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Complexity of Model-Theoretic Notions

RUSSELL W. MYERS, Jr.

The main result of this paper is that if T is a countable theory and F a
type, then the predicate ' T has a model omitting F" is sharply Z} in the sense
of recursion theory, and particularly that every S} predicate is recursive in this
predicate. We will also show that the predicate "T is coo-categorical" is arith-
metical.

1 Definitions and preliminaries Let L be the language of the full countable
predicate calculus. A theory is a subset of the formulas of L. If T is a theory
then L(T) denotes the sublanguage of L which involves the symbols found in
members of T. An n-type in T is a subset of the formulas of L(T) whose
variables are among vu . . ., vn and which is consistent with T. A type is an
ft-type for some n. If T is a theory, F is an ft-type in T, and B(vl9 . . ., vn) is a
formula of L(T), we say that B(vu . . ., vn) is a generator of F in T if for each
f o r m u l a ^ ! , . . .,vn)eT, T tB(uu . . ,9un)^A(vl9 . . .,vn).

We assume that some standard scheme for Godel numbering languages is
given having all the usual properties, and so we will often speak of theories,
types, etc., as though they were sets of natural numbers. For example the
predicate ' T has a model omitting F " is a predicate whose arguments T and
F are actually sets of natural numbers. If x is the Godel number of a formula,
let Ax denote the formula; and if A is a formula, let A denote the Godel
number of A

Let fl = W, + V * , <*, 0, 1, . . •> b e t h e standard model of arithmetic and
letZ(^) be the language of lift with nonlogical symbols +, •, <, 0, 1_, . . . (Z,(5ft) is
of course a subset of L). Let Fw be the set of all quantifier-free sentences of
L(Jk) which are true in 31. By an co-model of a theory T C L(3l) we mean a
model of T whose universe consists exactly of the interpretations of the con-
stant symbols 0, 1_, 2, . . .. Clearly the only co-model of Fw is 31 itself. There
are many sentences of L(3l) which are consistent with Fw but false in 31. If A
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is any such sentence, there can be no co-model of Fw U \A\, and so the type F ^
= \v{ ¥= 0, v1 ¥= 1, . . .[ is not omitted in any model of Fw U \A\.

In what follows:

Pi, P2, . . . are new unary predicate symbols not found is Z,($ft)
Xlf X2, • • ., X, Y, Z are variables ranging over subsets of N
Xi, x2, . . ., x, y, z, t are variables ranging over N
nlf n2, . . . are members of N.

We denote by L(3l, Pl9 . . ., Pj) the language whose symbols are those of L(¥t)
plus i^, . . ., Pj. When we write a formula A(Pl9 . . .,Pj',vl9 . . ., u*) of L(W.9Pl9

. . ., Pj) only vu . . ., uk are really variables; Pu . . ., Pj simply lists which new
predicate symbols appear in the formula.

Let R(XU . . ., Xj, xl9 . . ., xk) be a predicate whose first/ arguments
range over subsets of N and whose remaining arguments range over N. We say
that R is arithmetical if there is some formula A(PU . . ., Pj\ vly . . ., v^) of
L(?k, Pu . . ., Pj) such that for each sequence of subsets Xu . . ., Xj and each
sequence nu . . ., n^ of natural numbers, R(Xl9 . . ., Xj, nu . . ., n^) holds iff
<51, Xl9 . . ., Xj) t=A(Pl9 . . ., Pj\ nl9 . . ., nk). We say that R is 2} if for some
arithmetical predicate S, R(Xl9 . . ., Xh nl9 . . ., nk) holds iff ^X S{X, Xl9 . . .,
Xj, nu . . ., «#)• ̂  isH} iff the above holds with 3 replaced by V. Finally we say
that R is hyper arithmetical if R is both S} and 11}. We will assume a little
familiarity with recursion theory, such as is found in Shoenfield [2].

2 The predicate OM(X, Y) Consider the predicate Om(X, Y) where X is a
theory, Y is a type in X, and Y is omitted in some model of X.

Proposition 2.1 The predicate Om(X, Y) is sharply 2}. Moreover every 2}
predicate is recursive in Om, so Om is a complete S} predicate.

Proof: First, if T is a theory and F is an n-type, then F is omitted in some
model of T iff there is a consistent extension T' of T such that F has no genera-
tor in Tf ([1], Cor. 2.2.10, p. 80). Now consider the following arithmetical
predicates:

Con(Z, y): Z U \y\ is a consistent theory
Imp(Z, Y, y): y is a generator of y in Z.

By our note above, we have

Om(X, Y) «—• X is a theory A 7 is a type in X A 3Z(^ C Z A Con(Z, vx = i^) A
133/(Om(Z, ;/) A /mp(Z, F, JO))-

The predicates inside the parentheses are arithmetical, and the 3Z makes
Om(X, 7 ) a S j predicate. Moreover let R(x) be a X} predicate (to save notation
we will just consider a predicate of a single number argument). Then for some
formula A(JPX\ vx) of L(Jk, Px) we have for each natural number n

R(n)<-*3X({Vl,X) \=A(P;n)l

The right-hand side of this equivalence is true iff the theory T^in) - Fw U
lAiPiin)] in the language Z,(ft,Z^) has an co-model. So R(n)+->0m(TA(n), F^),
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where F ^ is as defined in Section 1. Since TA(n) is recursive in n, we have that
R(x) is recursive in Om(X, Y), which proves our result.

In general, Om(X, Y) is 2}, but one can easily find restrictions on X, Y
which make Om(X, Y) of lower complexity. For example, if every complete
extension of X is a finite extension, then Om(X, Y) is arithmetical.

3 The predicate "T is OJ 0-categorical" The Omitting Types Theorem is
used to prove the classical Ryll-Nardjewski Theorem about countable co0-
categorical theories ( [2] , p. 91):

Theorem 3.1 Let T be a countable complete theory having only infinite
models. Then the following are equivalent:

(1) T is coQ-categorical.
(2) For each n, there are only finitely many complete n-types consistent

with T.
(3) Every complete type consistent with T has a generator in T.

From this it can be seen that the predicate "71 is co0-categorical" (as a predicate
of the set variable T) is II}, for (3) is expressible as VF(F is a complete type in
T-* 3yImp(T, F, y)). The predicate within parentheses is arithmetical and the
set quantifier V makes the whole formula II}. But (2) provides an easy proof of
the following:

Theorem 3.2 The predicate "X is a complete GO^-categorical theory" is
arithmetical.

Proof: Let K(X) be the conjunction of the following predicates:

A{X)\ X is a complete theory
B(X): X includes the sentences saying the universe is infinite
C(X): For each n, there is a finite sequence a of formulas with free variables

vu . . ., vn, such that

(1) each a / generates a complete type over X
(2) the sentence Mvx . . . \/vn W tyO^ . . ., un) is in X.

iedoma

It is clear that each of A, B, Cis arithmetical, and by (2) of Theorem 3.1, K{X)
holds iff X is co0-categorical.
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