibilities for the future as well as document the highlights of the past.

In each of Sections 1 and 2, below, I offer five fixed points for the
reader's consideration. Those of the first section are specific sentences, the
stark simplicity of which belies my promise of generality. They are introduced
to provide skeletons on which later to hang the flesh of this generality. Their
presentation is also pedagogical. They show a chronologically long develop-
ment of three simple ideas: (i) simulation of the Liar Paradox, (ii) comparison
of witnesses, and (iii) hierarchical generalisation (i.e., relativisation to a partial
truth definition). This development is only slightly nonlinear and the discussion
coheres well. More difficult to describe is the less coherent Section 2. For one
thing, the new twists not being fully compatible, the exposition is extremely
nonlinear. For another, its first fixed point belongs halfway between Sections 1
and 2, thus wreaking havoc on any universal observation I choose to make
on the dichotomy between the fixed points of these two sections. Nonetheless,
if we agree to ignore this troublesome counterexample, we can distinguish the
fixed points of Section 2 from those of Section 1 by their greater flexibility:
they have parameters.

Following the definition of each fixed point are: (i) a statement of its
provability, refutability, or such (eventually in parametric terms), and (ii) one
or more sample applications. Since I wish to stress the applicability of the
fixed points, I give proofs only of the latter. The simplicity of these proofs
should lend credence to my claim. The other proofs, though not too complex,
would be distracting. The reader desirous of them is referred to [42] and [43],
where additional applications are also to be found.

Among those topics not included, I should emphasise the following:
(i) the modal theory, (ii) analyses and applications of fixed points not based on
the so-called provability predicate, and (iii) applications of diagonalisation
requiring more than the Ehrenfeucht-Feferman version. I have already dis-
cussed the first of these. With respect to (ii), I refer the reader to Manevitz and
Stavi [23] for a beautiful example of such an analysis and to Svejdar [48] for
a bountiful collection of examples of the latter. As for the full power of
diagonalisation, I note that: (a) the weak Rosser and Ehrenfeucht-Feferman
versions suffice for a great many applications, and (b) applications of Mon-
tague's full theorem are usually of the flavour of applications of the Recursion
Theorem and tend to yield expected results. A very nice exception is the
Uniformisation Lemma (1.4.2) of Leivant [22].
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1 No-frills fixed points Consider the following five fixed points:

I. (Godel, 1931 [9])
0<>iV( r10n)

II. (Rosser, 1936 [34])
0o . iV( r n0 n )< i> ( r 0 n )

III. (Kreisel and Levy, 1968 [21])
0 ^ / V r ( r 1 0 n )

IV. (Kent, 1973 [18])
0<>. iV r (

r 10 n )<Pr r (
r 0 n )

V. (Guaspari 1976, as modified by Solovay, Hajek, and Smorynski; cf.
[10], [15], and [43])
0^.Prri(

rn0n)<Prr2(r0"1).

Even without an explanation of the notation, the reader can see here a simple
evolution of ideas. To achieve this effect, I have had to cheat a bit. Even the
novice should recognise that Godel and Rosser actually used the dual II x forms
of their fixed points: Letting, e.g., ^ = 10 in fixed point /, one obtains the
familiar \p *<> ~]Pr(r\p~]). The cognoscente should note the missing fixed point
of Scott [36] and how its inclusion would ruin the forward progression of my
cute little development. However, not even the expert should immediately see
the relation between Guaspari's original fixed points and their modern descen-
dant V. The history is revisionist; but the conceptual ordering is natural.

Notation: Pr(-) denotes a standard 2j provability predicate for a given
consistent r.e. arithmetic theory T, say T 5 PA. Occasionally, to avoid am-
biguity I write Pr^(-). ConT will denote 1 /VY( F 0= P ) . There are two witness
comparison formulas,

3v\pv ^Bvxv: 3VO[\1/UOA \fvx < L>01X^I]
3V\JJV< 3vxv: 3yo[i//i;o A VUJ < yolX^i]-

F denotes a class of formulas (2W, n^, etc.) which possesses a truth definition in
arithmetic: There is some 7>r(-) e F such that, for all formulas 0uo • • • ̂ «-i e F,

PA \-(pv0 . . . vn-i *> Trr(
r<p0o . . . v^).

