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A THEORY OF CLASSES AND INDIVIDUALS BASED
ON A 3-VALUED SIGNIFICANCE LOGIC

ROSS T. BRADY

1 Introduction

1.1 The need for the theory A problem that arises when one tries to
introduce individuals into a theory of sets or classes is that of distinguish-
ing the null class from an individual, since both have no members.* The
class theory will contain an axiom of extensionality which will identify two
classes or individuals if they have exactly the same members. The null
class and an arbitrary individual will have no members and hence, by the
axiom, be identical.

The difficulty is discussed by Quine [9], pp. 29-32. One way out is to
use separate variables for individuals and for classes or to introduce the
primitive predicate 'is an individual' into the system. Quine dismisses
these as "unwelcome sacrifices of elegance" and says that happily these
can be avoided. Quine instead suggests regarding x e y, where y is an
individual, as x = y. This avoids the problem with the axiom of exten-
sionality because if y and z are individuals (Ax)(xe y = xe z) is equivalent
to (Δx)(x = y = x - z), i.e., y = z. Quine also shows that this implies that
an individual is equal to its unit class and says that this does not affect the
development of class theory as required for mathematics. But if one takes
a material object and forms its unit class, then, according to Quine, this
material object would be equal to its unit class, an abstract entity, and this
is unsatisfactory.

By taking xe y as nonsignificant when y is an individual and using a
3-valued significance logic,1 one can avoid all the problems that have
arisen in connection with distinguishing the null class from individuals.
The predicate 'is an individual' can be defined in terms of the logic, i.e.,
I(x) =df ~ (Sy)S(ye x), i.e., yex is nonsignificant for all y, where the
variables x and y range over classes and individuals.

T h e material in this paper is taken from my Ph.D. Thesis, A 4-valued Theory of Classes and
Individuals, submitted to the University of St. Andrews in 1970 and supervised by Professor
L. Goddard of the Department of Logic and Metaphysics.
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The advantages of this over Quine's are obvious. No longer can it be
said that there is an "unwelcome sacrifice of elegance". One can dis-
tinguish between individuals and their unit classes and avoid the identity of
a material object with an abstract entity. The axiom of extensionality has
to be restricted to classes using the predicate 'is a class ' to restrict the
general variables to class variables. The identity of individuals would have
to be established separately within the theory of individuals.

Just as e is taken as a paradigm predicate used for generating classes
by an abstraction axiom, membership of an individual can be taken as a
paradigm case of nonsignificance for generating significance ranges. The
rest of the classes can be obtained by adding arbitrary predicates, which
does not affect the consistency nor the general features of the theory.
Similarly with significance ranges, by the addition of arbitrary predicates,
the significance ranges of these predicates can be formed.

A theory of classes and individuals based on a 3-valued significance
logic is the next theory to be developed after completing the development of
some 3-valued significance predicate logics as in [1]. The theory is also
needed for the development of significance range theory because signifi-
cance ranges are classes which can be generated from their own form of
abstraction axiom, which would have to be added to such a theory of
classes.

1.2 The choice of the formal theory I use the functionally-complete
significance logic in [1], because it is necessary to be able to restrict
general variables so that they range over individuals, over classes, and
over sets.

I use an axiomatic theory of individuals to ensure the existence of
individuals and to widen the scope of the formal theory so that fusions2 of
individuals as well as classes of individuals can be formed. Suppes points
out about the set theory ZF, "However, our axioms do not actually postulate
the existence of any individuals, and they are thus consistent with the view
that there are only sets in the domain of discourse" ([12], p. 20). The
addition of an axiomatic theory of individuals to such a set theory would
overcome this problem. The theory of individuals I use is due to Goodman
[6], but some additions are made in order to adapt it for inclusion into a
theory of classes and individuals. Also the primitive Ό' (read 'overlaps')
needs to be interpreted in such a way that it is significant for any two
individuals to overlap.

I use the class theory NBG as it is stronger than ZF and I follow
Mendelson's treatment in Chapter 4 of [8] except for certain modifications
due to the presence of individuals or due to the use of the 3-valued
significance logic.

2 The formal theory

1. Primitives

U', V, W, X', Y', Z', . . . (general variables over classes and

individuals)
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o (overlaps), e (is a member of)
~, D, Γw (connectives of the 3-valued significance logic)

A, S (quantifiers of the 3-valued significance logic).3

Formation Rules

1. If X1 and Y' are variables thenXΌ Y' andX'e Y' are atomic wffs.

2. If B and C are wffs then ~B, (B z> C), TnB are wffs.

3. If B is a wff and X' is a variable then (AX')B and (SX')# are wffs.

Definitions

Cl(X') =df (SY')S(Y'eX'). {X' is a class)
I(X') =df ~Cl(X'). (X' is an individual)

Let us assume for the moment that there is at least one set (and hence at
least one class) and at least one individual.

(Ak)φ(k) =df (AX')(I(X') D φ(X')).
(Sk)φ(k) =df (SX')(TnI(Xf) & φ(X')).

Let k, I, m, ny . . . be individual variables.

(AX)φ(X) =df (AX')(Cl(Xf) D φ(X')).
(SX)φ(X) =df (SX')(TnCl(Xf) & φ(X')).

Let U, V, W, X, Y, Z, . . . be class variables.

M(X) =df (SY)(Xe Y). (X is a set)
(Δx)φ(x) =df (AX)(M(X) D φ(X)).
(Sx)φ(x) =df (SX)(Tn(M(X)vI(X)) & φ(X)).

Let u, v, w, x, v, z, . . . be set variables.

(Ax')φ(x') =df (AX')(M(X')vI(Xf) Ώ φ{X')).
(Sx')φ(x') =df (SX')(Tn(M(X')vI(X')) & φ(X'))>

Letu', vf, w', x', yf, zf, . . . b e v a r i a b l e s o v e r s e t s a n d i n d i v i d u a l s .

X' = γ> =df (Ak)(koX' = koY')v(AZ'){Zf e X' k Z' e Yf).
{X' is identical with Y')

Notice, in this definition, that if X1 and Y' are classes then X' = Yf *>
(AZ')(Z' e X1 = Z' e Y'), if X' and Y' are individuals then X' = Y' c*
(Ak)(koXf =koYr), and if X' is an individual and Yf is a class, or vice
versa, then X' = Y' is nonsignificant. Notice also how the disjunction v is
used to define identity over a range containing two different types of things.
The definition could have been made without the use of v by taking each
case in turn but it seems easier and more natural to use v.

I now give definitions restricted to individuals. In using these
definitions, one cannot substitute one side of the definition for the other
unless the variables X', Yf, etc., are restricted to individuals or sets (as
the case may be).
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k ^ I -df (Am)(m o k z> m o I). (k i s p a r t of I)

k = I =d{ (Am)(m o k = mo I). (k i s i d e n t i c a l wi th I)

[This is derived from the definition of X' = F'.]

k <l =df k < Z & ~(fe = Z). (fe is a proper part of Z)

k ~z.l =df ( k o l ) . (k is discrete from Z)

kFux =df (Am)(m z k = (Al)(le x D m ~z. I)). (k i s t h e fus ion of # )

ÂΓŵ  = ί / / (Am)(m ^ k = {Al){lex D m < /)). (Λ is the nucleus of ^)

I now give definitions restricted to classes. Again, the definitions

cannot be used unless the appropriate variables restrictions are made.

X c Y =df {AX')(X'eX -DX'eY). (X is a subclass of Y)

X = γ=df {AX')(X'eX =X'eY). (X is identical with Y)

[This is derived from the definition of X = Y.]

X c Y =df X c Y & ~(X = F). (X is a proper subclass of F)

If the variable restrictions are violated a nonsignificant wff may

result. For example, k c Z, k ogf X < F, and X < fe are all nonsignificant.

Except in the case of XΌYr and X'e F', these nonsignificant wffs are

avoided because it is simpler to use restricted variables and also the only

purpose they could serve would be to form significance ranges but they do

not introduce any new significance ranges which are not already obtained

fromXΌF' and X'e Y'.

General Axioms

1. S(X'eX)
2. S(kol)

3 . Cl(X')vCl(Y')z) ~S(XΌY').

Individual Axioms

1. kol = ( S r a ) ( A w ) ( n o mi) nok &nol)

2 . (Sk)(kex) =) (Sl)(lFux)

3. (Sx)((Ak)(ke x = φ(k, Z/, . . ., lm)) & (Ay) ~ (ye x))9 where φ is con-

structed using only o, ~, &, A, and variables quantified over individuals

4. k = l D . k e X = l e X

5. (SX')/U').

Class Axioms

T. X =Y-D (AZ)(XeZ = YeZ)

P. (Ax')(Ay')(Sx)(Au')(u'e x Ξ T(u' = x'vu' = y'))

N. (SΛ;)(AΛ:/)('-^'e^)

U. (Ax)(Sy)(Ax')(x'ey = (Sz)(x'ez & z e x))

W. (Ax)(Sy)(Ax')(x'ey = T(Ay')(y'e x' 3 y'e x))

S. (Ax)(AX)(S^)(Ax')(^/e^ = * ' e * & ^ ' e l ) .

Before introducing more axioms, I need to prove some theorems and
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introduce some definitions. To shorten the paper, the theorems are given

without proof.

Tl ~S(X'ek).

T2 k = I D. φ(k) ~ 0(1), for any wff φ.

T3 X = Y =.X QY & Y cX.

T4 X = X.

T5 X = FD Y = X.
T6 X=Y-D. Y = ZZ)X = Z.

T7 I = F D . φ(X) ~ φ( Y), for any wff φ.

Define a proper class as a class which is not a set.

Pr(X)=df~M(X).

T8 Pr(X) 3 F(Ie F).
T 9 (Ax')(Ay')(S\x)(Au')(u'e x = T(uf = x'vuf =y')).

We now introduce the definition, {x',y'}, (the unordered pair of x' and y')

for the unique set x such that (Au')(u'e x = T{ur = x'vu' = y')). Also define

{*'}as {x',x'}.

T10 (Au')(u'e {x'}= T(ur =*))•

Ti l {%', y'}= {y',^'}.

T12 {ΛΓ'}= {y'l^^^y'

T13 (S!#)(A#')(~*'e#).

Introduce the definition 0 (the null set) for the unique set x such that

(Ax')(~xr e x). We now have at least one set as required for the definition

of set and class variables. Individual Axiom 5 ensures the existence of at

least one individual for the definition of individual variables.

Define an ordered pair, (xf, y'), of x' andy' as {{#'}, {xf, y'}}.

T 1 4 <fi',y') = (u',vr) ^xr =u' & 3 ^ ' =v'.

The definition of ordered pairs can be extended as follows:

\X/ =df X > \χ[, - - , #»+i) =df \\χ[) - - •> %ή'> Xn+U-

τ i 5 (x;, . . .,*,;> = <3>ί, .,^>^.^{ = yi & &*ή = yή.

T16 (A^fSIyίfA^Oί^'e 3̂  = (Sz)(x'e z & ze^)).

Introduce the definition U(x) (the sum set of x) for the unique y such

that (A#')(*'e y = (Sz)(x'e z & zex)). Also define ΛΓ U y as #({#, 3;}).

T17 (Δx'){x'e x U3; Ξ i ' e i v i ' f ^ ) .

Define {*{, . . ., x }̂ inductively as {x[, . . ., ΛΓ^-JU {<}.

T18 (Δu')(u'e {x[, . . ., ΛΓ,;}= T(M' = #{) v . . .VT(M' = ^ ) ) .

T 1 9 (Δx)(S\y)(Ax')(x'e y = T(Ay')(y'e xr 3 y'ex)).

Define the power set of the set x, P(x), as the unique y such that

(Ax'Hx'ey = T(Ay')(y'exf 3 y'e x)).

T 2 0 ( A * ) ( A F ) ( S ! ; y ) ( A * ' ) ( * ' e ; y = x'e x &x'e Y).
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Define the intersection set of the set x and the class Y, x Π F, as the

unique y such that (Ax')(xf e y = x' e x & x' e F).

T21 X QX-D M(X).

Define a univocal class (relation) as follows:

Un(X) =df (Δx')(Δy')(Δz')((x',y')eX & <*', z')eX~D T(y' = z')).

Further Class Axioms

B. (Ax[, . . ., *,', Y[, . . ., Y'm)Sφ(x[, . . ., x\, Y[, . . ., Y'M) => (SX)(A*{, . . .,

#/)((*{, , x\)eX = φ(xί, . . ., xΊ, Y[> . . ., Yf

m)), where φ is constructed

using o, e, ~, ^ , Tn? A, S such that only variables over sets and individuals

are quantified, and x[9 . . ., x'l9 Y[, . . ., Y'm are all the free variables of

φ and X is not among them.

