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Elementary Extensions of Recursively

Saturated Models of Arithmetic

C. SMORYNSKI

A countable recursively saturated model of arithmetic has, up to isomor-
phism, a unique countable recursively saturated elementary end extension. As
one might guess from the countability restriction, this isomorphism is not
canonical. Indeed, if 1 is a recursively saturated model of arithmetic and 31 is
an isomorphic copy thereof into which we want to embed 1 as an elementary
initial segment, then there are continuum many positions in 31 in which to place
1. In this paper we note that, in fact, 1 can be so embedded in 31 in continuum
many decidedly distinct ways.

We are concerned with structures of the form,

(R;H) = (lRl;l«l;+, Λ 0 , . . . ) ,

where 1 <e 31 are countable recursively saturated models of PA. Our main
theorem asserts great variety: for fixed 1 (or, equivalently, for fixed 3̂ ) there
are continuum many elementarily inequivalent such structures. If, however, we
assume (ϋίt l ) to be recursively saturated, the situation becomes more
tractable: there is only a countable infinity of elementarily inequivalent such
structures.

Following the introduction, we get down to business in Section 1 where
we first discuss cofinal extensions instead of end extensions. The proofs of the
corresponding results are simpler and, besides, somewhat cute and deserving of
display. End extensions are then discussed in Section 2.

This paper is not self-contained and the reader is advised to have copies of
[1] and [6] at hand. Our notation is that of the latter and is reasonably
standard. The merely near standard alphabetical exceptions are: Gothic capitals,
1, 31, denote models of arithmetic, which we take to mean nonstandard models
of arithmetic. Lower case Latin letters are generally integers of various kinds:
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a, b, c, . . . denote elements of models; x, y, z, . . . natural numbers qua ele-
ments of models; and i, /, k, m, n natural numbers qua subscripts, etc. Sub-
scripts e and c indicate that an extension is an end or cofinal extension,
respectively. Latin capitals have primarily two uses: F, G, H are reserved for
functions on models, and /, /, K for initial segments closed under successor.

Finally, a convention: we assume all models to be countable. We shall
simply have to do this because we shall be relying on results only known or
true in the countable case. Besides, if we are going to give exact cardinal com-
putations, we must use exact cardinal input.

1 Cofinal extensions Cofinal extensions are generally more complicated
objects (more fashionably, morphisms) than end extensions. If I is recursively
saturated, any elementary end extension 5ft has the same theory and standard
system as SJL Thus, if 5ft is also recursively saturated, it is isomorphic to 1 . If,
however, 5ft is an elementary cofinal extension, then 1 and 5ft need only share a
common theory and not a standard system. There are, in fact, continuum
many possibilities for the standard system and so a continuum of nonisomor-
phic recursively saturated elementary cofinal extensions 5ft of 1 . If we declare
ourselves only to be interested in the case in which the standard system is not
violated, we again conclude 31 to be isomorphic to 1 and uniqueness is re-
instated. But only temporarily.

1.1 Theorem Let 1 be a recursively saturated model of arithmetic. There
are continuum many distinct theories, 77z(5ft; 1 ) , of structures (31; 1) , where 5ft
is a recursively saturated elementary cofinal extension of 1 with the same
standard system as Έ..

Proof: We simply cite a few results from the literature. Jensen and Ehrenfeucht,
in [ 1 ], have proven there to be a continuum of elementarily inequivalent initial
segments / Ce 1 modeling PA, and hence closed under addition and multiplica-
tion. But, Paris and Mills [5] have shown that, if / Ce 1 is closed under
addition and multiplication, then there is an elementary cofinal extension
5ft >c 1 in which/is the greatestcommon initial segment:

/ = GCIS(t;5ft) = ί a e I I I : \//b e I5ftl - \W\(a<b)\.

Now, if the original model 1 is recursively saturated, then, by a result of
Smoryήski and Stavi [8], 5ft is also recursively saturated.

Putting everything together, we get continuum many theories Th(5ft; 1 ) of
structures (5ft; 1) given by recursively saturated elementary cofinal extensions
5ft of our given recursively saturated model 1 by taking continuum many
elementarily inequivalent initial segments / Ce 1 modeling PA and finding
cofinal extensions 5ft / of 1 in which these segments / are the greatest common
initial segments. The evident uniform first-order definability of/ = GCIS(l;5ft)
in (5ft7; 1 ) yields the elementary inequivalence of these pairs.