Prr(-) is just the relativisation of Pr(-) to Trr(-):

Prr(v)o3v0[Trr(v0)APr(v0^v)],

where -̂  represents implication. In comparing witnesses involving /Vr(-),
however, one rewrites the formula thus,

Prr(u): 3f13y0<i;1[71rr(i;0) APWV(VUV0 -^y)],

where Pr(v) is lvxProv{vu v).
Bearing this in mind, let us take a close look at each of our five fixed

points.
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Fixed Point I. If T h0 *>/H r10n), then

i.a. T ^ 1 0
b. if T is sufficiently sound, T \i~ 0

ii. T+ConT h l / V ( r 1 0 n )
iii. T \-^<f>**ConT.

The additional assumption required in i.b is known as 2rsoundness and
will be encountered again later. Its use here is usually regarded as a weakness
of this fixed point. Conclusions ii and iii, however, vindicate this choice. Con-
clusion ii, which is merely the formalisation of i.a, yields immediately the
Second Incompleteness Theorem: T \j~ Con?. Conclusion iii is also of interest.
First, it justifies the familiar reference to the sentence 10 asserting its own
unprovability. Second, it is the prototype for the prettiest result of the modal
theory—the explicit definability of all modal fixed points (cf. my surveys
cited earlier).

To bypass the additional assumption of i.b, Rosser introduced the witness
comparison:

Fixed Point II. If T h0 <> .Pr( r 10 n )< iV(r0n), then

L 7 ^ 0 , 1 0
ii. T+ConT hnPr ( r 0 n ) ,nPK r n0 n )

iii.a. T+ConT h l 0
b. T + 10 \tConT.

While we have gained independence without any additional assumption,
we have lost the aesthetically pleasing explicit definition. The traditional
analysis of Pr(-) is, in fact, demonstrably insufficient to settle such a simple
question as the uniqueness or nonuniqueness (up to provable equivalence) of
fixed points of the form II. I refer the reader to Guaspari and Solovay [12] for
further information on this matter. The simple failure, iii.b., of ~\ConT to serve
as an explicit definition of 0 follows from ii (T + ConT hl/V*(r0n)) and the
Second Incompleteness Theorem for T + "10 (COHT+^Q «> liV( r0n)).

While hierarchical generalisations are often pedestrian in themselves,
their applications can be novel. Fixed points III and V exemplify this.

Fixed Point III. If T h 0 ^Pr r(
r~10n), then

i. For all sentences y e F such that T + y is consistent,
T+y I/" 10.

ii. T + RFN(T) h l 0 .

RFN(T) is a sort of generalisation of consistency known as the (proof
theoretic) Reflection schema: For 0 containing only v free,

\/v[Pr(r(t)v~1)^(i)v].

The point to i and ii is given by the following theorem of Kreisel and Levy
[21]:

Theorem No consistent set of axioms of bounded quantifier complexity
when added to T will yield all consequences of T + RFN(T).
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Proof: Let A be a set of sentences of bounded complexity such that T + A
is consistent. Choose n such that A C ^ and let T = Xn and 0 be as in III. By
i and ii,

T + A \j-1<l>,T + RFN(T) h l 0 ;

whence A does not yield all consequences of RFN(T) over T,

Sample Corollary PA and ZF are not finitely axiomatisable.

The corollary follows from the observation that, in their respective
languages, PA and ZF prove the Reflection schema for the predicate calculus.3

It follows that neither PA nor ZF have axiomatisations of bounded quantifier
complexity over the predicate calculus—in particular, they are not finitely
axiomatised.

This is not the quickest proof of the nonfinite axiomatisability of PA but
it is certainly the most revealing one. Further examples are given in Kreisel
and Levy [21].

Fixed Point IV. If T h0 o .Prr(
r1<p)< Pr r(

r0 n) , then

i. For all sentences y e F such that T + y is consistent,
T + y tf-0,10

ii. T + RFN(T) h l 0 .

As in the step from I to II, that from III to IV takes us from mere non-
refutability to independence (cf. Kent [18] for an application4).

Fixed Point V. If T h 0 <* .Pr r i(
rH0n) < /V r2( r0n), then

i.a. For all sentences y1 e Fx such that T + 7i is consistent,
r + 7i ^ n 0

b. For all sentences y2 e F2 such that T + y2 is consistent,
r + 7 2 ^ 0

ii. T + RFN(T) h l 0 .

The step from IV to V is not as silly as it seems. By using different F { and
F2, one can control the complexity of 0. For example, choosing Fx = 2 l 5

F2 =11!, one gets 0 e 2^ The importance of this is brought out by the following
definition and result of Guaspari [10].