R. (Ax)(Un(x)^ (Sy')(Ax')(x'ey = (Syf((y',x')eX&y'ex)))).

I. (Sx)(0e^ & (Ay)(yex ^ y U {y}ex)).

T22 (S\Z)(Au')(ufeZ = (Sy')(S^')(T(M' = <y', M;'» & y ' e l ^ ' e F)).

Introduce the definition X x Y (the Cartesian product of classes X and F),

as the unique Z such that (Au')(u'eZ = (Sz;')(S^')(^(^'= (v', w'» & ̂ ' e

X & w'e F)). Let X2 be defined as X x X and Xwbe defined as X72"1 x X.

T 2 3 ( S ! Z ) ( A t t ' ) ( w ' e Z Ξ ^ ' e X & M ' e F ) .

Define X Π F (the intersection of classes X and F) as the unique Z such that

T23 holds.

T24 ( S ! Z ) ( A w ; ) ( ^ ' e Z Ξ z / ' e X v ^ ' e F) .

Define X U F (the union of classes X and F) as the unique Z such that

T24 holds.

T25 (S\Y)(Au')(u'e Y = ~^'eX).

Define X (the complement of the class X) as the unique F such that

T25 holds. Also define X - F as X Π F.

T26 (SlX)(AW)(u'eX = u' = ur).

Define V (the universal class) as the unique X such that T26 holds.

T27 (S\Y)(AW)(ufe Y = (Sv')((uf, v')eX)).

Define D(X) (the domain of X) as the unique Y such that T27 holds.

T28 (S\Y)(Au'){u'e F = (Sz;')^', M'>€ X)).

Define R(X) (the range of X) as the unique F such that T28 holds.

T29 XU F = X Π F.

T30 X = X .

T31 V = 0.

T32 (Au')(u'eV).
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T 3 3 (Au')(u'eX - Y =u'eX & ~u'e F ) .

T34 x n Y = Y nx.
T35 x n (YΠZ) = ( in Y) nz.
T36 Xί)X = X.

T37 I Π O = O.

T38 I Π F = I .

T39 XUY = YΌX.

T40 I U ( f U Z ) = ( I U F ) U Z .

T41 XUX=X.

T42 X U 0 =X.
T43 IU7=7.

T44 I U ( F Π Z ) = ( I U F ) n ( l U Z ) .

T45 I Π ( F U Z ) = ( i n r ) u ( i π z ) .
T46 i n r = ΐ u F .
T47 X - X = 0.

T48 7 - X = X.

T49 V = 0.

Define a relation as follows: Rel(X) =df X c F 2 .

T50 (S!F)(Aw')(M'e F = T{Av'){υ' eW 3 y ' e X ) ) .

Define P(X) (the power class of X) as the unique Y such that T50 holds.

T51 (S\Y)(Au')(u'e Y Ξ (S^)(M'€AΓ & AΓ € X)) .

Define £7(X) (the sum class of X) as the unique 7 such that T51 holds.

T52 (S!X)(AM')(w'eX = T(Sv')(u' = {υf, u'))).

Define /R (the identity relation) as the unique X such that T52 holds.

T53 (A*ί, . . . , * / , Y[, . . ., Fi)Sφ(^ί, . . . , * / , Fί, . . ., Yί) D (S!^)(X c

F z & (AΛΓ{, . . ., Ar/)«xJ, . . .,Λr/>eX = φ(*J, . . .,x/, Fί, . . ., F^))), «;Λere φ

zs constructed as in Axiom B.

Define {(^(, . . .,*/>lφ(*ί, . . , ^ / , F ; , . . ., F^)} (the class of ordered

Z-tuples such that φ holds) as the unique X such that T53 holds.

Define the inverse relation of X, X as {{x[, xζ) Kxί, x[)e X}.

T54 R(X) = D(X).

Define the following:

Fnc(X) =df Rel(X) & Un(X). (X is a function)

Y 1 X =df X Π (YxV). (Restriction of X to the domain F)

UnAX) =df Un(X) & Un(X). (X is one-to-one)

If there is a unique zr such that ( / , £ ' ) e ^ then Xζy' =df z'. X ( < F =^

Λ ( F 1 X).

T55 (Ax)(Un(X) D (SI^fA^Oί^'e y = (Sy')«y', ^'>e X & y'e ΛΓ))).

Define the set, .R(Λ: 1 X), as the unique y such that T55 holds.
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T56 HAxiom R=^>H Axiom S.

T57 M(D(x)).

T58 M(R(x)).

T59 M(xxy).

T60 M(D(X)) & M(i2pO) & Rel(X) D M(X).

T61 Frcc(X) D M ( d Ι ) .

T62 Pr(7).

T63 (Slx)((Ak)(kex =kok) & (A;y)(~;ye # ) ) .

Define / (the set of all individuals) as the unique x such that T63 holds.

T64 (Auf, Y[, . . ., Yί)Sφ(u'9 F{, . . ., Y'm) D (S!*)((Afc)(fce # = 0(A>, F(,

. . ., Y'm)) & (Ay)(~yex)), where φ is any wff, not containing x free and

containing quantification over set and individual variables only, and where

k, Y[, . . ., Y'm are all the free variables in φ.

Define {k\φ(k, Y[, . . ., Y^)} (the set of all individuals k such that φ

holds) as the unique x such that T64 holds. This is a more general form

than can be derived from Individual Axiom 3 alone.

Individual Axioms 1 and 2 yield the Goodman theory of individuals as

in [6j. Leonard and Goodman [7] develop a theory of individuals using sets

of individuals as well, but the set theory is taken from Principia

Mathematica and is not independently axiomatised. However, using In-

dividual Axioms 1, 2, 3, and 4, one can develop a theory of individuals and

sets of individuals,4 which is stronger than Leonard and Goodman's theory.

The set variables would range over sets with individual members only and

Individual Axiom 4 would have to be changed to:

4 ' . k = I D. ke x = lex.

T h e t h e o r y w o u l d d e v e l o p t h e r e l a t i o n s h i p s b e t w e e n o , < , < , = , and ~z_

s u c h a s :

kol = (Sm)(m ^k 8zm ^ I).

k ^ I =. k <lvk = I.

k < I =. (Am)(m ~L I D m ~L k).

The theory would define the fusion of the set x, Fu'x, as the unique I such

that I Fu'x, on the condition that x is nonempty. It would establish results

about fusions such as:

(Sk)(kex) D (Am)(m ~L FU'X = (Al)(lex => m ΊL I)).

(Sk)(ke x) =X x c y D Fu'x ^ Fu'y.

It would introduce the set of all individuals k such that φ, {k: φ(k)}, with

results like:

(Sk)(φ(k) & Z ^ ) D l ^ Fu<{k: φ(k)}.

It would define the sum of two individuals k and Z, k + Z, as the fusion of

{m: m = k vm = Z}, with results like:

m "2. (fe + Z) = m "z. k & m "z. Z.

(k + I) < m =k < m 8z I ^ m.
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It would introduce the negate of the individual k, k, as Fu'{l: I ~z~ k} on the
condition that (SOU "^ k) holds, with results like:

(Sl)(l -z. k) D . l_-z- k = I ^ k .
(Sl)(l "z. k) =>. k = k .

It would introduce the universal individual, U, as Fu'{k: k = k}, with results
like:

fcoU
(Ak)(k ^l)^l = \J__

(SI)(I "z- k) =λ £ + k = u .
( s ^ ) ( - ^ = u & ψ(fe)) Ξ (s^)(~^ = u & ψ(fe)).

The theory would define the nucleus of a set x, Nu'x asFϊt'lk: (Sϊ)(lex &
~l = U & fe = 7)}, provided that

(i). (Sk)(Sl)(lex & ~Z = U & & =1)
(ii). - F w { ^ : (SZ)(Z e # & ~ Z = U & f c = Z ) } = U
(ii i) . ,-(Afe)(fee^ D fe = U)

all hold. In the case of (iii) failing to hold, Nu'x -^ U, provided (Ak)(k e x 3
fe = U) holds .

It would establ ish r e s u l t s about nuclei such a s :

(Sl)(Ak)(ke x z^l ^ k) Ώ (Am)(m < JVM'AΓ = (M)(lex D m ^ Z)).
(Sl)(Ak)(ke y ^ I ^ k) Ώ. x cy ^ Nuιy ** Nu'x,

It would introduce the product of two individuals k and Z, kl, as Nu^m: m =
kvm = l}, provided &o Z holds, with results like:

kol Ό. m ^ k 8z m ^ I = m ^ kl.
(Sn)(n ^ ^ & n ^ Z & n < m ) Z).k(lm) = (fcZ)ra.

kol&komZDkl+krn = k(l + m).
lomθk + lm= (k + l)(k + m).
~k = U & ~l = U & kol & ~(k *z I) & ~(l *ζ k) Z) k + I = kl +kl + kϊ.

It would introduce the union and intersection, # U 3; and x Πy, with results
like:

(Sk)(kex) & (Sk)(key) Z).Fu<(x U31) = FM'Λ1 + F W ^ .
(Sl)(Ak)(kexvkey Ό I < k) Ό Nu<(x U y) = (Nu(x)(Nu(y).

It would introduce the complement, #, and the universal set, V, with results
like:

Fu'V = U

(Sk)(ke x) & ~Fu'x = U 3. J^VΛ; ^ Fw'ϊ.

It would introduce the definition of an atomic individual as follows:

At(k) =df ~(Sl)(l <k).
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Then these can be proved:

At(k) =>. I ^ k D I = k.

At(k) & At(l) D.k-z. Ivk = I.

The 3-valued class theory can be continued as in Mendelson [8],
pp. 170-197. Some minor differences5 need to be noted:

XWeY =df XIrrY & (AZ)(Z c Y & Z Φ 0 D (Sy')(y'e Z & (Avf)
(v'e Z & ~T(υ' =y') D. (yf, υ')eX & ~ ( y ' j ' ) f l ) ) ) . (X well-orders Y)

XConY=df Rel(X) & (Au')(Av')(uf e Y 8ι v'e Y & ~ T(u = υ') D
(u'9 υ')e Xv (vf, u')e X). (X is a connected relation on Y)

E =df {<#', yOlTtAr 'ey ') . (The m e m b e r s h i p relat ion)

Trans^X) =df (Ay){ye X ^ y <z X). (X is transitive over sets)

Trans2(X) =df (Ak)(Al)(k < Z & Ze X D ke X). {X is transitive over
individuals)

Ord(X) =df E We X & TransL(X) & - ( S ^ ) ( h l ) . (X is an ordinal)

Note the restriction here on the definition of an ordinal. This is
necessary to prevent each individual from generating a sequence, {&},
{&> {&}}> {̂ > ί̂ }> î » {̂ }}}> e t c ? which would satisfy the definition of
ordinals but would not satisfy the uniqueness requirement.

Ord(k) =df ~(kok).
Suc(k) =df ~(kok).
ω =df {x'lx'eKt & T{Ay)(yex' DyeKj}.
Xγ =df {u'\(Sx)(T(x =W) 8zFnc(x) & D(x) = Y & R(x) c X)}.

Further Class Axioms

AC. (Au)(ue I 3 M ^ 0 & {Av)(υ e x&vΦuZ)vnu = 0))-D (Sy)
(Au)(uex D (Slx')(x'eu Πy)).

D. (AX)((Sx)(xeX) Ώ (Sx)(xeX & ~(Sy)(yex byeX))).

GCH. (Δx)~(Sy)(x ^ y S P(AΓ)).

C. (AΛΓ) (# is constructible). (to be defined).

As in Mendelson [8], pp. 198-199, AC is equivalent to the four other forms
of the Axiom of Choice. Notice the difference between my Axiom D and
Mendelson's Axiom of Restriction. Individuals may belong to the intersec-
tion of x and X.

Now I will define the notion of constructible set, which is similar to
that on p. 87 of Cohen [2]. Define the set Mo as follows: u'e Mo = (Sk) T{u'=
{&}). / is a set by Individual Axiom 3, and hence Mo is a set, using the
one-to-one correspondence between / and Mo and using Axiom R. If of is a
limit ordinal, then the set Ma is defined as the union of all the sets Mβ, for
β < 0 α, i.e., u'e Ma = (Sβ)(β < 0 a & u'e Mβ). The set Mα+1 is defined as the
union of the set Ma and the set of all sets x for which there is a formula
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A(zf, w[, . . .,w\)9 which is significant for all substitutions into its free
variables, such that if Λwαu/denotes A with all bound variables restricted to
MαU7, where / is the set of all individuals, then for some (constant) Έ\ in
MαU7, for each z, x = {z'eMa U I/AM(χUl(z', w[, . . ., w[)}. l{z'eMaUI/
AM&iiz'tWί, - .,w/)}= {z'/zΊMaυibAMaυl{z',Wu . . .,w/)}].

