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On Fleissner's Diamond

SAHARON SHELAH

Fleissner [ 1 ], in the course of showing that V = L implies every normal
topological space is collectionwise Hausdorff, used a strengthening of Jensen's
0 principle, denoted 0Ss, and often called "diamond for stationary systems".
Mathias [3] stated 0 5 5 explicitly and asked whether for N l 9 for example, Oss

follows from the related principles 0 ^ or θ £ r The purpose of this paper* is to
show that these implications may fail even under relatively nice conditions.
This result was announced in [4].

For the remainder of the paper λ denotes a regular uncountable cardinal
and S a stationary subset of λ. The reader may, for simplicity, want to identify
λ with #v

We now introduce the various sorts of O-sequences under consideration
and mention some of the connections between them.

Definition 1 A sequence (Aa: a e S) is a Os-sequence if for each a e S,
Aa C a and for every A C λ, \a e S: A Π a = Aa\ is stationary (in λ).

Definition 2 A sequence (Pa: a e S) is a weak Ossequence (\v-O5 sequence)

if each Pa is a set of subsets of α, and for every A C λf {a: A Γ\ ae Pa\ is sta-

tionary. If, in addition, P^^oί for each a e S, we call (Pa: a e S) a Os-sequence.

The above definitions obviously involve an abuse of terminology. Notice
however, that (Aa: a e S) is a 05-sequence in the sense of Definition 1 iff
{{Aa}: a e S) is a 05-sequence in the sense of Definition 2.

Kunen has proved the following result relating the existence of the two
types of 05-sequences.

Theorem 1 (Kunen) // there is a Os-sequence (Pa: a e S), with Pa C P(oί),
then there is a Os-sequence (Aa\ a e S), with Aa C a.
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An obvious question is whether the Aa's in Kunen's Theorem may be
chosen so that Aa e Pa. This cannot always be done, as witnessed by Theorem 5
below.

We next briefly describe Fleissner's results [ 1 ].

Definition 3 A stationary system is a sequence \SA\ A C.\\ such that each
SA is stationary in λ and if A Γιa = B (Ί α, then SA Π (α + 1) = SB Π (α + 1), for
each a < λ.

Definition 4 O$s holds if for any stationary system (SA: A C λ> there is a
sequence <Γα: α < λ> such that TaCa and for each A C λ, lα e SA: Γα = ̂ 4 Π αi
is stationary, Fleissner [ 1 ] showed.

Theorem 2 (Fleissner) V = L implies 0 5 5 .

The proof is similar to Jensen's "minimal counterexample proof" of 0 in L
(cf. [2]).

Theorem 3 (i) (Fleissner) Assume OSs- //CPα: oce S) is a w-Ossequence, then
there are Aa e Pa, for a e S, such that (Aa: a e S) is a Os-sequence.

(ii) The converse also holds.

Proof: (i) For each A C λ let SA = ict e S: A Π a e PJ. Then (SA: A C λ> is
easily seen to be a stationary system. Let (Ta: ot < λ> be a sequence as given by
Oss Define Aa so that if a e S then Aa = Ta, and 4̂ α is an arbitrary element of
P α otherwise. Then <^4α: a e S) is a O^-sequence.

(ii) Let (5^: ̂ 4 C ω ^ form a stationary system. Let Pa= \X Q a: for
some (or, equivalently, for every) A Q ωx such that A C\a- X, ae SA\. Now,
for every A C ω 1 ? {α: 4̂ Π o: e P α ! = S4, and hence is stationary. Thus,
CPα: a < ωx> is a w-O-sequence. Now, by hypothesis, there are Aa e Pa, a < ω l 5

such that (Aa\ a < ωt) is a O-sequence. Then, for a stationary set of α < ω l 5

i ( Ί α = Aa, whence A Π a e Pa, and so a e SA. Thus O55 holds.

We will require two additional definitions before proceeding to our results.