Definition A sentence \jj is T-conservative over T (or, Y-con over T) if, for
all sentences y e F,

T+\jj \-y=>T t~y.

Theorem There is a 0 e 2^ such that

i. 0 is Hi-con over T
ii. "10 is Xx-con over T.

Proof: These are just the contrapositions of i.a and i.b above, respectively,
forF1 = 2 1 , r 2 = n1.

While the Recursion Theorem can be invoked to yield the existence of



FIFTY YEARS OF SELF-REFERENCE 363

such sentences as 0 (at least for PA and ZF, if not yet for GB) there is no
known construction involving only effective inseparability. For the sets

A = {0: 0 is not n r c o n over PA]
B = (0: "10 is not 2 r c o n overiMj

can be complete 2 2 (cf. Solovay [46] and Quinsey [33], respectively). Thus,
the fact that their reductions, A ^ B and B< A, separate the refutable from the
provable sentences leads to no contradiction.

The use of hierarchical generalisation, even though we are constructing
a Si formula, is necessary here. Fixed point II demonstrably fails to yield the
theorem and, moreover, there is a convincing sense (cf. Guaspari [11]) in
which our most advanced nonhierarchically generalised fixed points (B and D
of the next section) cannot be used to construct sentences satisfying the
theorem.

We will meet Ilj-con sentences again in the next section. For more on
them and their more general F-con associates cf. [10], [15], [43], and [46].

2 Deluxe fixed points We now move on to less subtle, more sublime varia-
tions on the self-referential theme. Again we will consider five fixed points:

A. (Mostowski, 1961 [29])
0*>. \X/Pr r / (

rH0 n )< W P r r / (
r 0 n )

B. (Shepherdson, 1960 [37])
0 o . (Pr ( r 10 n ) v 0) < (Pr{r<p) v x)

C. (Smorynski, 1976 [42])
0 o .(W PrT.(r^<p) v tf/)< (W PrTf<p) v X)

D. (Smorynski, 1976 [42])
0 <* :0o v .0i A [( iV( r10 n ) v ;//) ^ (Pr(r<p) v X)]

E. (Guaspari, 1976, as modified by Solovay, Hajek, and Smorynski, cf.
[10] and [43])
0 o .(ZVri(

r"10n) v W < (PrT2{
r<p) v X) .

This time, as should be evident even without an explanation of the nota-
tion, there is no directed evolution of ideas. Three distinct and apparently not
fully compatible modifications of fixed points II and V of the last section are
made.

Fixed Point A. Let To, Tx, . . . be a uniformly r.e. sequence of consistent
extensions of PA and let

PA h0 o ,W PrTi(
r-](p) < W PrTi(

r<p).

Then for each n, Tn H" 0, "10.

By W iV*^.(-), I mean simply any Zj formula defining the union of the sets

of theorems of the theories Tn.
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While the success of this diagonalisation is fairly unremarkable, it should
be noted that this success doesn't go very far. Fixed points I and III of the
previous section are also easily uniformised; but fixed points IV and V are not.
Briefly, the customary infinite descent occasioned by the provability or refuta-
bility of 0 breaks down in the latter cases: for a generalisation of IV,

PA \~<j> <> . W PrTi+r(
r1(lP) < W i V r / + r (

r 0 n ) ,

one would like to go from a proof k0 that (say) TnQ + 70l~l<k, with TnQ + 70

consistent, to a smaller proof kx < k0 that Tni + yx h 0 , with Tni + 7X consis-
tent. Unfortunately, one only gets TnQ + y{ consistent and the descent stops.

The single most widely used fixed point has thus far been the following
rather curious one :

Fixed Point B. Let i | / , x e2 i and let

T h 0 o .(Prfif1) v^)< (Pr(r<p) v X) .

Then:

i.a. rh0iffNt=^/<x
iff N 1=0

b. T h 10 iff N^x< 0
ii.a. T + ConT \~ Pr(r(p) o ,\jj ^ x

b. T+ConT hPrCicf1)^ .x< 0
iii. T+ ConT h0«> .\p < %•

In witness comparisons, disjunctions 3vodvo v 3v1pvl are assumed re-
written with one quantifier: 3u(6v v pu). In applications, the disjuncts i//,x can
occur vacuously. In such cases, the reader can assume \p,x to be suppressed
instances of 3v(~\v = v) or any similar false refutable 2 j sentence.