Now we show that Mα+1 can be defined in the formal system, given that
Ma can be so defined. This proof follows that of Cohen [2], p. 92. For each
r > 0 let xr denote the set of all ordered triples (zi9 z2, z3) where zu z2, and
z3 are sets of ordered ^-tuples (pc[9 . . ,9x{) for which there is a formula
A(x[9 . . .,#„', t[, . . ., tin), with exactly r quantifiers, but where A can be
nonsignificant for some substitutions into its free variables, such that
*i = {<*ί, . , *»>e (Mα U 7)7TAM α U /Uί, . . .±xi, J[, . . . ,7;)},* 2 = {<*ί,
. . .,*„'>€ (M α U7)7FA M α U / U;, „ ., ^ , J ί , . . .,t'Jl and * 3 = {<*ί, ., *»'> e
(MαU/)7~SAlMfl[U,(x{, . . . , *£, ί{, . . ., *£), where ί/€Mα U 7, for all i. We
show that xr is expressible in the formal system by an induction on r .
Firstly, in order to define x0, we define y0 as follows: ureyOn~ (Sy')(y'e
MaUI8z (SZί)(Sz2)(Sz3)(uf = (zuz2,z3)& (Aw')(w'e zι = (Sx[)'(Sx !>)(T(wf =

(x[,xί)) & xleMaΌ I&xίe M α U 7 & T(x'ey'))) & ( A ^ ' ) ( ^ ' ^ 2 = (Sxί)(Sxί)

(T(wf = <x(5 xθ) 8z x[e Ma Ό I 8z x'2e M α U 7 & ^ ( x ( e y'))) & (Aw')(w'e zz =

(S^OίS^fTίw;' = (^ί ,^» & ^ίe Mα U J & x£e Mα U I & -SU{e y'))))) v . . .
(for other types of formulas using ordered tuples from 1 ton).

This example is for the formula x[e J' with ordered pairs (x{, x2), this
particular disjunct yielding a set because of the Axiom R and the assump-
tion that Ma is a set. yOιft will be a set because it is a finite union of sets.
Define y0 as the union of all the yo,n's where ne ω-{θ}. So y0 is the set of all
ordered triples (zlf z2, z3) where zl9 z2f and z3 are sets of ordered w-tuples
( % ( , . . . , x£) for which there is a formula A(x[, . . ., x'n9 t[, . . ., t'm) with no
connectives or quantifiers and such that zu z2, and z3 are defined as above.

Using an induction on the length of formulas without quantifiers
assume, for all k < 1, the set yk has been constructed to deal with all
formulas without quantifiers and with k connectives. To construct yι we
need ordered triples corresponding to formulas with I connectives and
obtained from previous formulas by the use of one of ~, D, and Tn. u' e yγ =
(SzJiSzJiSzJdz!, z29 z3) eyi^ & T(u' = (zu z2, z3)))v (SkJiSk^ik, + k2 =
I - 1 & (S^i)(S^ 2)(S^3)(S24)(S2 5)(S^6)«^i, z2, z3) e yk:i & (z±, z5, z6)e yk2 &
T(u' = {{zι Π *4) D z^ z.Oz^ z.Πz^v (Szι)(Sz2)(Sz3)((z1,z2fz3)eyι.ι &
T(u' = (zί9 0, z2 U z3))), where complements a r e taken with r e s p e c t to
( M α U 7 ) w for n- tuples . yt i s a set because the yk's for k <l a r e s e t s and
the 2, 's a r e s e t s . Define x0 as the union of all y^s such that le ω. Now by
induction on r we will define xr A set (zl9 z2j z3) will be a m e m b e r of xr

either if there is a set (z 4 , z5, z6)e xr.ι such that s 4 , z 5 , and ^ 6 a r e se t s of
(w + l )- tuples and such that (xr

u . . ., xi)ezv = (Sxό)(ΛΓOe Ma U 7 & <v£, #J,
. , ^ ) e ^ 4 ) , <^ί, ,xl)ez2 = ( S 4 ) W e M f t U 7 & (^5, ^{, . . ., x£>ez5) &
~(Sxo)(x!>eMa U / & W , ΛΓ{, . . . , ^ > € 2 4 ) a n d <y{, . . . j j f β e ^ Ξ (A^ό)W e
I α U / D (ΛΓ ,̂ X[9 . . ., ^ ) e z6) or if t h e r e is a set (ε 4 , ̂ 5 , ^ 6 ) e xr.ι such that
^4? 5̂> a n d z6 a r e se t s of (n + l )- tuples and such that (x[, . . . , ^ w ) e ^ ! s
(Δxί)(xZeMa VI^>(x&,xl, M < ) ^ 4 ) , (^ί, . , ^ ' ) e 2 2 - ( S ^ ) U ^ M a U 7 &
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(xί, . . , < ) α 5 & ~(S#5)U£eMαU/& <#£, . . ., #Λ')e*6) and (x[, . . . , < > e z 3 =
(Sxί)(xόe Ma U/& <x£, . . .,#,;>€ *β) Then the set Mα+i is defined as the
union of the set Ma with the set of all sets zl9 where, in the ordered triple
(zlf z2, z3) which belongs to some xr, z3 is the null set and zι and z2 are sets
of 1-tuples. Thus the Axiom of Constructibility (Axiom C), in the form
(Ax)i$a)(xe Mα), can be formally defined in the system.

We now prove a theorem showing that only the connectives ~, &, and T
and quantifier A need be used in the predicate φ of the Axiom B to generate
all the classes that Axiom B generates.

Theorem 1 If φ is significant for all substitutions into its free variables,
then there is a φ' such that φ = φf and φr contains only the connectives ~, &,
and T and the quantifier A.

Proof: This proof is similar to the proof that Mα + i can be defined formally,
given Ma.

There are finitely many atomic formulas occurring in φ. Correspond-
ing to each one there are three classes defined as follows: If the atomic
formula is x'ey, say, then (Ax')(xf e Zx = T(x'e $)), (Ax')(x'e Z 2 = F(xre 50)
and (Ax')(x'e Z3 = ~S(x'e~y)) give definitions of the three classes, Zl9 Z 2 ,
and Z3. If the atomic formula is x[e x2, say, then (Ax[)(Axr

2)({x[, x'2)e Zγ =
T(xlex'2))9 (Ax[)(Ax'2)((jc[,xr

2)eZ2 = F(x[ex'2)) and (Ax[)(Ax'2)({xf

u xf

2)e Z3 =
~S(x{e x2)) give definitions of ZL, Z 2 , and Z 3 . And so on for any atomic
formula appearing in φ. If the atomic formula has no or one free variable
then the Z's have 1-tuples for members and if the atomic formula has two
free variables then the Z's have 2-tuples for members.

We now assume that Z 1 ? Z 2, and Z3 have been found for any predicate φ
with fewer than n connectives and quantifiers and take the quantifiers and
connectives in turn.

Let Zu Z 2, and Z3 be the classes for φ and form ~φ. (Ax[, . . ., xf

m)
«*ί, , *«>e ^4 = (xl, , Xm)e Z2), (Ax{, . . ., x'n)({x'u . . ., xQt Z 5 =
<*ί, . . ., xf

m)e ZL) and (Ax[, . . ., x'm)((xl, . . ., x^e Z 6 = (x[, . . ., < ) e Z3)
define the classes Z 4 , Z 5 , and Z 6 for ~φ.

Let Zu Z 2, and Z 3 be the classes for φL (where Zu Z 2 , and Z 3 have
members of the form (xf

il9 . . ., x-k)) and let Z 4 , Z 5 , and Z 6 be the classes
for φ2 (where Z 4 , Z 5 , and Z 6 have members of the form (xjlf . . ., x^)).
(Δx'iL, . . ., xf

n)(^'il9 . ., x'u)e Z 7 = «*?,, . . ., x'ik)e Zx & (x'h, . . ., */,> e
Z4)v~(x'n, . . . ^ p e Z j , (Ax'iv . . .,*},)«*;•!, .,x'u)eZa = <pc'il9 . . .,x'ik)e
Z, & <pc'ji9 ,x'u)tZ5) and (A^^, . . .,x'u){(?c'iv . . .,x'h)eZ9 = (^{^ . . .,
Λτ̂ >e Zt & (A:^, . . ., xj^e Z6) define the classes Z 7 , Z 8 , and Z 9 for φL D φ2,
where ΛΓJX, . . ., Λ:' contains no repetition of variables.

Let Z 1 ? Z 2 , and Z 3 be the classes for φ and form Tnφ. (AxI, . . .,x'p)
({x[, . . . , x 0 e Z t = (x[9 . . . , x 0 e Z l ) y ( A x [ , . . . 9 x 0 « p c [ 9 . . . , x p e Z 5 ^ 0 e 0 )

and (Ax[, . . .,*£)«*{, . . .,x0eZ6 = ~(*{, . . ., xpe Z j define the classes
Z 4 , Z 5 , and Z 6 for Twφ. Let Zl9 Z 2 , and Z3 be the classes for φ(x') and form
(Ax')φ(x'). (Ax[,...,x'k)({x'u . . . , ^ > e Z 4 = (Ax')({x[, . . .9x\ . . . ^ p e Z j ) ,

(A^ί, . . ., ^ ) (^ ί , . . ., xfte Z5 Ξ (S^')(^ί, ., x', ., '̂>€ Z2) & ~(S*')
«Λ:ί, . . ., x\ . . ., xβe Z3)) and (A^ί, . . ., xβdxί, . . ., xpe Z6 s (S^')«^{,
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. . . , - # ' , . . ., xpeZ3)) define the classes Z 4 , Z 5 , and Z 6 for (Ax')φ(x').
(Ax{, . . ., *ί)«*ί, . . ., *ί>e Z 4 = (S*')«*ί, , * ' , , *k)e Zj), (A*ί,
. . . ,*#«*{, . . ., < > e Z 5 = (S^')«Λrί, •, x', • , * # = Z2) & ~(S*')«*ί,
. . ., x', . . ., x0e Zγ)) and (A#{, . . ., xQ((x[, . . ., ̂ >e Z 6 = (A#')«*ί, . . .,
x\ . . ., xQe Z3)) define the classes Z 4 , Z 5 , and Z 6 for (S#')Φ(*')

Hence, for any formula φ there are corresponding classes Zu Z 2 , and
Z 3 such that (x[, . . ., xβe Zγ = Tφ, (pc[, . . ., x£)e Z2 = Fφ and (x[, . . ., xβe
Z3 = ~Sφ, because of the method of constructing the Z's for the formula φ.
Since φ is significant for all substitutions into its free variables, Z3 is the
null class. Hence (x[, . . ., x£)e Zι = φ, where ZL was constructed using only
~, &, T, and A, the uses of the quantifier S being replacable by ~A~
because S only quantifies two-valued formulas. Hence the φ' required can
be taken as (x[, . . ., x£)e Zγ.

3 The meta-theory The next task is to prove that the formal theory is
relatively consistent to an applied NBG. This is more difficult than
would first appear since, in usual set or class theories containing indi-
viduals, there is no axiom asserting the existence of at least one individual
and hence one can ignore individuals when constructing a model or showing
consistency in any way. But in this theory containing Individual Axiom 5
(necessary of course for the development of a theory of individuals) we
cannot ignore individuals when constructing a model for the theory. Since
the theory of individuals can be shown to be consistent using a model
consisting of only one individual, we will construct a model for the class
theory also containing only one individual. The model cannot be an inner
model of any standard class theory because there is no such class theory
explicitly containing individuals.

We first construct a model N for the individuals and sets of the theory
and then extend it to a model N' for the individuals and classes of the
theory. The domain of N and the valuations of the membership statements
are constructed by a transfinite induction on the ordinals. This is similar
to the construction of the constructible sets of the inner model of ZF, that
appears in [2], p. 87. The final aim is to establish a domain with the
following members: k, {&}, Mβ, for all ordinals β, and all expressions of
the form: {zr e Ma U {k}/AMaU\k\(z', w[, . . ., wf)}, where Έ[ is k or Έ e Ma

has the value 1 in the value assignment to follow, where all the bound
variables in A M α U ^ are restricted to Ma U {&}, and AM Ό^k\ has the value 1 or
0 for all substitutions into its free variable z1.

The restrictions of variable to Ma U {k} are done as follows:

(Ax'Hx'eMaOf(x'))&f(k).
(Sxf)(Tn(xfeMa) 8tf(x'))vf(k).