Definition 5 </V oc e S) is a. Of-sequence iff P α < α for each α e 5 and for
every A C λ there is a closed, unbounded (club) set C such that Vα e S Π C,
4̂ Π α e Pα. A w-Of-sequence is defined similarly except there is no restriction

that Pα < α. O | means that a Of-sequence exists. w-Of is defined analogously.

Definition 6 (Pα: α e S) is a θj-sequence iff P^ ^ α a n ( i f°Γ every i Q
there is a club C C λ such that for all α e S Π C, both 1̂ Π α e Pα and C Π o: e Pα.
A w-Oj-sequence, O5 and w-θj are defined analogously.

Both Of and O5 hold in L. The existence of a single Of-sequence has
ramifications for all w-05 sequences as we next show.

Theorem_4 _ Assume Of. // CPα: α e S) is α w-O-sequence then there is
P* C P α , P * < ά such that {P*:ae S) is a Os-sequence.

Proof: Let <βα: a e S) be a Of-sequence. Let P* = Pa Π Qα. Then ?* < 5. Fix
i Q . Let i? be the stationary set provided for A by the definition of w-Os-
sequence. Let C be the club set provided for A by the definition of Of-sequence.



ON FLEISSNER'S DIAMOND 31

Then S Π C Π 5 is stationary, and for every a ; e 5 n c n 5 , both ^ Π a e Pa and
i Π α e β α . Thus A ΠaeP*.

For λ regular and stationary S{ C S2 Qλ the following implications hold.

ft ft

On the other hand, <>s2 does not imply 0 ^ as shown in [5].
We are now ready for our main result.

Theorem 5 Assume 1 < k < No. 77ίβ following are consistent:

(1) GC// + θ£ χ + CPft: a<ωλ) is a 0 ̂ -sequence, Pa = k and no refinement
(P^: a< ω^, P^C Paia< ωh is a Oωι-sequence.

(2) GCH + <>s for every stationary S C coj + <Pα: α < ωj> w a w-Oĵ -
sequence, Pa = Kj /or every α < ωh and no refinement (P^: ex. < ωx>, P^ c α̂>
α < cOi w a $ω-sequence.

Proof: (1). The idea is to start with a model V of GC// and add sequences
(Ra: a < ωx) and (Sa: a < ωx> such that in the generic extension (Ra: a < ω{)
will be a O^-sequence and {Sa: a < ωt> will be a Oωj-sequence with I5 j = λ,
and such that <5ft: α < ωt> cannot be refined, i.e., there is no <Γα: α < ωx> with
Γα C Sa and <Γα: α < ωx) a Oωi-sequence. We will make sure that <jRα: a < ωt) is

a O^-sequence by considering each subset of ωt in the extension and forcing a
club set as in the definition of 0 ^ . We will make sure that (S^: a < ωx> cannot
be refined by considering each possible refinement of it in the extension and
forcing a counterexample to its being a Oωi-sequence. Each of these ideas
involves iterations of length ω 2 , and by dovetailing we can accomplish both
simultaneously.

Rather than describing the forcing as a genuine iteration we will define
notions of forcing Xa, a < ω 2 , by induction on a, and eventually use Xω2 for
the extension. Assume now that Xβ has been defined for all β < a. Assume also
that for each β > 1 a term τβ of the language of forcing with Xβ has been
selected such that

(i) if β is even, then 0 Ih^ "r^: ωx -> 2"

(ii) if β is odd, then 0 bχ~ " τ β : ωλ -• Λ".