The only thing left is the small comment that at most one of the exten-
sions 5ft/ has a standard system distinct from that of 1 . For, unless / = ω, the
inclusions / Ce 1, / Ce 5ft/ entail the identities of the standard systems of/ and
1 and of those of / and 5ft/, whence that of the standard systems of 1 and 5ft/.

QED
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We cannot resist noting the following cute (albeit pointless) byproduct of
our proof:

1.2 Fact Let 1 be recursively saturated, I <c ft, and / = GCIS(l ft). If
IΦ ω, then ft is isomorphic to 1.

Proof: As already noted, ft is recursively saturated and has the same theory
and standard system as 1. QED

Returning to our original problem, we note that our proof of Theorem 1.1
merely shows how to find a great many theories. It does not come anywhere
near cataloguing them. Even if we fix 1, ft, and / Ce ffl to be GCIS(1 ft), the
desired embedding can be accomplished in more than one way and occasionally
(usually?) the results are elementarily inequivalent.

If we assume the entire structure (-ft; 1) to be recursively saturated, we get
a degree of tractability:

1.3 Theorem Let 1 be a recursively saturated model of arithmetic. There
is a countable infinity of distinct theories, Γft(ft l ) , of recursively saturated
structures (ft; 1), where ft is an elementary cofinal extension o / l .

As was the situation with Theorem 1.1, we again get no catalogue, but
merely identical upper and lower bounds on the number of such theories. The
key to obtaining these bounds is the following:

1.4 Lemma Let 1 be recursively saturated and let T = 77ι(ft0; ^ o) f°r some
! o <c ̂ o w/YΛ Th(n0) = 77*01). In order that T be the theory of a recursively
saturated structure (ft 1), it is necessary and sufficient that T be coded in the
standard system, &S>(1), of St.

This is really little more than a lifting to the noninductive theory of pairs
of nonstandard models of the existence and uniqueness theorem for recursively
saturated models of arithmetic (in terms of their theories and standard systems)
and is, thus, obvious. For the reader who does not feel like noting how the old
proofs (cf., e.g., [6]) generalize, we offer the following shorter, but ad hoc,
argument.

Proof: Assume first that ( f t ; ! ) is recursively saturated and let T = Th(ft l ) .
Let Pυ be the unary predicate defining III in (ft 1) and define

rυ: \φ -*—* Γφ~1 e Dυ: φ is a sentence! U \Pυ\,

where Dυ denotes the finite set with canonical index v. Evidently rv is a
recursive type over (ft 1). If a e I ft I realizes rυ, then a e 111 and

DaΠω= Γ0Π: (ft l ) 1=0} = Th(ft; S) = 71,

whence T e SSy(I).
Conversely, assume T = Th(fto;

sIo) e SSy(l). If ft is isomorphic to 1,
then Th(ft) = Th(l) = Th(l 0 ) = Th(ft0) and Γis consistent with the elementary
diagram of ft, i.e., ft is elementarily embeddable in a model, say ftl5 expandable
to (ft!; l j ) t= T. By the resplendence of ft, since Te SSy(ft) (= SSy(l)), ft has



196 C. SMORYNSKI

a recursively saturated expansion (5ft; 12) ^ T, with 1 2 <c 5ft. But pseudo-
uniqueness (or Fact 1.2 in conjunction with Theorem 1.5.i, below) yields
! 2 s 5ft and we already know S s J , whence f 2 = I . QED

Proof of Theorem 1.3: First note that Lemma 1.4 trivializes the upper bound:
every theory, Th(5ft;l), of a recursively saturated pair (3d;!) is coded in the
standard system of 1 and SSy(!) is countable.

For the lower bound we need only concoct a sequence \Tn\n of distinct
theories of such pairs coded in SSy(l). For then Lemma 1.4 constructs the
models.