Assume that these restrictions to Ma U {k} apply for the whole construction
of the domain N.

The transfinite induction is as follows: We shall use the notation,
v (expression) = 1, 0, or w. We will construct a transfinite sequence of
domains, Do c Dι c D2 c . . . c Da c Da+1 c . . . c Du c D° c Dι c . . . c
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Dn c . . . c Ds, where Du will be the domain for s e t s and individual and Ds

will be the domain for c l a s s e s and individual. The valuations made for each
domain will hold good for all domains containing it .

Let the domain Do consis t of k (the individual) and {k}. Then v(k ok)= 1,
υ{{k}ok) = v(ko{k}) =v({k}o{k}) =n,v(kek) = v({k}ek) = n, υ (k e {k}) = 1,
v({k}e{k}) = 0. Let the domain DL consist of fe, {&}, Mo, and all expressions
of the form: {z'e Mo U {fe}/AMoUU}(2', w'u . . ., w/)}, where w\e Do, for a l i i ,
and, for all zreD0, ΛM(jU\k\ has the value 1 or 0. If y and ze DL - Do, then
v ( k o y ) = # ( ; y o & ) = v ( y o z ) = # ( { f c j o j ; ) = v ( y o {k}) = n . A l s o v ( k e Mo) = 0 ,
v ( { k } e M 0 ) = l , v ( M o e k ) = n , v ( M o e {k}) = 0 , v ( M o e M o ) = 0 . l ί y e D , - ( D 0 U
{Mo})? thenjy(M0€3θ_= °, v(yek) = n, υ(y e {k}) j= 0. ^ ( x ' e t ' e I 0 U {^}/
AMou\k\(*',wi, ,^/)}) = v(AMoM](xf,w[, . . . ,w;)) , for all x'eD0, where
the range of bound variables is taken as Do for the valuation. ΊiyeDι -
(Do U {Mo}), then if v(x'ey) = v(x'e {&}) for all x'eD0, then v (y e Mo) = 1.
Call {k} the corresponding member of DQ for y. If it is not the case that
υ(x'ey) =v(x'e {k}) for allx'eD0, then v (y e Mo) = 0.

Let * € £ > ! - (D 0U{M 0}) . Let v(xeM0) = 1. Then v (x e {z' e Mo U {k}/
BM0U\k\(*',xl, - ,xί)})=v(BM0u\k}({k},xl, . ,#£)), where tf/eZMoralH,
and the range of bound variables in I^ouUI i s taken as Do. Now let
v(xeMo) = 0. Then y ( i e {z 'eM o U{fe}/^ o u j A | (2 ' , ϊ ί , . . . ,^)}) = 0. This
completes the valuation for D±.

We shall now show that the Axiom of Extensionality holds in DL. Let
v(x'e x) = v(x'e y) for all x'e DL, where x, yeD^ - {k}.

v(xe {k}) = 0 = v(ye {k}).

(i) Let v(xe Mo) = 1 and xe Do. Then x is {k}.

a. Let ye Do, then y is {&}, which is x. Hence v(yeM0) = 1 and

vjxe {zfe_MoV{k}/AMou{ki(z',w[, . . .,Έ[)}) =v(ye {z'e Mo U {k}/AMou{k\(z',

w'u . . ,w/)}).

b. Let 3; e £>! - (Ẑ o U {MO}). Then x is a corresponding member of

Do for y, υ(yjM0) =J and v(^€ {^'e Mo U {^}/AMouU |(^ M7{, . .^w})}) =
VUMOUUJU, ^ ί , -,WD) = v(xe {z'eM0Ό {k}/AMou{k](zf, w[, . . ., w/)}).

c. Let 3̂  be Mo. This cannot be the case because υ (k e x) = 1 and
y ( h M 0 ) = 0.

(ii) Let v(xeM0) - 1 and xeDi - Do. x cannot be Mo because v(Moe

Mo) = 0.

a. Let ye Do, then this case has already been treated in (i).

b. Let y e Dγ - (Do U {Mo}). X has a corresponding member, {&}, of
Z)o. Hence v(x'ex) = v(x'e {k}) for all x'eD0, and f ( ^ e {2'eM 0 U {k}/
AMOUΪΦ',w'n -,^i)}) =υ(AM0u\k\({k},w[, . . .,i<7;)). ^ ( x r € 3 θ = v(x'j {k})
for a l l x ' e Z)o a n d v(y e M o ) = 1. υ (y e {z'e M o U {k}/AMQΌ\k\(z', w[, . ..,«;/)}) =
^ W M O U U ! ^ } , ^ , . , w ' i ) ) = v ( x e {z'e Mo Ό {k}/AMoM(z',w[, . . ., M 7 / ) } ) .

c . y c a n n o t b e M o b e c a u s e υ (k e M o ) = 0 a n d v ( k e {k}) = 1 .
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(iii) Let v(xe Mo) = 0. Then it is not the case that υ(x'e x) = v(x'e {k})
for all x'e Do.

a. Let yeDι - (Do U {Mo}). The above holds for y and hence
v(y e Mo) = 0. Hence v(x e {zf e Mo U {fc}/AMouU}(*', w[9 . . ., w\)}) = 0 =
^(ye {z'e Mo U {k}/AM()U\k\(zf, w[, . . ., w[)}).

b. Let y be Mo. Then z;(y e Mo) = 0 and ?;(y e {z'e Mo U {£}/

ΛiouUi(*'>^ί> •>/)})= ° = *>(*e \z' eMol){k}/AMo{j{k](z',wl, . . .>/)}).

c. Let yeD0. Hence 3; is {k} and W ^ ' e y ) = v(x' e {k}) for all
AΓ'e Do, which yields a contradiction.

This completes the proof.

Let xeDγ- (D0U {Mo}) and let v(x'ex) = v(x'e {k}) for all x'e A>. So
v(xeM0) = 1. L e t y e £>L - Z) o .

(I) L e t v(yeMQ) = 1. T h e n v (x'e y) = v{x'e {k}), f o r a l l x ' e D o . L e t

t h e x a b o v e b e { £ ' e M 0 U { ^ I / A ^ u ^ } ^ ' , w[9 . . ., MT/)}. T h e n v(yex) =

v(AMoUlk\({k}9 Έ[, . . ., wl)) = y ( W e x ) = W W e {^}) = 0 . z;(ye {^}) = 0 =

v(yex).

(II) Let z (yeMo) = 0. Then v (y e x) = 0 = υ (y e {k}). Hence, by the
Axiom of Extensionality, in all contexts, x can be replaced by {&}, its
corresponding member of DQ. Hence v(BMoU\k\(zf, w[9 . . ., wί))(z'9 vo[
all e Do) is the same whether the range of the bound variables mB^oU\k\ is
taken as Do or D x .

This completes the initial stage of the transfinite induction. The next
step is to assume for some ordinal a that domains Dβ9 for all β ^ a, have
been constructed and that all valuations of the expressions constructed
from the members of these domains have been obtained in a way similar to
the valuation of expressions from DL. Dβ consists of k, {&}, M y, for all γ
such that 0 ^ γ < β, and all expressions of the form: {z'eMγΌ {k}/
AM u{k\(z'> ™Ί> - - •> ̂ /)}> where w}e Dβrl (if β is a successor ordinal) or
wje Dβ (if β is a limit ordinal) and v(wje My) = 1 or Έ[ is k, for all i, for γ
such that 0 < y < β, and where AM Ό^ has the value 1 or 0 for all z'e Dβrl

(if β is a successor ordinal) or z'e Dβ (if β is a limit ordinal). The Axiom
of Extensionality holds in Dβ and if xe Dβ - Dγ and v(x e Mγ) = 1 then x can
be replaced by any of its corresponding members, in all contexts with the
domain Dβ. Also υ(BM ^{z'^ ~χ[9 . . .,F^)) is the same whether the range
of the bound variables in BM Ό\k\ is taken as Dγ or Dβ.

We now define Da+ι as all members of the Dβ's, for all β < a, Ma, and
all expressions of the form: {z'e MγU {k}/AM ,Ό\k\(z', w[, . . ., w7/)}, where
Έ\e Da such that υ(w[e Mγ) = 1 or w7/ is k9 for all i, where 0 ^ γ ^ a, and
where AM Ό^ has the value 1 or 0 for all z'eDa> [If oί is a limit ordinal,
then y = a is the only case we need to consider.]

If y and ze Da+1- Da9 then v(koy) - v(yo k) = v(yo z) = n. If xe Da - {k},
then v(yox) = v(xoy) = n. Also v(ke Ma) = 0, υ[Mae k) = n and υ(Mae Ma) =
0. If xeDa - {k}, then v(xe MΛ) = 1 and υ{Mae x) = 0. If ye Da+ι - (DαU | M J )
then v(Mae y) = 0, v(ye k) = n and v(ye {k}) = 0.
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v(x'e{z'e MγU {k}/AMyu{k\(zr, Έ[, . .^w/)}) = v(AMγ^k\(x', w[, . . ., w\)),
for all x'e Dγ, where w[e Da such that v(w[e Mγ) = 1 or w[ is k, for all i, and
where the range of the bound variables in AM o^ is taken as Da for the
valuation, [if en is a limit ordinal, then y = a is the only case we need to
consider.]

L e t x ' e D a - D γ . I f v ( x ' e M γ ) = 1 , t h e n v ( z ' e x ' ) = υ ( z f e y f ) f o r a l l
z'e Da, for some y'e Dγ, where y' is a corresponding m e m b e r of Z) y for AT'.
Thenυix'e {z'eMye {k]/AMyM(zf,w[,.. .,wl)}) = v(AM^{φ',w^, . . . , ϊ ϋ / ) ) .

If v ( x ' e M y ) = 0 then v ( * ' e { * ' e M y U {fc}/AMyuUi}(2', w[, . . ., w/)}) = 0. K
ye Da+ι - (DaΌ {Mα}) and 0 < y < a, then if z;(Λr;e y) = v(x'e z) for all ΛΓ'e Da,
for some >ε e -Dy, then v(y e My) = 1 and z is called α corresponding member
of Dγfor y.

If i t i s n o t t h e c a s e t h a t v ( x ' e y ) = v ( x ' e z ) f o r a l l x ' e D a , f o r s o m e
z e Dγ, then t> (y e Mγ) = 0.

Let xe Da+ι - (Da U {Mα}). Let y(ieM y) = 1. Thenz;(Λ:e {2'eMyU {fe}/

ΛiyuUiί*', ^ί^ •' ΈD}) = v(AM,γu\k}(z, w'i, - , «7», where 2 is a cor-
responding member of Dγ for Λ; and where the range of the bound variables
is taken as Da.

Now let v(xeMγ) = 0. Then v(xe {z'eMγ U {fe}/AM Ό\k\(z', w'u ,
iίjy)}) = 0. Since the Axiom of Extensionality holds in Da, any corresponding
member, 2, of Dγ for AT can be substituted in the above expression.

We shall now show that the Axiom of Extensionality holds in Da+ι. Let
v(x'e x) - υ(x'e y) for all x'e Da+1, where x, ye Da+ι - {k}. v(xe {k}) = 0 =
v(ye {k}). Let 0 ^ y ^ a. Let w[e Da and v{w[e Mγ) = 1 or Έ\ be k, for
ali i .

(i) Let v(xe Mγ) = 1 and x e Dγ.

a. Letz eDy. Then v(y e Mγ) = 1 and v(ye {z'e My U {k}/AM u\k\(z'9
w[, . . ., MΓ/)}) = v W ^ ^ i ^ y , W{, ., ^/)) = v(AMγU\k\(x9 w[, . . Ύ.,wl)) =
ι;(Λ:e {£ ; eM y U {k}/AM Ό\k\(z', wu •> ^p}), using the Axiom of Exten-
sionality in Da.

b. Let ye Da+ι - Dγ. Then A: is a corresponding member of Dγ f or
3;, v(yeMγ) = l, andv(ye{z'eMγΌ {k}/AMyU\k\(z_',w[, . ̂ .,w7;)}) = vUMylu{Λ}(AΓ,
F{, . . .,w/)) = t;(ΛΓc { ^ ' e M y U ^ I / Λ ^ ^ ^ ^ ' ^ ί , . . ., w[)}).