Now let Z α consist of all functions p with domain a countable subset of α
containing 0 and 1, such that

(iii) p(0) is a sequence {Rf £ < δ>, where δ < ωlt Rς < ωj and Rς C P(ξ)
(iv) p( l ) is a sequence <5^: ξ < 7), where γ < ωu Sξ = <5^n: « < &>,

(v) if β e dom p, β > 1 and j3 even, then plj3 e Xβ and p(j3) is a function
mapping some countable δ onto 2 such that {£: p(0)(£) = 1! is closed,
and

p\β Ife ("Vfc limit <ωί)[p(β)(ξ) =\^({η<ξ: Tβ(η) = 1!, ίr? < ξ: ptfXη)
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(vi) if β e dom p, β > 1 and β odd, then p\β e Xβ and p(β) is a function
mapping some countable 7 into 2 such that

p\β \\χ- "Vf a limit <7Vfl < jt[/i Φ τβ(ξ) -» ( ^ Λ

* | r ? < * : p ( P ) ( τ ? ) = l ! ) Γ .

The ordering is defined so that p ^q iff dom ^ C dom p and V̂  e dom g,
#(β) C p{β), (i.e., the smaller element gives more information).

Now assume G is Xω2-generic. For each a < ω2 define

Ga=\Up(oi):peG\.

Then it is straightforward to show that

1. Go is a sequence <i?α: α < ωx) such that i?α C P(ά) and Λα < Xx for
each a < ωv

2. Gx is a sequence (Sa: a < ωt> such that Sa = (Sa>n: n < k), and Sa>n C α,
for each α < ωlf n<k.

3. For α > 1, Ga is unbounded in ω^
4. For α > 1, a even Gα is closed incoj.

It is convenient to work with a certain dense subset Ya of Xa. We call a
condition p e l α a normal δ-sequence iff

(i) domp(0) = domp(l) = δ + l
(ii) Vj3 e dom p, β > 1 => dom p(|3) = 5 + 1
(iii) Vβ e dom p, β > 1 =» there is some function fβ e V such that p\β llτ"

We let yα be the set of all normal δ-sequences for δ e Ya. We let δ(p) be the δ
as described above.

It is quite easy to show that for each α < ω2,

5. Ya is ^i-complete.

To see this, consider a sequence of elements of Ya, q0 > qx > . . . . We define q
so that

(i) dom q = U dom gz ,

(ii) V/3 e dom ^ if β > 1 then qr(/3) = U ẑ</3) U {(δ, 1))

(iii) r̂(O) = U qi(0) U {<δ, Λ>} where δ = sup{δ(^ ): i < ω\ and A =

I U < δ : q(β)(ξ) = l \ : β e d o m q , β > l 9 β e v e n ! U {{ζ < δ : / , ( $ ) = l ! :
β e dom q, β > 1, β even!

(iv) g(l) = U qi(l) U l(δ, D)\ where Z) is a sequence of length k of sub-
l€OJ

sets of δ containing none of the sets ί {£ < δ: q(β)(ζ) = 1!: β e dom q,
β> l,]3odd!.

Then q extends all the ςr, and q is a normal δ-sequence, whence in Ya. Of
course, in verifying condition (iii) in the definition of normal δ-sequence, we

choose fβ = U / A π , where g j β llj- "r^lδ = / A Λ " . It is now not difficult to

check that
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6. \fp e Xa Vδ e oo^q e Ya[q <p and δ(q) > δ] .

Next, using a standard Δ-systems argument it follows that

7. Ya satisfies the ft2-
chain condition.

From the preceding we may conclude that if G is Xω2-generic, then V[G]
has the same cardinals as V, contains no new reals, and satisfies the GCH. As a
consequence of this last fact, we can see that we could have chosen the τβ's so
that for β even τβ runs through all functions from c^ to 2 in V[G], while for β
odd Tβ runs through all functions from ω1 to k in F[G].

Now, with the τβ's chosen in this way it is easy to see that {R^: a < ωj
will be a θ£^sequence and <5α: a < ωx> cannot be refined, where (R^: a. < ωj
is, of course, U{ρ(0): p e G\ and (S^: a < coj) is U{p(l): p e G\. This follows
since the sets U{p(β): p e G\, β > 1, β even, are characteristic functions of the
necessary club sets, while Ό{p(β): p e G\, β > 1, β odd, add the necessary
counterexamples. We will be finished if we can show that (Sa: a. < ωx) is a
O-sequence in the sense of V[G]. This is the heart of the proof.