First, augment Th( ! ) by a unary predicate symbol Pυ and axioms asserting
Pυ to define an elementary cofinal submodel of the universe. This basic theory,
say JΓ-J, is recursive in Th(l), whence coded in SSy(l). Now let \T%\n be a
sequence of distinct theories of initial segments of ! individually coded in
SSy(!) (cf. [ 1 ] for an existence proof) and let, for each n, T^ be the extension
of T.x asserting the greatest common initial segment of the universe and the
submodel defined by Pυ to model T%. Finally, simply choose Tn e SSy(l) to
complete T\. QED

Before proceeding to the study of end extensions, we note a few structural
consequences of the recursive saturation of (5ft ! ) .

1.5 Theorem Let (5ft;!) be recursively saturated with ! <c 5ft, and let
I = GCIS(SΆ 5ft) be the greatest common initial segment of the extension. Then:

i. ω C /
ii. / is closed under successor, addition, and multiplication
iii. For some nonstandard exponent e e I, I is closed under the function: a -*ae.

A quick note before proving the theorem. The closures of/under succes-
sor, addition, and multiplication do not depend on the recursive saturation of
the pair (5ft;!) and, indeed, are the closure properties characteristic of the
greatest common initial segments of elementary cofinal extensions. It follows
that parts i and iii of the theorem, by going beyond closure under multiplica-
tion, are special consequences of recursive saturation.

Proof of Theorem 1.5: The simple proof of ii appears in [7] and we omit it.
(The not-so-simple proof of its equally omitted converse is in [5].) To prove i
and iii, we note first that / is first-order definable in (5ft 1).

i. Obviously ω C /. To see that the extension is proper, note simply that the set

TV: \υ e 1} U {nυ = x: x e ω\

is a recursive type over (5ft ! ) .

iii. Since / is closed under multiplication,

(5ft; I ) \=VυeI(υ*€l)

for each x e ω. Thus

rυ\ \-\υ = 3c: x e ω\ U {Vι/0 e I(υg e 1)\

is a recursive type over (5ft ! ) . QED
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We note that iii cannot be improved to full closure under exponentiation.
For the existence of initial segments of sUl closed under polynomial functions
but not exponentiation, together with the method of proof of Theorem 1.3,
yields the existence of recursively saturated pairs (5ft; 1 ) whose greatest com-
mon initial segments are not closed under exponentiation.

2 End extensions Elementary end extensions of nonstandard models of
arithmetic exhibit a great variety of behavior. For each model 1 , there are
continuum many nonisomorphic models 5ft into which 1 can be elementarily
initially embedded. Moreover, there are a variety of ways in which 3Λ can be
embedded in such models. The extension can be minimal or nonminimal,
conservative or nonconservative; and 1 can be, e.g., regular or nonregular,
strong or weak, in 5ft. When we insist that I and 5ft both be recursively satu-
rated, we lose many of these options: 5ft must be isomorphic to 1 and is neither
a minimal nor, as Kotlarski noted, a conservative extension of 1 . It is, however,
still possible for 1 to be either regular or nonregular, strong or weak, in 5ft.
Since strength and regularity are first-order properties of pairs (5ft l ) with
1 Ce 5ft, this last remark tells us that even for fixed recursively saturated 1,
there are a number of theories, Th(5ft; 1), of recursively saturated elementary
end extensions. As remarked already in the introduction, this number is the
cardinality of the continuum, unless we further insist the structure (5ft 1 ) to be
recursively saturated, in which case there is only a countable infinity of such
theories.

Having used initial segments to provide a continuum of theories of cofinal
extensions, it is only fair to use the notion of cofinality to obtain our con-
tinuum of theories of end extensions. Briefly, we do this by defining the
cofinality of 1 in 5ft in the structure (5ft; 1) and noting that there is a con-
tinuum of theories of these cofinalities. Before doing this, however, we accom-
plish the simpler task of finding a continuum of nonisomorphic models (5ft; 1)
with both 1 and 5ft recursively saturated.

First a definition:

2.1 Definition Let 1 be a nonstandard model and a, b e 111. We say a and
b are in the same sky, say Sk(α), if there are parameter-free definable functions
F, G such that b < Fa and a < Gb in 1. Skies inherit the ordering of Έ:

Sk(a) < Sk(6) iff Sk(a) Φ Sk(Z?) and a < b.

We write a « b to indicate Sk(α) < Sk(6). (A quick caution. We have defined
skies only for models of arithmetic. When we refer to skies in a model (5ft; 1 )
with 1 < 5ft, we mean the skies of 5ft or of 1 —only the parameter-free definable
functions of 5ft and f, not those of (5ft; 1), are used.)