A remarkable feature of this fixed point is that it is not always indepen-
dent; that, in fact, one has incredible control over its provability and refut-
ability. The original and most straightforward application of it merely tallies
the instances of provability and refutability.

Definition Let <j>v have only v free and let X Q co. We say that <j>v defines
X if, for all x e co, x e X iff N 1= 0x. We say that </>v semirepresents X in T if,
for all x e co, x e X iff T h 03c.

The first application, due to Shepherdson [37], is the following:

Theorem Let X, Y be disjoint r.e. sets. There is a formula (j>v e Xx such that

i. 0i> defines X
ii. <j)v semirepresents X in T

iii. ~\(pu semirepresents Yin T.

Proof: Let \pv, xv e Sx define X, Y, respectively, and choose (j>v such that, for
allx e co,

T h (j)x o .(Pr( r0xn) v \jjx) ̂  (PKr03cn) v %3c).
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Since X, Y are disjoint, for any x e co,

N \= (\jj < x)x iff N \=^xiffxeX
N t= (X < $)x iff N 1= X* iff * e Y.

Given this, the theorem follows immediately from the above criteria on the
truth, provability, and refutability of 0.

This theorem provides another excellent counterexample to the conten-
tion that the subject is a footnote to the existence of a pair of effectively
inseparable r.e. sets. Using a creative set Ehrenfeucht and Feferman [5] con-
structed a formula 0 e Xl satisfying ii. A pair of effectively inseparable r.e.
sets achieved both ii and iii for Putnam and Smullyan [32]. Again using a pair
of such sets, Hajkova and Hajek [16] were able further to satisfy the correct-
ness condition i, but only for a more complicated 0. Eventually, I obtained the
full result recursion theoretically, but using a configuration of two pairs of
effectively inseparable r.e. sets and a generalised completeness property of
them(cf. [40]).

Metamathematical applications of Shepherdson's fixed point abound. The
following, due independently to Friedman [7], Jensen and Ehrenfeucht [17],
and Guaspari [ 10], is particularly popular:

Theorem The following are equivalent:

i. (Zx-D is junction Property). For all sentences a0, ax e Xu

T \~~ a0 v #! =* T h o0or T \~ ox

ii. (Li-soundness). For all sentences o e 2 l 5

T h a = * N t=a.

Proof: ii => i is an immediate corollary of the provability of all true 2 j
sentences.

i => ii. One argues by contraposition. First, choose \jj e %1 to be a false theorem
of T and choose 0 e Zj such that

T h 0 o .(Pr( rH0n) v ;/0 < iV( r0 n) .

The refutation of i will be given by the further choices

o0 = 0 = (P r ( r 10 n ) v t)< Pr{r<p)
ol=Pr(rf])< ( /V( r 10 n )v \jj).

T h a0 v aj : Note that for any 0, x,

71 h 0 - > ( 0 < x . v . x < «).

In particular, 71 h i// -> a0 v a1( But r h i / / , whence 71 h a0 v a^
71 I/" a0, ax: By the parametric determination of the provability and

refutability of 0, 0 is independent of T. Since o0 = 0, T7 If a0. But r h a ^ "10,
since we have just seen T \~ o0 v ox and, as is even more easily seen,
T t-liooAO^. Thus T \tov

These two applications have depended only on the actual parametric
determination of the provability and refutability of 0. The next two applica-
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tions depend on the formalisations ii and iii, above, of this determination. The
first is actually a pair of related applications due to Harrington and Friedman
(cf. [8]).

Theorem Let 6 e 11^ There are o e 2 l 9 IT e Y\x such that

i. T+ConT \~6 oConT+(J

ii. T+ConT \~ 6 o ConT+1T.

Proof: i. Choose o = 0 such that

T h 0 ̂  .i>r(r"10n) < (Pr(r<p) v X),

where x = 10. Then

T+ConT h P K r " l 0 n ) ^ x

ii. Choose TT = "10 where 0 is such that

r h 0 o .(Pr( rn0n) v \//)< Pr( r0n)

and \jj =16.
My favourite application of this fixed point is the following from

Smorynski [42]:

Theorem The following are equivalent:

i. ConTis Hrcon over T
ii. (Si-soundness). For all sentences o e 2l5 T \~ o => N 1= a.