To this end, suppose A C ωί in V[G] and C a closed unbounded subset of
ωj in V[G]. ForiS> 1, β odd, we let

Aβ=iϊ:p(βm=\,peG\.

Let 4̂, C, andyi^ be forcing names for A, C, and Aβ respectively. The argument
divides into two cases.

Case 1: For all odd β<ω2,A ΦAβ. It is sufficient to show that if p Ih "(V/3 <
ωγ)[A Φ λβ and C is club]," then 3q <p such that q Ih "3a e CΊn < k[A Π
« = Sa>n]."

First, using the current hypothesis, and the fact that V and V[G] have the
same reals, there is a sequence q0 > q1 > , . . . , in Yω2 such that

(α) qo<p and for each rc e ω there is some Bn e V such that qn+1 Ih "J5W =
A Π δ ( ^ ) & ία e C: δ ( ^ ) < a < δ(qn+1)\ Φ 0, and so that

(/3) if n > 0, then for 0 e d o m ( ^ ) , 0 > 1, β odd, £ w + 1 Φ \η < δ(qn+ί):

qn(β)(r\) = 1}. Then if £ = U Bn, B is not of the form {η < δ:

3nqn(β)(η) = l! for any n e ω, ]3 > 1, β odd, β e U domqn.
neω

We now select, as in the proof of Theorem 5, a lower bound q, making cer-
tain that if δ = sup{δ(grt): n e ωi, we define q(l)(δ)(n) -B, for some n < k as in
(iv) of the proof of Theorem 5. This is allowed by (β). To see that q works we
must use the fact that C is closed, so that δ e C, by (a).
Case 2: For some odd β < ωί9 A = Aβ. This time it is sufficient to show that if
p Ih "A - λβ & C is club", β odd, then there is some q < p such that q Ih " 3 a e

We note first that if p e X 7 + 1, then there are q0, qx e 7 7 + 1 extending p,
such that golj3 = qx\β, but go(ί0 a n d #i(β) are incompatible. We combine this
observation with the approach in Case 1 to obtain a binary tree of conditions
qs e Yω2, where s ranges over all finite sequences of 0's and Γs such that

(i) ifsCt, then qt < ̂  < p.
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(ii) if s and t are on the same level then qs\β = qt\β <plβ.
(iii) if s and t are incomparable, then qs(β) and ^(β) are incompatible.
(iv) if t is an immediate successor of s, then there is some sequence

Bqt e V such that qt Ih "Bqt = A Π δfo) & {α e C: δfe) < α <
δ(<?r)}*0".

(v) if s, t are on level n + 1, β e dom g ^ , 7 e dom qt\n, β, 7 odd, then
Qsiβ) ^ ^r(τ) except when β = 7, 5 = t.

Notice that for any branch / e 2ω, by (ii), δ = suρ{δ(gs): 5 C / ! comes out

the same. If we define Bf = U Bqs, then Bf is a subset of δ and, for different /,

Bf is different. We wish to select some g e 2ω and find a lower bound q for the
sequence qs, s an initial segment of g, as in the proof of 5. The only restriction
we place on q is that q{ l)(δ) consists of sets of the form Bf.

Let us do this last part exactly. First let qn = qs\β for some (equivalently
every) s of length n. Next, choose k distinct gt e 2ω (i < k). Now, define
q° e Yβ with δ(q°) = δ, as in 5, but let ?°(l)(δ) = <Bgi: i < k) and
#°(0)(δ) = {{£ < δ: for some n < ω, qgi\n(y)(&) - 1}: / <k and 7 e dom qgi\n for
some « < ω! U {{£ < δ: qg.\n Ihp ς tr7(ζ) = 1" for some 7}: / < k and 7 e
dom qgi\n for some rc e ω}. We want to extend q° to a bound of {qgi\n: n<ω\
for some ί < k. Next, since Ŷ  is dense in Xβ, there is some q1 eYβ,q

ι<q° such
that q1 hjfβ 66Tβ(δ) = /", for some fixed / < k. Now define # so that q(α) = q\θί)

for a. < β while ςf(α) = U qg{\n(<*) for α > β, α e U dom qgi]n. Then, <?(0)(δ)
is as required for ^(7), 7 even (see 5 above), by the way we defined it; #(0)(δ)
works for β since q1 Ih 'Vβ(δ) = V\ and for any other 7 by (v) above.