Following [8], we can code huge ascending sequences of skies in a recur-
sively saturated model and use them to generate recursively saturated ele-
mentary initial segments.

2.2 Lemma Let 5ft be recursively saturated and a e 15ft I. There is a b e 15ftI
coding a sequence of length a such that for all c <a, (b)c « (Z?)c+i
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Proof: There is a recursive type,

τυa\ Vi/0 <Ά(V)VQ « (υ)Vo+ϊ]. QED

Let 5ft be a given recursively saturated model, a e 15ft I nonstandard, b e 15ft I
as in the lemma, and / Ce ft an initial segment closed under successor, but
bounded by a: I < a. With all this, we define

»(/,*)= U [0,(fe)J,
eel

where [0,c] is the obvious notation for the initial segment \d e 15ftI: d < cί.
One sees easily that 1(7, 6) is a recursively saturated elementary initial segment
of 5ft.

2.3 Theorem Let .1 fte a given recursively saturated model of arithmetic.
There are continuum many nonisomorphic structures (5ft; 1) with 5ft a recur-
sively saturated elementary end extension of 3..

Proof: Let 5ft ^ 1 . For α, b, I as above, we obviously have 1(7, b) = 1 and it
suffices to find a continuum of nonisomorphic structures (5ft 1(7, b)).

We know already that there are a continuum of elementarily inequivalent—
hence nonisomorphic—possibilities for 7. We further note that 7 is definable via
the_parameter b over (ft; 1(7,6)): If A; defines the submodel 1(7,6), then
P((b)Ό) defines 7.

We conclude immediately the existence of a continuum of elementarily
inequivalent models of the form (5ft; 1(7, b);b), where b e 15ftI - 111 is a new
designated element. While this does not allow us to conclude the existence of a
continuum of elementarily inequivalent models (5ft; 1) , it does give us the
continuum of nonisomorphic models, for there are only countably many
parameters b e 15ft I. QED

Our task now is to eliminate the parameter b from the above. Since all the
elements of 15ft I first-order definable in 5ft without parameters are in the lowest
sky, Sk(0), and b is somewhat larger, there is no hope of defining b in 5ft. We
also see no way of defining b in (5ft; 1 ) . However, if 7 has sufficiently strong
closure properties in 5ft, it can be recovered from 111 in (5ft 1) .

The following analogue to the set-theoretic notion of regularity was
introduced by Kirby and Paris (in [2] and [3]).

2.4 Definition Let 5ft be nonstandard, 7 Ce 5ft an initial segment closed
under successor. 7 is semi-regular in 5ft if for every a el and every parametrically
definable function F: 15ft I -> I ft I, the intersection F"[0,a] CM is bounded in 7,
i.e., for some 6, F"[0,a] ΠKbeL

We shall apply the following property of semi-regularity borrowed from
Kirby's thesis [2].

2.5 Lemma Let I, J, K be initial segments of a nonstandard model ft, with
I semi-regular in ft. If there are parametrically definable monotone functions
F, G which map 7, /, respectively, cofinally into K, then 7 C /.
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Since the simple proof of this result has not yet been published, we
repeat it here:

Proof: Since /, / are initial segments, either / C / or / < a e I for some a.
Assume the latter. Since F:I -> K and G:J -> K are cofinal, the function

I μc[Fc > Gb], if such exists

0, otherwise,

is well-defined as well as parametrically defined. By semiregularity, / Π H"[Q,a]
is bounded in /. But, by the cofinality of the ranges of F, G in K,

inH"[0,a] Dl nH"J

is cofinal in /, a contradiction. QED

We can now prove the following.

2.6 Theorem Let 1 be a recursively saturated model of arithmetic. There
are continuum many distinct theories, Th(3l; 1) , of structures (31; 1) , where 31
is a recursively saturated elementary end extension o / l .

Proof: We repeat the construction of the proof of Theorem 2.3. Let 1, ϋft,/, b
be as before, only now we also assume / to be semiregular in 3ί. (There is still a
continuum of elementarily inequivalent such segments—as noted explicitly in
[2] and implicitly in [3], all initial segments modeling PA can be re-embedded
in 31 as semiregular initial segments.) We conclude that the resulting continuum
of models (31 1 (/, b)) is the desired family of models by uniformly recovering /
from (31 1(7, b)) in a first-order way.