(ii) Let υ(xe Mγ) = 1 and x e Da+ι - Dy.

a. Let ye Dγ. This case has already been treated in (i).

b. Let y e DQ+I - Dγ. x has a corresponding member, w, of Z)y.
Hence υ{x'ex) = υ{x'ew) for all x'e Da, and v(Λ:e {-s'e Mγ U {fe}/AMyUm(>2',
M 7 { , . . . , w l ) } ) = v ( A M r γ Ό { k \ ( w , w l , . . . , w / ) ) . v ( x ' e y ) = v ( x ^ j w ) f o r Bll x ' e D a

<ιndv(yeMγ) = 1. z;(^e{2'eMy U {&}/ΛiyuU}(^ ^ί, - ^ ^/)l) =^(Λίyute|K
M;{, . . ., w{)) = z;(A:e {^;eMyU {fe}/AMyJuU|(2', w{, . . ., w/)}).

(iii) Let v(xe Mγ) = 0. Then it is not the case that v(x'e x) = v(x'e w)
for all x'e Da, for some we Dγ.

a. Let yeDγ. Then v(x'ex) = v(x'ey) for all x'eDa. This is a
contradiction.
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b. Let ye Da+1 - Dy. Then it is not the case that v(x'e y) = v(x'e w)
for all x'e Da, for some we Dγ. Hence v(ye Mγ) = 0 and v(ye {zre Mγ U {k}/
AMγu\k\(z',wί, - •>/)}) = 0 =v(xe {z'eMγU{k}/AMγU{k](z',Έ{, . . .,w\)}).

This completes the proof.

Let xeDa+ι - Dγ and let v(x'ex) = v{x'ez) for a l l x'eDa, for s o m e

ze Dγ(0 < γ ^ a). So y U e Mγ) = 1. This covers all cases of υ(xe Mγ) = 1,
where xe Da - Dγy because x and z can be interchanged in all contexts in Dot-
Also x cannot take the form Mδ, y ^ δ ^ a, because v(M^e Mγ) = 0. Let x be
{z'eMκ U {k}/AMκU\k\(z', w[, . ., wί)}, where 0 < K ^ a and w^eDa and
v (w^e Mκ) = 1 or w{ i s k, for all z.

Let y e DQH-I - i ) α

(I) Let v(ye Mκ) = 1. Then v(x'e y) -v{xfe u) for a l l ^ ' e Da, for some
we Dκ. Then t fye^) = ̂ (AMl/cU^}(w, w[9 . . . , w p ) = v(uex) = v(uez). Let ^
be {*'€ M δ U {^}/^ΛiδuU}('2/, * ί , , ^ i ) l , ̂ where 0 < δ <_r ^ a and x/e D ^
(or Dγ, if y is a l imit ordinal) such that v(x{e M§) = 1 or x\ i s fe, for all z.

(i) Let ^ ( ^ e M δ ) = 1. Then v(x'e y) - v(x'e w) for all x'e Da, for some
we Dδ Hence t;(ye 2) = v(BMbu{k](w, x'u . . .,££)) =v(wez).

a. Let δ ^ /c. Then D δ c Dκ and w could have been used as the
corresponding member of Dκ for 3; and hence v(yex) = v(we z) = v(ye z).

b. Let δ > K. Then Dκ c jDδ and u could have been used as the cor-
responding member of Dδ for y and hence υ(ye z) - υ(ue z) = v{ye x).

(ii) Let υ(yeM§) = 0. Then v(yez) = 0. It is not the case that
v(x'e y) = v(x'e w) for all xre Da, for some we Dδ. This also follows for u.
Hence v(ue Mδ) = 0 and v(ue z) = 0. Hence v(ye x) = 0 = v(ye z).
Let z be {&}. Then v(ye z) = 0 and z;(ye ΛΓ) = z;(we z) = 0.
Let >ε be Mδ, 0 ^ δ < γ ^ a. As above, if ^(^eM δ ) = 1 (or 0) then
v(ue Mδ) = 1 (or 0) and hence v(ye x) = v(ye z).

(II) Let v(ye Mκ) = 0. Then it is not the case that v(x'e y) = v(x'e u)
for all x'e Da, for some ue Dκ. v(yex) = 0.
Let z be {z'e Mδ U {k}/BMbu!ik](z', x[9 . . ., x'n)\ where 0 ^ δ < γ ^ a and
x~[e Dy^ (or Dγ, if γ is a limit ordinal) such that υ("x[e Mδ) = 1 or 3cf is fe, for
all ί.

(i) Let υ(ye Mδ) = 1. Then υ(x'e y) = υ(x'e w) for all x'e Dα, for some
weDh- If δ ^ K, then D δ c Z)κ and υ(x'ey) = υ(x'ew) for all x'e Da, for
some weDκ, which yields a contradiction. Hence, let δ >/c. ^ ( ^ e ^ ) =
y(M)e^) = ι;(ίί)ex). It is not the case that v(x'e w) = υ(x'e u) for all x'e Da,
for some ue Dκ. Hence v(we Mκ) = 0 and v(we x) = 0. Hence v(ye z) = 0 =
Wye x).

(ii) Let z;(ye Mδ) = 0. Then 0(3;e z) = 0 = v(y e x).
Let ^ be {k}. Then f (ye z) = 0 = z;(ye x).
Let 2 be Mδ, 0 < δ <γ < α. Let f(y e Mδ) = 1. Then f (# 'e y) = v(x'e w) for



402 ROSS T. BRADY

all x'e Da, for some we Dδ. If δ ^ K, then Dδ c Dκ and v(x'e y) = v(x'e w)
for all x'e Da, for some we Dκ, which yields a contradiction. Hence, let
δ > K. v(we Mδ) = 1 = v(we x). It is not the case that υ(x'e w) = v(x'e u)
for all x'e Da, for some ue Dκ. Hence v(we Mκ) = 0. Hence v(we x) = 0,
which is a contradiction. Hence v(yeMδ) = 0 and υ(yez) = 0 = v (y e x).
Hence, by the Axiom of Extensionality, in all contexts, x can be replaced by
a corresponding member of Dγ, 0 ^ y ^ a. Hence v(BMγU\k\(z'9Έ'ly . . .,
x4))(£ ;, 'w'i a l l e Dα) is the same whether the range of the bound variables in
BMγU\k\is Dγor Da+ι, where 0 < y < a.

The next stage of the transfinite induction is to consider the formation
of Da, a a limit ordinal. Da consists of k, {&}, My, for all y such that
0 < y < α, and all expressions of the form: {z'eMγΌ {k}/AM u^\(z',w[9

- - ', ^/)}> where u)-eDa and v(w^eMγ) = 1 or wT/ is fe, for all z, where
0 < r <cu, and where ^M^UI^I n a s the value 1 or 0 for all z'e Da- That is,
Da= U Dβ. By the induction hypothesis, all the valuations for Da have been

made, the Axiom of Extensionality holds in Da and if xeDa-Dγ and
υ{xe My) = 1 then x can be replaced by any of its corresponding members,
in all contexts with the domain Da. Also V(BM Ό\k\(z'I'X'I, - ,^ϋ)) is the
same whether the range of the bound variables in BM ̂ {^ is taken as Dγ

or Dα.
Now define Du = U Da. Du consists of k, {k}, Mα, for all α, and all

expressions of the form: {zf e Ma U {^}/^MαuUl(£'> "̂ί> •> ϋ;/)}, where
Έ\e Dυ and t;(^"/e Mα) = 1 or Έ[ is fe, for all z, where α is any ordinal, and
where AMiaU\k\ has the value 1 or 0 for all z'e Du. By the transfinite induc-
tion, all the valuations for Dυ have been made, the Axiom of Extensionality
holds in Du, if xe Du - Da and v(xe Da) = 1 then x can be replaced by any of
its corresponding members, in all contexts with the domain Du

9 and
v(AιaaU\\k}(zf, w[9 ., ^/)) is the same whether the range of the bound
variables in AMάU\k\ is taken as Da or Dυ.

The following valuations hold in Du:
If xe Dυ - {k} and ye Dυ - {k} then υ(kok) = 1, v(χok) = v(k ox) = v(xoy) =
n, v(keMa) = 0, v(MβeMa) = 1 if β < α , y ( l y e M α ) = 0 if y ^ α. Ux'eDu

thenz U ' e ^ ) = «. If yeZ)^ - {&}, then z; (ye {̂ }) = 0 and?;(£e {k}) = 1.
If x is{z'e Ma U {^j/A^^^ί^', i?{, . . ., SF/)}, where w[e Du and t; (177- e Mα) = 1
or MĴ  is fe, for all i9 then f (^e Mδ) = 1 for all δ > α , and v(Mτe x) = 0 for all
r ^ α. If v(Λr'e Ma) = 1 or JV' is fe, then z;(Λr'e ΛΓ) = v(AM(χΌ\k\(x', w{, . . ., w[)).
If ^(ΛΓ;€ MJ = 0 and x' is not k, then w(^'e ^) = 0. v({k\e Ma) = 1, for all a.
If υ(x'e x) = υ{x'e z) for all x'e Dυ, for some 2 such that v(z eMτ) = 1 for
some 0 < T < α, then υ(xeMτ) = 1. If it is not the case that ϋ(x'e ΛΓ) =
ϋfx'e^) for all x'eDυ, for some 2 such that v(zeMτ) = 1, for some
0 ^ r < α, then z;(xeM r) = 0. If z;(x'eM6) = 1 then v(x'e Mj = 1, for all
x'e Du, for all δ and K such that δ ̂  K. Hence for any x'e Dυ, except for k,
there is a least ordinal a such that v(x'e Ma) = 1. Hence v(x'e Mγ) = 0, for
all y <a and v(x'e Mγ) = 1 for all y ^ a. Call this least ordinal, ax>. Note
that aWβ - β + 1, α^ | = 0, and aχ/ is always a successor ordinal. If ax < α^,
then ^(yex) = 0. If x is {*'eMα U { ^ V ^ ^ ^ U ' , F ί , . . ., wfi}, then
ax ^ a + 1. lί υ (y e x) = 1 then cCy < ax - 1.
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The domain Dυ and its valuations will form the model for the axioms
involving sets and individuals, which will be shown later. We now construct
a domain Ds which, with its valuations, will form the model for the axioms
involving classes and individuals.

Let D° consist of all the members of Dυ and all the expressions of the
form: {z'/A(zr ,"x[, . . .,#4)}> where Ίcje Du, for all z, where A contains
quantification only over sets and individuals, and where A has the value 1
or 0 for all z'e Dυ. In the following, all quantification over sets and
individuals that occurs in predicates A will be evaluated over Du.

If {z'/A(z'9 x[, . . .,xϊ)}e D° - Dυ, then v(y'e {z'/A(zf, x[, . . ., **)}) =
v(A(y', x[, . . ., *£)) , for all y'eDu. If v(yfe {z'/A{z> ,x[9j . ., *i)}) =
v(y'ew') for all y'eDu, for some w'eDu, then v({zr/A(z'9 x[, . . . , # £ ) } e
W) = v(w'eW)9 for all Ufe D°. If it is not the case that v(y'e \z'/
A{z', ~x[, . . ., 3c!n)}) = υ{y'ewr) for all y1e DΌ', for some w'eDu, then
v({z'/A{z', x[, . . ., x'm)}e W) = 0, for all We D°.

Given that Dn and its valuations have been determined, Dn+1 consists of
all of the members of 2)"and all the expressions of the form: {z'/A(zr, x[9

. . ., x'm, T[, . . ., Ύp}9 where xje Du, for all z, and 7, e Dw, for all j , where
A contains quantification only over sets and individuals, and where A has
the value 1 or 0 for all z'e Dυ'.

Ίϊ{z'lA(zf

9x[^. . .,]?;, 7[, ._;_., Y ^ j e f ^ - ^ t h e n ^ ^ ' e {«VAU',x{,
• , ^ i , Π, . . ., Fp}) = υ(A(y,xl, . ._., AΓJ,, Y[, . . ., F/)), for all y'eDυ.
If i ί^'e {z'/A(z',x[, . . . , ^ , Fί, . . ., Yj,)}) =_υ(y'zwj for all y'eDv, for
some w'eDυ, then ι;({s'/AU', 3?{, . . .,x'm, Y[9 . . ., Fp}e ί/;) = v(w'e tΛ),
for all UΈDn+1. If it is not the case thatviy'e {z'/A(z',x'u . . .,3ζi, F(,
• ., Yp)}) = v(y'e W) for a l l y'e Dυ, for s o m e w ' e D 1 7 , t h e n v({z'/A(z', x[9

. . ., x'm, Ύ[, . . .9Ύ0}e U') = 0 for all U'e 2^+1. If ^(y'e 7') = ̂ (y'e w') for
all y'eDυ, for some w'eDυ

9 where 7 ' e D w - Z)17, then z;(F'e f/') = v(w'e U')
for all ί/'e Dn+ι - Dn. If it is not the case that v(y'e V) = v(y'ew') for all
y'eDu

9 for s o m e ^ ' e D ^ thenz;(F'e U') = 0, for all U'eDn+ι - Dn.
We need to show that if υ(y'ew') = v(y'ew[) for all y' e Dυ, then

τ;(w'e £/') = υ(w[e U'), for all We Dn+Ϊ - Dn, where wf and z^ίe Z)17. By the
Axiom of Extensionality for Dv', the above holds for all We D°. Let us
assume that the above holds for We Dn. Now let We Dw+1 - Z)w. For some
predicate A9JJ' is {^VA(>ε', x{, . . . , ^ , F{, . . .9Y0}. v(w'e W) = υ(A(w'9
x[9 . . ,9x'm, Y[9 . . ., Y0). If y{eDn - Dv, then either v(y( eW) =v(yiew{^ =
0 or v(y. e wf) = v(^e w1) = v{y[e w[), for some J'{e Dυ. Hence v(A(w', x[9

• . , ? ; , Y[, , 7p) = v(A(w[, x'u . . . , ^ , 7{, . . . ,Tp)and v(«;'e ί/') =
υ(w[e W). This completes the proof.