Proof: ii =* i is an immediate consequence of the provability of all true Sj
sentences.

i =* ii. One argues by contraposition. Let \// e 2^ be a false theorem of T and
choose 0 e Sj such that

71 K 0 o .(Pr( rn0n) v ^ )< Prff1).

By the basic calculation of 0,

rb<-0. (i)

By the formalisation,

T+ConT h ^ J / ,

and, by assumption, T \~ \jj, whence

r+Co« r h-0 . (2)

(1) and (2) violate i.
While Mostowski's uniformisation of Rosser's basic fixed point II and

Shepherdson's adjunction of side-formulas thereto occurred nearly simul-
taneously, it took over a decade for these refinements to be combined:

Fixed Point C. Let TOi 7\, . . . be a uniformly r.e. sequence of consistent
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extensions of PA, let i//,xe X1 be sentences, and let

PA h 0 ^ . ( W P ^ r 1 0 n ) v ^ ) < ( W P r ( r 0 n ) v X ) .

Then:

i. ln(Tn h0)iffVw(7; h0)iff N 1= tf^ x
ii. 3n(rw h 10) iff \fn(Tn h 10) iff N t=x< ^.

With fixed point C, applications of fixed point B can be uniformised. The
most interesting example of such a uniformisation is the following:

Theorem Let TOi Tu . . . be a uniformly r.e sequence of consistent exten-
sions of PA and let X, Y be disjoint r.e. sets. There is a ^ u e S j with only v free
such that

i. (j)v defines X
ii. (j)u semirepresents X in each Tn

iii. ~10i> semirepresents Y in each Tn.

The proof is straightforward and I omit it. As one might guess from the
presence of condition i, this theorem has not yet been given a proof via the
usual pair of effectively inseparable r.e. sets, although two nested pairs will
yield the result (cf. Smoryfiski [40]). Incidentally, conclusion i is no longer
remarkable—we can always force it to hold trivially by adjoining a new suffi-
ciently sound theory T-x (e.g., T-x = PA) to the enumeration.

Where fixed points A and C were introduced for the sake of uniformity,
the following fixed point was introduced for the sake of nonuniformity.

Fixed Point D. Let \jj, x e Zl3 let 0O, 0X be arbitrary, and let

r h ^ . 0 o v ^ A [(/V(r10n) v 4/)< (iV(r0n) v x)].

Then:

i. T h0iff T \-Q0ox [T 1-0^0! and N f = H x l
ii. T (-10 iff T h 10O and [T 1 -10^10! or N l=x < tf'L

A sample application from Smoryhski [42] is the following:

Theorem Let To £ Tx be consistent r.e. extensions of PA and let Xo C xx

be r.e. sets. There is a formula <pv with only v free such that

i. 0i> semirepresents Xo in To

ii. (j)v semirepresents Xt in Tv

Proof: We will apply the basic calculation to both theories in a single fixed
point. To this end, let ipfU e Sj define Xt (for / = 0, 1) and let ^>/(r0i}n) be the
Shepherdson component:

$;(r0<)n): P r r . (
r 10 iT) v frv. < .PrTi{

r<j>iP).

Choose (j)v such that, for all x e co,

PA h (j)x o [60x A ̂ >o(r0^n). v .0! A ^ ^ ^ J C " 1 ) ] ,
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where 0x is a sentence provable in 7\ but not in To and dov is a formula to be
specified later.

For To we have

To \-(j)xiffT0 \-8l A$1(
r(l)x'1)

or: To h ^ o x v^j A^1(r03c"1)and N t= i//03c
iff 7"0 h 0̂3c v 0! A ̂ jC^x"1) and x e Xo.

Thus we get

r 0 h 03c iff i e l o

provided only that

0oi; semirepresents some superset of Xo in To. (1)

For Tx we have

7\ h 03c iff 7\ h 0o3c A $ o ( r 0* n )
or: Tx \~dox A<J>o(

r0xn) vflj and N N ^ i
iff rx h 0o3c A $o(r05cn) or x e Xj.

Thus we get

Tx h03ci f fxeZ 1

provided only that

60u semirepresents a subset of Xx in r1# (2)

To satisfy conditions (1) and (2), let 60u uniformly semirepresent Xo (say) in
To and 7\.