By the lemma, I is the least initial segment that can be cofinally mapped
into 11(7,6)1. Moreover, the function accomplishing this is of a particularly
simple form: F^d - (6)^. We define I by saying in a first-order way: a e I iff a is
in the domain of every increasing function of the form Fcd = (c)d whose range
intersects cofinally with 11(7, 6)1. QED

As before, when we assume the recursive saturation of the pair (5ft l ) ,
the situation becomes more tractable:

2.7 Theorem Let 1 be a recursively saturated model of arithmetic. There
is a countable infinity of distinct theories, Th(3l;Έ), of recursively saturated
structures (31 I ) , with 1 <e 31.

Also as before, these theories are precisely those coded in SSy(l) . We
omit the proof.

Once again history repeats itself: the recursive saturation of (Sfl l.) has
certain structural consequences. The following is moderately interesting.

2.8 Theorem Let (31; 1) be recursively saturated, with Έ <e 31. Then 1 =
1(7,6) for some 1 Ce3l, b e \3l\.

Proof: Let rυ be the set of all formulae of the forms:

Vvo[(υ)Όo«{υ)Όo+ϊ] (1)
V ϋ o e l l l 3 ι ; 1 [ ι ; o < ( ι ; ) l ; 1 e l l l ] . (2)
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We claim that τυ is a type. For a finite collection F o , . . ., Fn-X of monotone
functions definable in 5ft without parameters, let Fυ = ΣFiV + 1. Pick a > 111
and let

c = (0, F0, . . ., F ^ O ) ,

i.e., //z(c) = a and (c)e = F e 0 is the e-fold application of F to 0. The instances of
(1) corresponding to Fo, . . ., Fn-X (i.e., F/((c)e) < (c)e+1) are clearly satisfied;
moreover, (2) is satisfied since, if d e 111,

tf<(c)d+i = / 7 C ? + 1 0 e l l l .

Thus, rυ is a recursive type over (5ft; 1) , and hence realized therein by
some b e I5ft I. Simply let / be the inverse image of 111:

/ = ί α e l » l : (b)a e 111!. QED

We note that the argument shows that we can take / = 111. If 1 is semi-
regular in 5ft, then Lemma 2.5 shows we must take / = 111. Moreover, the
recursive saturation of (5ft; 1 ) along with the parametric definability of / shows
/ to be recursively saturated. Hence, we c&nnot t ake/= ω. Whatever / happens
to be, Theorem 2.8 tells us that our proof of Theorem 2.3 (and, perhaps, that
of 2.6 as well) was not as ad hoc as it might have seemed.

A rather more mundane structural consequence of the recursive saturation
of the pair is the following.

2.9 Theorem Let (5ft; 1 ) be recursively saturated with 1 <e 5ft. Then

i. I l l has no highest sky
ii. 15ft I - 111 has no lowest sky.

Part i actually requires only the recursive saturation of 1—the skies of any
recursively saturated model of arithmetic are densely ordered with a first but
no last element. This fact (whence part i) and part ii are trivially proven by
exhibiting the proper types, a task we leave to the reader.

The interest in Theorem 2.9 is that, if we only assume 5ft to be recursively
saturated and 1 <e 5ft, then we obtain two more tractable cases:

2.10 Theorem Let 5ft be recursively saturated. There is a countable infinity
of nonisomorphic structures (5ft; 1 ) with 1 <e 5ft in each of the following cases:

i. I l l has a highest sky
ii. 15ft I - 111 has a lowest sky.

This result is due independently to Kotlarski and the author.

Proof idea: In each case, the isomorphism type of (5ft l ) is determined
uniquely by the extremal sky. Since there are only countably many skies, the
upper bound is obvious.

To establish the lower bound, one constructs a sequence of partial types
τoυ, TxV, . . . with two special properties:

i. For / Φj, T(O and TjV cannot be realized in a common sky

ii. Each τnυ is recursive in Th(5ft).