Let Ds = U Dn and let Z)5 have the valuations obtained by induction on
n „

the Dn's. Hence D consists of all the members of Du and all expressions
of the form: {z'/A(z'9x[9 . . . , 3 ^ , FJ, . . .9Yp}9 where fJeD^, for all z,
and JjeDs, for all j , where A contains quantification over sets and
individuals only, and where A has the value 1 or 0 for all z'e Du.

If {z'/A{z',x'u U . , 3 F ; , F{, . . .,Y0}eDs

ZD
U, then t ; ( y ' e {z'/A(zf,

x[9 . . .,5F;, Y[9 . . ^ r p } ) ^ ^ ' , ^ , ^ . , ^ , ^ , . . .,Y0),ioτ3lly'6Dv.
If v(y'e {^'/A(2',^{, . . ,9x'm9 Y[9 . . ., F/)}) =v(;y'ew>') for all y'eDu

9 for
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some w'e Dυ', then υ({z'/A(zf, x'u . . ., x'm, F{, . . ., Fp}e U') = υ(w'e Uf),

for all \J'_e_Ds. If it is not the case that υ(y'e {z'/A(zf, Ίc'u . . .,3ζJ,

Ή , , "ϊp)}) = ϋ l y Έ w ' ) for_all y'eDv, for some w'eD
υ, then i; ({*:'/

A(*' , *{, . . ., x'm, F(, . . ., Fjθ}e t/0 = 0, for all U'eDs. Iiv(y'ew') =

v(y'e w[) for all y'e Dυ, then υ(w'e Uf) = z;(>ίe 17') for all tf'e £ 5 , where w'

and ^[e Z)6'. This follows by induction using an above argument.

Now we will show that Ds and its valuations form a model, Nf, for all

the axioms.

The domain for classes and individuals is D 5 , the domain for indi-

viduals is {&}, the domain for sets and individuals is Du, the domain for

classes is Ds - {&}, and the domain for sets is Dυ - {k}.

The General Axioms 1, 2, and 3 are obviously valid in the model N'.

Individual Axiom 1 is valid because there is only one individual, k, in the

model. Individual Axiom 2 is valid because the fusion of x is k. Individual

Axiom 3 is valid because x is either {k} or 0, where 0 can be taken as

{z'e Mo U {k}/~(ke {&})}. Individual Axioms 4 and 5 are valid because there

is one individual, k.

For showing the validity of Axiom T, let υ(xeX) = v(xeY) for all

xeDs, where X and Ye Ds. If X and YeDu, then we have already shown

that v(Xe U') =v(Ye U')9 for all U'eDs. If Xe Ds - Dυ and YeDu, then by

the construction of Ds, v(Xe U') = v(Ye U') for all U'eD
s. Similarly, if

XeDu and Ye Ds - Du. LetXeDs - Du and Ye Ds - Du.

a. If v(y'eX) = v(y'ew') for all y'eDυ, for some w'eΏυ, then

υ{y'e Y) = v{yrew') for all yreDυ, for some wfeDυ. Hence v(Xe U') =

υ{w'e U') =v(Ye U'), for all UfeDs.

b. K it is not the case that υ(y'eX) = υ(y'e W) for a l l y ' e Du, for

some w'e Dυ', then it is not the case that t>(y'e F) = v(y'e wf) for a l l y ' e Dυ,

for some w'eDυ. Hence y ( I e C/') = 0 = w(Fe ί/'), for all U'eDs. Hence

Axiom T is valid in the model .

To show that the Axiom P is valid in the model, l e t # ' a n d y ' be unequal

t o k. L e t axι **ayt. T h e n v{x'eMayl) -v(y' eM0Lyl) - 1. T h e r e q u i r e d x i s

t h e n {zr e Maiy, U {k}/(Aw')(w' e May, D Γ ί w ' e zr ά wr e Λ; ' ) ) & T(kez' =

^ e ^ O v. (Aw')(w'eMayl => T(w'ez' = w ' e y ' ) ) & T{kezf =key')}. Now l e t

Λ:' be unequal to & and let 3?' be fc. Then the required # is {^;'eMαχ, U {̂ }/

^'e {feJv.tAu O ^ ' e M ^ 3 T(w'e2' kw'ex')) & T{kezr ±kex')}. If Λ:'and

yr are both ^ , then the required x is {&}.

Axiom N is valid as the required x can be taken as {^eM0U {k}/

~{ke {k})}. As before, call this 0.

For showing the validity of Axiom B, consider the predicate φ(x'l9 . . .,

x'ι, Fί, . . ., Yin), where only variables over sets and individuals are

quantified, and where φ is significant for all substitutions into its free

variables. The required x is {zf/(Sx[) . . . (Sxl)((/Kwr)T(wr e zf =w' e

<*{, . . .,*/» & φ(x[, . . .,x'h FJ, . . ., Ym))}. The (pc'u . . .,x/> is defined the

s a m e way as e a r l i e r in this section, using the set x, used to show the

validity of Axiom P .
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For the Axiom U, the required x is {z'eMaχ U {k}/(Sv'){Tn(v'e Maχ) &
z'e υ' & v'e x)v.z'e k & ke x).

For the Axiom W, consider all the members x' of x in the model, i.e.,
such that v(x'ex) = 1. All of these members will be members of Mαχ_!,
i.e., such that v(xr e Max.L) = 1, or be k. Consider a set S of only those
members of x which are members of the set Aχx-i Any member of x not in
Aχx-i w i l 1 b e replaceable by a member of x in Dαχ_ i in all contexts. Let the
set T be the set of all subsets of S. Form a subset R of T such that
XeR = Xe T & (Sz)(ze Du & (Aw')(w'e Du D. v{w'e z) = 1 = w'e X)). [By
transfinite induction, the class V of ordered pairs (xr, yr), x1, y'e Du, such
that v(x'ey') = 1 can be constructed so that (υ(w'e z) = V can be replaced
by '(wf, z')e V.] For each member X of R, since there is a member z of
Du there is a least ordinal α z such that v{zeMa) = 1. Hence choose a 2
from D t t z satisfying the above property. So to each member X of R we can
choose a corresponding z from D^. Since there is a set of such z's, there
is an ordinal β which is the sup of all ordinals az. Hence the required y can
be taken as {z'eMβ U {k}/(Aw')(w'e Mβ D. T{w'ez' 3 w'ex)) & T(kez' Ξ)
fce ΛΓ)}. This is the required power set of x because, by the above argument,
all possible subsets of x will be members of Mβ.

Next we will show that Axiom R is valid but firstly in a form applicable
to sets and individuals only. That is, if A(xr,y',u[, . . ., u'm) is univocal
then (S yHA y'H y'e y = (Sx')(A(x'9 yf, u{, . . ., u'm) & x'e x)), where quantifi-
cation in A is over sets and individuals only, and where A is significant for
all substitutions into its free variables. By Theorem 1, we need only
consider wffs A such that A contains only the connectives ~, &, and T and
the quantifier A. By the result in the appendix of this paper we need only
consider wffs A such that A has all of its quantifiers, A and E, at the
beginning of the formula, [in the proof in the appendix Sp can be defined as
~(~Tp & ~T~p) and T(Ex)A(x) ^ (Ex)(Ay)(TA (x) & SA(y)).] The proof
will follow that in [2], pp. 90-92.

Lemma 1 Let yf - φ(xf) be a univocal function defined by a formula
A(xf

9 y', u[, . . ., ur

m) for some u e Dυ and such that xfeDυ implies
φ(x')e Dυ. If u'e Du then there is a w'e Du such that if v* is the range of φ
on uf, then y'e v' D. v(y'e w') = I, for all y' e Dυ'. [vr is a set of members of
Du, and cannot belong to Du.]

Proof: Note that if v(w[e zf) = v(w[e x') for all w[e Dυ and where z' and
x'eDυ, then υ{w'2e φ(z')) = υ(wr

2e φ(xr)), for all w'2eDu. For e a c h * ' such
that υ{x'euf) = 1 and I'eD^,.!, let g(x') be the least ordinal a such that
v(φ(x')eMa) = 1, if φ(x')eDυU- {k}y and letg(x') be 0 if φ(xf) is k. Let β be
t h e s u p of a l l t h e s e g{x'Y&. C l e a r l y y'tυ1 D v(y'eMβ U {k}) = 1, f o r a l l

y'e Du. [Mβ U {k} can be taken as {z'e Mβ U {k}/ke{k}}.]

Lemma 2 Let A(x[, . -,xή) be a wff with the above restrictions on
connectives and quantifiers and with its quantifiers, A and E, at the
beginning of the formula. Let ~y' e Dυ - {k}. There is an Mμ U {&}e Du such
that if v(z'ey') = 1 then v{z'e Mμ U {k}) = 1, for all z'eDυ, and for all
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x'{e Du such that v(x}e Mμ U {k}) = 1, v(A(x[, . . ., xfi) = v(AMμ[J\k\(x[, . . .,
x£)), where AM Ό\k\ is A with all its bound variables restricted to Mμ U {k}.
[Mμ U {k}can be taken as \z'e Mμ U {k}/ke {k}}.]

Proof: By the above conditions, A is of the form Qi3>ί . . . Cfc»y« B(x[, . . .,
*«, yί, , 3>m), where Q r(l ^ r ^ m) is either A or E. Let u'e Dυ - {k}.
For 1 ^ r ^ m there are functions fr(x[, . . ., xή, y[, . . ., ~yl-γ) defined for
#/, yj in w' (i.e., v(xje ΰ') = 1 and v(y<e ΰf) = 1) with the following property:
If Qlr is E and there is a set or individual y/e Du such that:

(1) . . .Q\r+iy
f

r+ι . . .QmyίB(χl, . . .,χϊ,yl, . . ., 3>r', 3V'+i, ,3>4)

is nonsignificant in the model, or given that there are no sets or individuals
y'r in Du such that (1) is nonsignificant in the model, there is a set or
individual "y'r in Du such that (1) is true in the model, then/ r = a where a is
the least ordinal such that there is a ~y're Ma U {k} (i.e., v(f^e Ma U {k}) = 1)
satisfying either of the above conditions. If no such Jf

r exists, put/ r = 0 . If
Qιr is A (i.e., ~ E ~ ) , then fr is defined the same way as for E except that (1)
is replaced by its negation.

Let β be the sup of Λ(^/,^/) for all x~! and ^ ' e D α - r l , such that
v(x eΰ') = 1 and vCyjeΰ') = 1, and all r for 1 ^ r ^ m. Put (M / )* = W'U
Mβ U {k}. This union can be formed using the Pairing Axiom and Sum Set
Axiom which have already been shown to be valid in the model. So
(w')*e Dv. Now we define a sequence Ίή with ΊQ as Ma U {&}, if of is the least
ordinal such that v{y'eMa) = 1, and JΛ'+1 = (zfi*. SoI£eDu, for a l ln . Let
"z* = U ~z!ι. This requires the validity of the Axiom of Infinity, which will be
shown later. Assuming this, Έ'e Du. So Έ' = ϋ{Mβ/β <α'}U {&}, for some
a'. Ί' = Maι U {k} if a' is a limit ordinal or J ' = Mα^L U {&} if α' is a
successor ordinal. If u(xfeMa) = 1 then v(x'eΈ') = 1 for all x'eDu, and
hence if υ(x'eψ) = 1 then v(xfe Ί1) = 1 for allx'eDu.