The reduction of the nonuniform case—specifically, the use of the uni-
form semirepresentation of an interpolant between Xo and Xx in To and Tx—is
the key recursion theoretic difficulty. Assuming the existence of a recursive
interpolant, the result can be proven via a pair of effectively inseparable r.e.
sets (cf., di Paola [31]). Without this condition, one can use two nested pairs
of such sets (cf., Smorynski [40]).

Finally, we come to:

Fixed Point E. Let \//, x e 2j and let

T V- 0 o . (Pr r i (
r n0 n ) v yjj) < (Pr^ff1) v X).

Then:

i.a. r h 0 i f f N l = ^ ^ x
b. Thjl0iff N^x< t

ii. 0 is r r c o n and "10 is f 2-con over T iff N t= "1 \jj A "lx-

A few words of explanation are probably called for. Fx and F2 are as
in Section 1. f is the dual of F, i.e., the set of negations of formulas in F.
One could take F to be empty, in which case the most reasonable meaning of
f-conservation is consistency. (Heuristically, this is because, in Pr^-), 0
behaves like {"10 = l\ which has the dual {0 = lj.)
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I end this paper with a seemingly serendipitous-but lovely—application
of fixed point E to a problem of relative interpretability: While ZF and GB
are so intimately related as to be considered almost identical, the theories
relatively interpret able in ZFare not the same as those so interpretable in GB.

Theorem There is a sentence 0 e 2j such that

i. ZF + 0 is relatively interpretable in ZF
ii. GB + 0 is not relatively interpretable in GB.

The existence of such a 0 e n 2 was first proven by Hajek [13] under an
assumption of sufficient soundness. Later, Hajkova and Hajek [16] reduced
the requirement to mere consistency and Solovay [46] further reduced the
complexity to Zx. The present greatly simplified proof is due essentially to
Guaspari. (If one assumes ZF \j~ iConZf, it follows quickly from Theorem 3.3
of [ 10]; cf. also the discussion following Application 3.3 of [43].)

It should be noted that there are sentences 0 e IT 2 such that GB + 0 is
relatively interpretable in GB, but ZF + 0 is not so interpretable in ZF. (Cf.
[13] and [46] for more information.)

To prove the theorem, we have to recall two basic facts about relative
interpretability.

Facts: Let 0 be a sentence, then

i. ZF + 0 is relatively interpretable in ZF iff 0 is U^con over ZF
ii. The set S0: GB + 0 is relatively interpretable in GB\ is r.e.

For the definition of relative interpretability and proofs of these facts,
I refer the reader to [14], [15], and [10]. Fact i is a quick corollary of the
Orey Compactness Theorem (for which see [6] and [30]). Fact ii is a trivial
consequence of the finite axiomatisability of GB.

Proof of the theorem: Let x^ e ^i define the set of all sentences 0 such that
GB + d is relatively interpretable in GB and then choose 0 e X1 such that

ZF h 0 o . P r L l (
r 1 0 n ) ^ (iV( r0n) v X( r0n)) ,

where Pr() is PrZFi)> It suffices to show that N l=~1x( r0n). F ° r then: (i) by
the basic calculation, 0 is I l rcon over ZF; and (ii) by the definition of x^,
GB + 0 is not relatively interpretable in GB.

Suppose, by way of contradiction, that N 1= x( r 0 n ) - By the calculation,
ZF h 1 0 , whence GB h "10. But then GB + 0 cannot be relatively interpreted
inGtfand N t=nx( r 0 n ) .

A tiny remark: the disjunct Pr(r(p) is redundant. For, if d is provable in
GB, then GB + d is relatively interpretable therein.

NOTES

1, I concede that, with the Recursion Theorem and the Diagonalisation Theorem coming to
pretty much the same thing, many traditional sorts of results are accessible to both
recursion theoretic and proof theoretic tools. However, when one desires a more sophis-
ticated fine structure analysis, the situation is different.
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2. There are beginnings: Peter Pappinghaus once showed me a method of translating recur-
sion theoretic constructs into fixed points; but his verification was by example and he
had made no analysis of the domain of applicability of his translation. Similarly, in [40],
I reversed the direction by using a nested pair of pairs of effectively inseparable r.e. sets
to simulate the use of the Shepherdson fixed point in a few of its applications.

3. This is shown by formalising the proof of cut-elimination in the theories and relying on
the subformula property and the existence of partial truth definitions to prove by
induction on the length of a cut-free derivation the truth of all theorems of the predicate
calculus. For a simpler proof in the set theoretic case, cf. [39].