(2) The proof of Theorem 5(2) is similar to that of Theorem 5(1) and
related to [5], so we only give a sketch. We will use forcing conditions Xα

similar to those used in Theorem 5(1), but with certain modifications. We will
use Pβ to indicate the set of p(j3)'s for p e Xα.

First, we will now use Px to add a w-O-sequence. Elements of Pi are of the
form (Sα: α < β), where Sα = (S^: ξ < ωx> and Sα^ C α. In order to ensure that
later on the N2-chain condition holds and that conditions can be arbitrarily
extended, we also make the requirement that if α is a limit, then there are

αn < α, αn < oin+1, α = U αn, and for each n < ω and t e 2n a. function

gt: αn-+ 2, such that for sC t, gs C gt and

\SαΛ\ ξ<ωι\= \g: for some t e 2ω, g = Uω8t\n\>

where Su^ is identified with its characteristic function.
Next, as before, we add counterexamples in the odd places to make sure

that the sequence we have added cannot be refined.
We will concentrate on O5 for every stationary S. First, for β < ω2 even let

Tβ be a forcing name for a subset of ω1 such that every such lω 2-name appears.
Then, in defining Xβ+1 for β odd, we require that p(β) is of the form (TΎ: 7 e x>,
where Ty C 7 for each 7 e x and x C ω^

The idea is that if the set S denoted by τβ turns out to be stationary, then
the sequence of Γ7's will form the required O^-sequence.
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We begin by defining Ya and δ(p) for p e Ya as in (i). Now, suppose
p Ih "A C ω1 & C is a club set in coj," and G is a Xω2-generic set containing/?.
We work in V[G] to define C = Iδ: Iq e G Π rω2[δ(ςr) = δ and 4 Ih "sup C Π
δ = δ," and for some Λ δ e F,$ Ih " i Π δ = 4 6 " , and <?lβ Jh "δ 4 τβ"]l

We notice next that if C is not stationary, then neither is the set denoted
by Tβ, in which case we need not concern ourselves with it. We thus assume that
C is stationary. Now, we can show that \p e Xω2: p <q and p Ih " 3 a e C[A Π
a - Γ α ] " ! , where Ta comes from the prospective Oτ -sequence, is dense below
some condition in G, and so in V[G], (Ta)a<CJl really is a 0 r -sequence.

As a consequence of Theorem 5 (2) and Theorem 3 we obtain

Corollary 1 0^ 1 does not imply 0ss.
Corollary 2 0$ f°r every stationary S C ωλ does not imply 0ss.

As a consequence of Theorem 5(1) we see that Kunen's result, Theorem 1,
cannot be strengthened so as to select A& from Pa.

We conclude with some brief remarks on generalizing Theorem 5 to other
regular cardinals. If we wish to replace Kt by λ+ we must replace the tree

U 2n by a downward closed T C U 2α, with Σ/ \T Π 2αl < λ for β < λ,

which (for some λ) has to have λ+ branches (i.e., a Kurepa tree). However, there
is no problem since we may start with V = L. We can also, for convenience,
ignore the α < λ in the definition of the conditions.

If we wish to replace Nx by a strongly inaccessible cardinal K, then in the
definition of a condition we require that the domains of p(0) and p(l) include
the cardinal of domp, and in (v) and (vi) of the definition of condition, we
replace "V£ a limit" by "V£ a strong limit cardinal". We can then have either
k < K or fa < a or ¥a < α+.
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