Now we need to show that v (A(x[, . . ., x~ί)) = v(Azi(x[, . . .,x^)) for all
x;eDv such that v(x;el') = 1. Let C(x{, . . ., xl,y[, . . . ,y;) denote the
statement (1). Assume that we have shown that, for r > r 0 , C ^ C5; is true
in the model, for all x/ and ;y; e D1 ' such that v(xζe J') = 1 and v (yf e ~z') - 1.
Certainly this is the case for r0 = m. Then with r = r 0 , given that
v(x-e Έ') = 1 and v(y e Έf) = 1, they must all lie in I'k for some k.

Let Q,.,+1 be E. Then if C(x[, . . .,#«,;yί, . . .,y/) is t rue in the model
then there is Si^l+ιe Du such that v(yf+ιe i^'+i) = 1 a n d C ( x ( , . . ., ^», ^ ί , . . .,
5F/+1) is true in the model and for all JVVIe Du,C(x~ί, . . ., ^», 3 ί̂, . . ., yV'+i) is
significant in the model. By assumption, Cs,(x[9 . . ,#w ',;yί, . . ,3 r̂Vi) is
true for the chosen y/ +i and significant for all ~yl+ιe Dv such that vCy}+le
P ) = 1, and hence C^,(J;, . . ., x'n, y'l9 . . .,ψr) i s^true. liC(x[, . . . , ^ ,
5Γ{, . . ., y'r) is false (in the model) then for all 'yf

r+ιeDυ, C(x[, . . .,xϊ,
yί, - - ,3V+i) is false. By assumption, Csι(x[, . . , ? ί , y{, J ί n ) is false
for all y;+ιe Du such that v(yf+ιe ~zr) = 1 and hence Cs,(x[, . . . , ^ , yf, . . .,yr

τ)
is false. If C(x[, . . .,xί,'y'u . .,yr') is nonsignificant (in the model) then
there is a y/+1e 2)t/ such that t; (y/+1e ^+i)__= 1 and C^f,^. . . ,£"£,?{,•••, y/+i)
is nonsignificant. By assumption, C ^ ( # [ , . . ., x£9 y'u . . ., y/+1) is non-
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significant for the chosen ^/-H, a n c * hence Czt(x[, , #«, 3>"ί> , ψr) is

nonsignificant.

Let Q r + 1 be A (i.e., ~ E~). If C(Λ7{, . . ., x'n, ~y[, . . ., yO is true (in the

model) then for all yl+ι e Dv, C(x[, . . ., #£, yί, . . ., ^ + 1 ) is true. By

assumption, Czt(x[, . . ., xή, y[, . . ., ;yr'+1) is true for all 3V'+1e Dυ such that

v(yr'+Le Ί') = 1 and hence Cs,(xl, . . ., ~x'n, ψu . . ., y'r) is true. If C(x[, . . .,

#», ίvί> •» ?r) is false (in the model) then there is a ;yr'+Le Dv such that

*>(#+ie ?iί+i) = 1 a n d c(*ί> •> *«> yί, , 3V+i) i s f a l s e and, for all ^/+1e D17,

C(xί, -^xήyl, ,3V+i) is significant. By assumption, Cs,(x[, . . ., *„',

y{, . . ., yZ+i) is false for the chosen yr'+1 and significant for all y{+ι£ DV such

that υCyl^eJ1) = 1, and hence Cz,(x[, . . ., ΛΓW', y{, . . ., ;yr') is false. If

C(JC{, . . ., x~n, "y[, . . ., j5"r) is nonsignificant (in the model) then there is a

yr'+1e Z)17 such that υ(yf+ιe z£+ι) = 1 and C(x[, ^^ . _., ^ , 5Γ{, _. . ., y'r+ι) is

nonsignificant. By assumption, Czi{x[, , -̂ «, yl, , Ẑ+i) is non-

significant for the chosen y'r+ι, a n d hence Cz>(x[, , x~ή, Jί, ,3vθ is

nonsignificant. This completes the proof.

Theorem 2 The Axiom of Replacement in the form: (Ax')(Sly')A(xf,

y',ul,...,uf

m)& (Ax',y',u[, . . .,u'm)SA(x', y', u[, . . .,u'J Z) (SyJίAy'Jίy 'e

y = (Sx')iA(x', y',u[, . . ., u'm) & i ' e i ) ) , where A contains quantification

over sets and individuals only, is valid in the model.

Proof: Let A{x\ y',u[t . . ., u'm) define a univocal function in Dυ\ yf - φ(x'),

for particular u[, . . .,uf

m in Dv. Let ~xtDu and let ~v' be the range of φ on ~x.

\vι is a set of members of Du but does not itself belong to Du.] By

Lemma 1, there is an a such that 2 ' e F ' 3. z; ( '̂ e Ma U {fej) = 1, for all

z'eDu. We can assume that x~, u[, . . ., ur

m all belong to Ma U {̂ }, i.e.,

z;(Je Mα U {̂ }) = 1 and viu^e Ma U {k}) = 1 for all i. Taking Mα U {k} as the

y of Lemma 2, it follows that for some μ, v(A(x', y\ u'u . . ., ΰm)) =

v(ΛMιιU\k}(x'9y
r

fΰ[, . . .,u'm))f f o r a l l x', y'e Du s u c h t h a t v(x'e Mμ U {fe}) = 1

a n d y ( / e M μ U ^ } ) = 1. Also υ(z'e Ma U {&}) = 1 implies that v ( ^ r e M μ U

{k}) = 1 , f o r a l l z ' e D υ . H e n c e , f o r a l l z ' e D u , z ' e v f => v ( z ' e M μ U { k } ) = 1 .

Also, z;(j?;e M μ U {&}) = 1 and t; (M? e M μ U {&}) = 1, for all z. Hence the

required y can be taken as {y'e Mμ U {k}/(Sx')(Tn(xr e Mμ) & x'ex &

AMμv\Φ',y',ΰl,L. .,«ί))v(fee? & \ u { # J ' , « ί , , ^ ) ) } 1 For arbi-

trary u[, . . .,M^, AT, an ordinal μ can be found so that the above y represents

the set v' in Du, in that z'ev' iff v(z'ej) = 1, for all^'eD 1 7 . Hence the

above form of the Axiom of Replacement is valid in the model.

Lemma 3 If Xe Ds - Du, then there is a Ye D° such that, for all Z'e Ds,

v(Z'eX) = v(Z'e Y).

Proof: Let Xe D"+1 - Dn and assume that the lemma holds for all members

oflλ^ Let X be {*'/A(*',£"{, . . , ^ , ? ί , . . ., F^j^where uje Dυ, for_alH,

and Vfe Dn, for all j . By the assumption, for each VJe Dn there is a Wje D°

such that v{Z'e Vj) = v(Zfe Wj) for all Z'eDs. Let Xι be {z'/A(z', u[, . . .,

ΰm, W[, . . ., W'ι)}. Then, by the Axiom of Extensionality, which is valid in

t h e m o d e l , v(Z'eX) =v(Z'eXι) f o r a l l Z ' e Ds.__lί v{Zfe Wj) =v{Z'ey') f o r

all Zre Ds, for some "y'e Dυ, then replace the Wj in A by the y'. If there is



408 ROSS T. BRADY

no such y'e Du then replace any statement of the form Wj e X' in A by any

false statement and replace any statement of the form x'e Wj by its

equivalent predicate expression, i.e., if Wj is \z'/B(z')} then xr e W' is

replaced by B(x'). For statements in A of the form X'e Wj, where

X'eDs -Du, if υ(Z'eX') = υ(Z'ey') f o r a l l Z'eDs, f o r s o m e y'e Dυthen

replace X' by ~y' and replace y'e W;' by its equivalent predicate expression,

and if there is no such ~yf then replace X' e Wj by any false statement. Let

A' be the resulting form of A after these replacements have been made.

Let Y be {z'/A'(z',ul, . . .,«;,*{, . . .,*,')}. F e £ > V ( Z ' e F) = viZ'eXJ

for all Z'e Z>* and hence v(Z'e Y) = v{Z'e X) for all Z'e Ds.

Theorem 3 Tfte Axiom of Replacement (R) m ί&e form: Un(X) D

(Sy)(Ax')(x'e y = (Sy')((yr, xr)e X & y'e x))9 is valid in the model.

Proof: Let Xe Ds - Du and let X be univocal. By Lemma 3, there is a

YeD° such that v{Z' eX) = z;(Z' e F), for all Z' e Ds. Let Y be {*y

A(s', M{, . . ., ΰ'm)\ So (y7, ΛΓ̂ e X ^ (S^Oί^AwOf^'e z* = w'e <y', ^0) &

A(>ε', M[, . . ., Tι'm)) is valid in the model. Let the expression on the

right-hand side of the ' ^ ' be called B(yr, xf, ΰ{, . . ., ur

m). Since X is

univocal, so is B(y', x', u[9 . . ., ύ'm). Hence, by Theorem 2, the Axiom R is

valid in the model.

Since Axiom R implies Axiom S formally, Axiom S is valid in the

model.

We will now test the validity of Axiom I (Axiom of Infinity). If

v(y e Ma) = 1 then v(y U {y}e Ma+i) = 1 since y U {y}can be taken as {z'e Ma U

{k}/zf ey v. (βiw')(wf eMa => T(wf e z' = w' e y)) & T(k e z' hkey)}. Also

v({z'eMΌ U {k}/~(ke {k})}eMj = 1. Hence the required x can be taken

as Mω.

We will now test the validity of Axiom D, the Axiom of Regularity.

Since X has at least one member, which is a member of Du, let a be the

least ordinal such that some membeϊ of X is a member of Ma. Let

v{yeX)= 1 and υ(y e Ma) = 1. Then y is either Ma^, {k} (if a = 0), or of the

f o r m {z'eMa_ι^{k}/AMιa_ιKJ\k\(zf,w[, . . . , w / ) } , w h e r e v(wjeMa^) = 1 o r w\

is ^ , for all i. Hence any member of y will be a member of Ma..y or be k.

Hence there are no set members of y that are members of X and the Axiom

D is valid in the model.

We will now test the validity of Axiom C, the Axiom of Constructibility.

Formally this is (Ax)(Sa)(xe Ma). Firstly we need to show that the ordinals

defined according to the formal theory and interpreted in the model are in

one-one correspondence with the Ma's of the model, that is, with the

ordinals used to set up the model. Before doing this, we need the following

lemma:

Lemma 4 ιy' is an ordinal' is absolute, i.e., if Trans^z) & y' e z & (y1 is

an ordinal)z then yr is an ordinal, where (yr is an ordinal)z means that all the

bound variables in 'y' is an ordinaΓ are restricted to z.

Proof: Absoluteness can be shown for x = y, z = {x, y}9 z = (p, y), etc., as
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in Cohen [2], p. 94. However, in the definition of iy1 is an ordinal', we need
to replace ΈWey" by ΈCony". This can be done as in [10], pp. 35-36.
Then the absoluteness of iyt is an ordinal5 will follow.

We will now define the ordinals in the model. Let 0 be {z*e Mo U {k}/
~{k e {&})}• Then viOeMJ = 1 and the smallest ordinal a such that
υ(0e Ma) = 1 is 1. Let a be defined in the model and let the smallest ordinal
β such that v(aeMβ) = 1 be a + 1. Let a + 1 be \z'eMa+L U {k}/zf e
a v. (Aw'){w'eMa+ι => T(w'e z' = w'e a)) & T(kt zf k ke a)}. Clearly v(a +
le Ma+i) = 1. If v (a + le Ma^) = 1 then a + 1 is either Ma or a subset of
Ma U {k}. Since v (ae a + 1) = 1 then v(ae Mα) = 1, which is a contradiction.
Hence a + 2 is the smallest ordinal such that υ(a + le M ^ ) = 1. Now let a
be a limit ordinal and assume that for all β < # , β is defined in the model
such that the smallest ordinal y such that υ(βe Mγ) = 1 is β + 1. Let a be
{zfeMaΌ {k}/(zf is an ordinal)^ u{̂ }}. Since {x is an ordinal* is absolute
and Ma U {k} is transitive then a is the set of all ordinals in Ma U {k} and is
hence the required limit ordinal. Clearly υ(aeMa+1) = 1. If v(aeMa) = 1,
then z;(ofe Mβ) = 1 for some β <a. Since υ(βe a) - 1 then y(βe M )̂ = 1, which
is a contradiction. Hence α + 1 is the smallest ordinal such that
v(aeMa+l) = 1.

Hence all the ordinals can be defined in the model satisfying the
properties of the ordinals and such that the smallest ordinal β such that
v(ae Mβ) = 1 is a + 1, for all the ordinals a. Hence the ordinals a defined in
the model are in one-one correspondence with the Mα 's of the model.