4. Alternatively, cf. [39] wherein Kent's application, if not the definition of the fixed point,
is correctly repeated.
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Westmont, Illinois

Addendum The above is an expanded version of a lecture that I have
given with some success in Oxford, Ann Arbor, and Warszawa. It has had a
circuitous path to publication. At first I intended it for the Logic Colloquium
at Praha. Its length dictated, however, that I give a different lecture. Thus, I
submitted the paper to a major logic journal. When the colloquium organisers
suggested that I include the present paper in the proceedings, I quickly with-
drew it, being unsatisfied with the inordinate length of time it was taking the
referee to read the paper. Then, as most readers know, the colloquium was
cancelled due to technical reasons and I resubmitted the paper to the present
Journal I wish to make a special acknowledgment to the editors and the referee
for their expeditious handling of the manuscript, allowing it to appear on the
fiftieth anniversary of the publication of Godel's paper.

It is now (February 1981) over a year since I wrote the above paper and,
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as one might expect, I have a few additional remarks to make. Because of the
success I have had with this paper, I have decided not to tamper with the main
text, but merely to add a (very) few relevant remarks in an addendum.

First, I must report that my friend Goran Sundholm, of Magdelen College,
Oxford, found a terrific error in my history. It seems that Rosser's form of
the Diagonalisation Lemma is already stated quite clearly on p. 91 of the 1934
edition (Springer, Wien) of Rudolf Carnap's Logische Syntax der Sprache.
While I deny that this devastates my interpretation of the slow development
of diagonalisation as a tool, I must admit that this reference does weaken my
case.

Even before Sundholm savaged my history, Albert Visser and Per Lind-
str5m made observations that effectively buried Fixed Point D. These two
gentlemen found easy derivations of two of my three original applications of
this fixed point and the third has a similar easy derivation:

Theorem Let To, Tx be consistent r.e. theories extending (say) PA.

i. / / To £ 7\ and Xo C Xx are r.e., there is a formula <j>v such that (j>v semi-
represents Xt in T(.

ii. / / r0, Tx are incomparable and Xo, Xl are r.e., there is a formula <j>v such
that (pv semirepresents Xj in Tf.

iii. / / To, Tx are incompatible and (Xo, Yo), (Xu Yx) are pairs of disjoint r.e.
sets, there is a formula (pv such that <j)v (Icpv) semirepresents Xf (Yj) in Tj.

Originally, I proved all of these by applying Fixed Point D. I will now
show how they all quickly reduce to the uniform result: Let To, Tu . . . be a
uniformly r.e. sequence of consistent extensions of PA, and let X, Y be disjoint
r.e. sets. There is a formula (j>v such that <j>v (1(j)v) semirepresents X (respec-
tively, Y) in each Tn.

Proof of the Theorem: i. (Lindstrom). Let Tx h 6, To tf 6 and choose

\jjov to uniformly semirepresent Xo in To and To + Id
\piV to uniformly semirepresent Xx in To and 7\,

and choose

(pu: (10 -> \jjQu) A tyiV.

ii. (Visser). Let Tt \~Bh Tt h/" <91_/ and let

\jjjV uniformly semirepresent Xt in To, Tu T0 + 1d1, T1+1d0

and choose

0ir. O0 o -* ^ y ) A ( i f l i ^ W -

iii. As in ii, but assume

~1 \jjfV to uniformly semirepresent Y/ in To, Tx

as well.

(Remark: A careful inspection of the proof will reveal that in i one only needs
the (nonuniform) existence of a correct Sj semirepresentation of any r.e. set in
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an r.e. extension of PA, and in (ii), one only needs the existence of a semi-
representation.)

A third point concerns my unexplained use of Feferman's dot notation.
For twenty years this has been the accepted notation and, contrary to the
opinion of the referee, I see no need to explain it here. The reader who is
interested in the subject of the present survey will not get far in his further
reading without coming across an explanation.

Speaking of further reading, let me finish by citing three important
additions to my bibliography. The following papers of Per Lindstrom should
be placed alongside Svejdar's paper as sources of nice applications of self-
reference of a type not considered in the body of my paper.

1. "Some results on interpretability," in Proceedings of the 5th Scandinavian
Logic Symposium, ed., F. V. Jensen, B. H. Mayoh, and K. K. M011er, Aalborg
University Press, Aalborg, Denmark, 1979.

2. "Notes on partially conservative sentences and interpretability."
3. "On faithful interpretability."