Details of the construction of these types can be found in [7].
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Let types τov, τλυ, . . . with these properties be given. By ii, they are
realized in 5ft by (say) aQ, ax, . . .. We use the an's to construct models ! „ .
Suppose we want, e.g., a highest sky. Then we define

l l j = U Sk(α),
a<an

and note that no two structures (5ft l m ) and (5ft ! „ ) ϊoτ mΦn are isomorphic.
QED

Note that we have said nothing about the number of theories of such
structures. Obviously, they are of at most a countable infinity. That this bound
is achieved requires a little work. The following serves as a lemma in this
direction.

2.11 Theorem Let 5ft be recursively saturated and let 1 <e 31 be such that
either I I I has a highest sky or 15ft I -111 has a lowest sky. Then the following
are definable without parameters in (31 1 ) :

i. ω
ii. the truth definition for 1
iii. the extremal sky.

Moreover, the definitions are uniform in each of the two given cases.

Proof: We will consider only the easier of the two cases, that in which 111 has
a highest sky.

i. Following [4], we note that ω codes 1 in 5ft, i.e., we can do the following:

let a e 111 be of the highest sky and let Go, Gu . . . enumerate all parameter-free

Skolem functions of 31. Letting further Fnυ = n + £} Gnv, we define
i<n

τva: \Vvo[(v)Vo<(v)υo+Ί]\ U \(υ)Ά=Fna\ n e ω).

But τύa is, as usual, a recursive type over 5ft. Let b realize τυa and note that, for
any c e 111,

ceωifϊ(b)ce 111.

By the definability of 111 in (5ft 1), we obtain the parametric definability of ω
in (5ft 1 ) . Since co is semiregular in every nonstandard model, the trick used in
proving Theorem 2.6 can be repeated to eliminate the parameter.

ii. By [8], for each a e 15ft I there is a b e 15ft I coding satisfaction for parameters
less than a: For all c < a and all formulas φv with only v free,

5ft t=<c, rφ~]>eDι*-+φc.

Letting a e 15ft I - 111, define satisfaction for 1 by

S a t i r e υx): (vOy υλ) e D^ Λ υx e ω AFm^v^,

where Fmx(υ) is the usual arithmetization of "υ codes a formula with one free
variable". To eliminate the parameter, simply quantify it out:

Vv2["DV2 Π ω satisfies the clauses of a truth definition for 1 " - > . . . ] .
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iii. Write

v0 e Bigsky: \/υx e 111 [υx > v0 -> 3F[Sata((ι;o, υj, ΓF((v)-0) > &}-?)] ] ,

where F ranges over parameter-free Skolem functions. QED

We are now in position to sketch a proof of the following:

2.12 Theorem Let ίft be recursively saturated. There is a countable infinity
of theories, 7%(3fl; 1), of structures (» ; 1) with 1 <en in each of the following
cases:

i. I l l has a highest sky
ii. I ϊl I - 111 has a lowest sky.

Proof sketch: We consider the case of a highest sky. Let τoυ, τxυ, . . . be the
sequence of types with the properties,

i. for i Φj, 7(v and TjV cannot be realized in a common sky
ii. each τnυ is recursive in Th(uft),

which we used in constructing nonisomorphic models (ϋft; ! „ ) by insisting τnυ
be realized in the highest sky of ! „ .

We note simply that, thanks to Theorem 2.11, we can uniformly assert in
a first-order way that a given model (3l;ϊl r t) realizes a given type τmυ in its
highest sky. For since Th(5ft) = T h ( l ^ ) and the truth definition for Έn and ω
are uniformly definable in the models (5ft; ! „ ) , Th(5ft) (coded as a subset of ω)
is similarly uniformly definable. Again, since ω and Thί^) are uniformly
definable, any set recursive in Th(5ft) is so definable. For each m e ω, let Tmυ
define τmυ in all models (ϋft Έn):

(»;»«) ^Tm(Γφvn) iff φveτmv.

We say τmυ is realized in the highest sky of 111 as follows:

Sm: 3υo[BiB&y(υo) *Vυ1[Tm(υι)'+SatyL(υihυι)]].

But

(»;».„) \=Sm iff m = nf

whence these models are elementarily inequivalent. QED

It is an open problem whether or not all nonisomorphic models (5ft; 1 )
with extremal skies are elementarily inequivalent.
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