To show the validity of Axiom C, in the model, we must show that the
Mα 's of the formal theory, when interpreted in the model, have the same
members as the Λfα's of the model. This is shown by transfinite induction
on the ordinals, the one-one correspondence above dispelling any ambiguity
between the ordinals defined in the model and the ordinals used to construct
the model.

Clearly Mo of the model can be taken as a member of Du with the same
members as that of the formally defined Mo, interpreted in the model.
Assume that the same holds for Ma. Ma+1 is formally defined as the union
of Ma and the set of all sets x such that there is a predicate A, which is
significant for all substitutions into its free variables, and x = {z 'e Ma U//
AMaΌii(z', w[, ., 3J/)}, where w-eMa U 7, for all i. Since Ma U {k} can be
taken as Ma U /, interpreted in the model, {zre Ma U {k}/AMaΌ\k\{zr, w[9 . . .,
w[)} can be taken as {z'e Ma U I/AMQ\J,I(Z'9 ΪV[, . . .,ΐΰ"/)}, interpreted in the
model. Hence Ma+ι of the model can be taken as the formal Afα+1) inter-
preted in the model. If a is a limit ordinal and the above property holds for
all β < α, then the Ma of the model, satisfying the property of being the
union of all the Mα 's such that β < en, can be taken as the formal Maj

interpreted in the model.
Since there is an a such that v(xe fyQ = 1, for all x e Du, (Ax) (Sa)(x e Ma)

is valid in the model. Hence Axiom C is valid in the model.
The next step is to show that the Axiom of Choice (A.C.) is valid in the

model, using Axiom C. There are various equivalents of the Axiom of
Choice, which can be shown by the methods in Mendelson, [8], pp. 197-199,
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with little or no modification to allow for individuals. One of these
equivalents is the Well-Ordering Principle: (Ax)(Sy)(yWex), and so it is
sufficient to prove it. This proof follows that in Cohen, [2], p. 95.

Lemma 5 There is a wff A(z, wy MaU {&}, y) such that if y is a well-
ordering of the set Ma U {&}, the relation z <w = A(z, w, MaU {k}, y)
induces a well-ordering of the set Mα+1 U \k}9 where A is significant for all
substitutions into its free variables.

Proof: E n u m e r a t e t h e c o u n t a b l y m a n y f o r m u l a s Bn(xf, t[9 . . ., tQ. W e h a v e

a l r e a d y e s s e n t i a l l y s h o w n h o w t o e x p r e s s t h e r e l a t i o n C(z, n,t[9 . . .,tp:

z = {z'e Ma U {k}/(Bn)MaU\k\(zr, t[, . . ., t'k). Now the well-ordering y induces
a natural well-ordering on the set of all possible (k + l)-tuples (n, t[,
. . ., t0 where tje Ma U {k}, for all i. For each z e Ma+ι we can define φ(z)
as the first (k + l)-tuple, for some k, under this well-ordering, such that
C(z9 φ(z)9 t[9 . . ., t0 holds. Now we can define A by having z <w mean
φ(z) < φ(w). One can easily add k at the beginning of the well-ordering so
that k is the first member of Mα+1 U {k}. Thus Ma+ι U {k} can be well-
ordered.

By transfinite induction, we can define a well-ordering on Ma U {&}as
follows: Mo U {k} is {k9 {k}} and so can be well-ordered. If a is a limit
ordinal and the well-ordering has been defined for all Mβ U {k} with β < α ,
we well-order Ma U {k} = U Mβ U {k} in an obvious manner. By Lemma 5,

if Ma U {k} can be well-ordered then Ma+ι U {k} can be well-ordered, and so
Ma U {k} can be well-ordered for all a. Since Axiom C is valid in the
model, let φ(x) be the least ordinal a such that v(xe Ma) = 1. Define x <y
if φ(x)<φ(y) or if φ(x) = φ(y) = a and x precedes y in the well-ordering of
Ma U {k}. Thus we have given a single formula A (x, y) which well-orders
all sets. Hence Axiom A.C. is valid in the model.

The next step is to show that Axiom GCH is valid in the model, using
Axioms C and A.C. The proof follows that in Cohen, [2], pp. 95-98 and
82-83. Instead of using ranks in the Skolem-Lowenheim Thereom on p. 82,
use the least ordinal a such that xe Ma. This does the required job of
restricting the Axiom of Choice to sets and so the theorem follows
similarly to the proof of the validity of the Axiom of Replacement in the
model. One does, of course, only need to consider formulas A(x[, . . ., xή)
containing only the connectives ~, &, and T and with its quantifiers, A and
E, at the beginning of the formula.

Lemma 6 For all infinite a9 Ma = a, in the model.

Proof: Mn is finite, for all integers n. Mn ^ n since ae Ma+l9 for all
ordinals a. Hence Mω = No = ω. If a is a successor ordinal and Mβ = β for
all β ^ a - 1, then the number of predicates AMa_±U {&} is M(X_ι and hence
Ma = Ma_i = a - 1 = a. If of is a limit ordinal and Mβ = ~βjor all β <a, then
Ma = U Mβ ^axa = a. Since βe Mβ+L9 Ma ^ α and hence Mα = a. Hence, for

all infinite α, Ma = a in the model.
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Thus, in the model, Lemma 1 of [2], p. 96, follows, where a set x is
extensional if y and z e x and ~(y = z) implies (Sx')(x'e x &. (xf e y &
~xf e z)v (xf e z & ~x'ey)). In the theorem on p. 73, [2], concerning the
unique one-one map φ from an extensional set to a transitive set, let the
rank of x be the least a such that xe Ma, and if k is an individual e A then let
φ(k) = k and if rank (x) = 0 then let φ(x) - x - {k}. In the proof of φ being
one-one, where a = max (rank Xf, rank Yr) = 0, Xr = Yr = {&}, since the proof
is being carried out in the model. If Xr and Y' are individuals then it is not
the case that ~(X' = Yf). If Xf is an individual and Y' is a set then
~T(φ(X') = φ(Y')). So the one-one condition is: T(Xf = Yr) iff T(φ(Xr) =
φ{Y')). The rest of the proof follows as in Cohen, [2], and we can use the
unique e -isomorphism in the proof of Theorem 1 in [2], pp. 95-97. The next
result we need is the absoluteness of ixte Ma'. Since the proof is being done
in the model, if k e T and I ok then le T for any transitive set T. Hence we
can show that (x' -yn is absolute and use this to show the absoluteness of
txre Ma

9, following through the steps in Cohen [2j, p. 94, and using my
formal definition of the Mα's. Now Theorem 1 ([2], p. 95-7) will follow.
The Axiom GCH can now be shown to be valid in the model by the proof at
the bottom of [2], p. 98.

Hence all the axioms are valid in the model and the formal system is
consistent relative to the theory needed to set up the model. NBG, with
individuals added in the style of ZF, is sufficient to do this, the Da's being
sets of expressions and Dυ, D°, D\ . . ., Dn, . . ., Ds, all being proper
classes of expressions. These expressions are treated as individuals and
sets and classes are formed from them, and so the formal system is con-
sistent relative an applied NBG set theory.

This leaves a number of questions unanswered. We have not proved
formally that Axiom C implies Axiom AC. This however looks very
doubtful because Axiom C does not say anything about the well-ordering of
the set of all individuals, /. However, if an extra axiom, call it WOI, was
added which ensured the possibility of well-ordering the set of all
individuals, then it seems likely that Axiom AC would follow.

However, Axiom C formally implies Axiom D.
It also seems likely that Axiom C, together with Axiom WOI, formally

implies Axiom GCH. To prove this, it seems, involves dispensing with the
individuals altogether in the normal proof of Axiom GCH from Axiom C
because they affect the cardinalities in the form of Axiom GCH. It seems
the result can be proved by building up a transfinite sequence of iVα's,
similar to the Λfα's, but with No = 0 instead of {{&}, {l}, etc.}, and so the
individuals are excluded completely from the construction. Then show that
the Axiom GCH holds for the sets belonging to the class U Na and, using

a

the Axiom AC, that to each set belonging to U Ma there is a set belonging
to U Na with the same cardinality.

However, Axiom GCH formally implies Axiom AC.
The question that now arises is that of the independence of the Axioms
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C, GCH and AC. It seems likely that these can be shown by forming inner
models along similar lines to those of Cohen in [2]. As well as the
" g e n e r i c " sets that Cohen uses, one also needs the generic sets, {&}, {l},
etc., for all the individuals, and at each stage in the transfinite construction
one should form subsets of Ma U /, as in the model N of this section.

One could also add to the formal system ordinary language predicates
so that these can be used to generate classes. The addition of these does
not affect the consistency proof nor the development of the formal theory if
they are introduced by adding general predicate variables and general
subject variables to the formal theory. For the purpose of proving
consistency one can specialise the predicate variables to those concerning
membership and overlapping of classes and individuals. In the development
of the formal theory, whenever a wff-schema appears, as informs of the
Abstraction Axiom and Axiom of Replacement, a general predicate variable
can be substituted. This would then allow one to apply the formal theory in
order to generate classes from ordinary language predicates.

Appendix

Theorem If A is a wff of S5 (see [l]) containing only the connectives ~,
&, v, T, and the quantifiers A, S, then there is a wff A' of S5 such that
A =* A' and Af has all of its quantifiers, A ,S, V, E6 at the beginning of the
formula.

Proof: The following are valid and hence provable inS5:

~(Ax)A** (Ex) ~A.
~(Sx)A<* (Vx)~A.
~(Vx)A^ (Sx)~A.
~(Ex)A ^ (Ax)~A.
(Ax)A & B c* (Ax)(A & B), where x is not free in B.
(Sx)A & B ^ (Sx)(A & B), where x is not free in B.
[Vx)A & B =* (Vχ)(A & B), where x is not free in B.
(Ex)A & B & (Ex)(A & B), where x is not free in B.
(Ax)A vB ~ (Ax)(A vB), where x is not free in B.
(Sx)A vB ^ (Sx)(A VJB), where x is not free in B.
(Vx)A(x)vB ** (Vx)(Sy)(Sz)(Aw) ~(~U(x)vJB) & ~(T ~B & ~SA(y) &

TA(z) & ~T~A(w)))9 where x is not free in£.
(Ex)A(x)vB * (Ex)(Ay)(Az)((A(x)vB) & ~(T ~B & ~SA(y) & TA(z))),

where x is not free in B.
T(Ax)A c (Ax)TA.
T(Sx)A ^ (Sx)TA.
T(sfx)A(x) * (Sx)(Ay)(TA(x) & ~T~A(y)).
T(Ex)A(x) <* (Sx)(Ay)(TA(x)8zSA(y)).

Applying these equivalences to each connective in turn, one can construct
an A' such that A' c- A and the quantifiers of A' are in front of a formula
containing connectives only.
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NOTES

1. See [3], [ 1 1 ] , [5], [4] and [1] for accounts of nonsignificance and of 3-valυed significance

logic.

2. See Leonard and Goodman [7] , pp. 47-8.

3. The connectives and quantifiers are those of the system S5 from [ 1 ] . These are given as

follows:

~ D 1 0 n Tn ( T denotes truth, Ό ' denotes falsity,

~ 7 ~ ' Z ~~I Γ and iή> denotes nonsignificance)

0 1 0 1 1 1 On

n n n 1 1 1 n n

(AX')φ(X') is true if φ(X') is true for all X'.

{AX')φ(X') is nonsignificant if φ(X') is nonsignificant for some X'.

(AX')φ(X') is false, otherwise.

(SX')φ(X') is true if φ(X') is true for some X'.

(SX')φ(X') is nonsignificant if φ{X') is nonsignificant for all X'.

(SX')φ(X') is false, otherwise.

Other connectives that are used in the sequel are as follows:

& \ 0 n v I 1 0 « ΞΞ 1 0 n

1 1 0 w 1 1 1 1 1 1 0 w

O O O r c 0 1 0 0 0 0 1 1

n n n n n 1 0 n n n \ \

T I F\ S I |̂ 1 0 n s I 1 Q n
11 1 0 11 1 1 0 n 1 1 0 w

0 0 0 1 0 1 0 1 1 Λ 0 0 1 Λ

n 0 n 0 n 0 n n n n n n n n

« 1 0 n

1 1 0 0

0 0 1 0

n 0 0 1

The definitions of these in terms of ~, 3, and Tn can be found in [1].

4. Such a theory is developed in my Ph.D. thesis, A 4-valued Theory of Classes and Individuals.

5. Fuller details can be found in my thesis, in Chapter 4.

6. In the significance logic S5 in [ 1 ], (Vx)A -^f ~(Sx) ~4 and (Έ.x)A ~df ~(Ax) ~A
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