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DEDUCTIVE COMPLETENESS AND CONDITIONALIZATION
IN SYSTEMS OF WEAK IMPLICATION

M. RICHARD DIAZ, Jr.

I wish to investigate the conditions under which certain systems of
implication satisfy deductive completeness of the kind associated with the
deduction theorem (in the sense of Curry and Feys [2]). The systems that I
investigate have received considerable attention in the last two decades:
the implication fragment of Relevance Logic, R—» (Church's Weak Implica-
tion); the implication fragment of strict implication, S4—»; the implication
fragment of Anderson and Belnap's System of Entailment, E-»; and the
system of Ticket Entailment, T—». None of these systems satisfy deductive
completeness except under certain conditions which may be interpreted as
the satisfaction of conditions of relevance (for R—>), modality (for S4—>),
relevance and modality (for E—•), and inference ticket/inference distinctions
(T—>). Thus we might say that they are each deductively complete for an
extended notion of deductive completeness.

In Section 2, I formulate natural deduction systems NR—», NS4—», NE—>,
and NT—* which are deductively equivalent respectively to R—», S4-», E-*,
and T—•. Each system involves only two rules, one of which is modus
ponens and one a form of conditionalization. The conditionalization rule in
each case is based on the deduction theorem of the corresponding axiom
system. Furthermore, each system is the result of adding a further
restriction to only the rule of conditionalization for the previous system.
In this form we can see more clearly the relationship between the systems
and intuitionistic implication (H—•); and what relevance, necessity, and
ticket entailment amount to. Finally, in Section 3, I show how to formulate
T—* in terms of a restriction on the rule for modus ponens, and how adding
this restriction to modus ponens in E—», R—>, S4—», and H—* affects these
systems.

Let S be a deductive system with an implication operator, z>, which
satisfies the rule modus ponens (MP): A, A D B ^B. Curry and Feys [2]
called such a system deductively complete if, whenever from a premise B,
and possibly other premises, we can derive A, then we can derive B z> A
from these other premises alone. It has been shown by Gentzen [3] that
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deductive completeness entails the entire intuitionistic theory of implica-

tion (referred to as H—»). Thus, implications weaker than intuitionistic

implication, which for our purposes here we may consider to be any

implicative system which does not have A D (B D A) as a thesis, are not

deductively complete. However, we may extend the notion of deductive

completeness to systems weaker than H—* by noting those conditions under

which B D A may be derived from a set of premises, given that A is

derived from B and those same premises.

1 Axiom systems and deduction theorem for H—, S4—•, R-*, and E—»

The complete implication fragment of classical propositional logic is

referred to as IC-». After Hacking [4], I call a formula strict if it contains

at least one occurrence of D, and simple if it does not. I use X and Y to

represent sequences of wffs (possibly empty), and A, B} C, to represent

well-formed formulas (wffs). If A is strict, I denote this by writing A'. If

every member of X is strict, I denote this by X'. If A must be simple, it is

denoted by A, and if every member of X is simple, I write X. If neither '

nor w is added to X or A, then they may be either strict or simple.

All of the axiom systems in this section have modus ponens (MP) as

their only inference rule, A, A D BhB, and so the statement of it is

omitted in each case. I use X\A as a metalinguistic operator asserting

that A is deducible from the set X in the system S. If A follows from the

null set <jb of premises in S, we write <jb J§ A or simply i§ A. Two systems S

and T will be deductively equivalent if and only if X ι§ A if and only if

X kf A. If A is a wff then %£'".$%A is the result of uniformly substituting

the wff Ai for the variable Vι in A (rewriting A if necessary to avoid

ambiguities).

H—• is the system of intuitionistic implication which may be axio-

matized by:

H—1. A-D (BΌ A)

H-*2. A D (B D C) D. A D B D. A D C

H-* 3. A D A .

Theorem 1 (Deductive Completeness of H-0 //^Γ, A \^B then a \^AD B.

S4—> is the implication fragment of S4 which may be axiomatized by:

S4—1. A^ A
S 4 - + 2 . (AΏ. B D C)-D.A-D B Ό.AO C

S4-»3. A D 5 3. C D. A D J5.

Theorem 2 (Hacking, 1963 [4], Barcan Marcus, 1949) If Xy A\^^B and

every member of X is strict then X \$feA z> B.

The axioms for R—> are:

R->1. A D A

R-+2. A^ B D. C OAΌ. C D £

R—3. (ADJDC)DJDJDC

R->4. (A D. A D 5) D. A DJB.
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The form of the deduction theorem that I give here is due to Norman

Martin.

Theorem 3 // X, A \R+ B the X ̂  A D B or X ̂  B.

Proof: Let X, A \^ιB. Then there is a derivation sequence Al9 . . ., An of

wffs of R-* such that each At is either (i) an element of X, (ii) A, (iii) an

axiom, or (iv) follows from earlier steps by MP. By induction on the length

of the derivation, we show X \-A D A, or X \-Ai.

Case a: k = 1.

Subcase 1: Ak is an element of X. Then X ί-^,

Subcase 2: Afe is A. Then I h A D Ak by R->1.

Subcase 3: A^ is an axiom. Then X\-A^,

Case β: Assume true for k < &0; prove for k = &0.

Subcases 1-3: same as Case α, Subcases 1-3.

Subcase 4: There is an z(l < ί < &0) and a j(l ^ j ^ k0) such that Ay is

Ai D A&0. By the hypothesis of induction, (i) either X I - A D A; or XhAiy

and (ii) either I i - i D (A, z> A ô) or X\-A{ D A^Q.

4a. X\-A D A, and XhA D (Λf D A^O). But [RT (A D. J5 D C) D. A D

1? D. A D C, and so by two applications of MP, I h i D AkQ.

4b. Xf-A D A{ and X M p ^ . But | ^ (ADA, ) D. A, D Ako D. A D A^O.

By two applications of MP, XhAz) A^o.

4c. X^-Ai and Xh-A D (Λf D Afeo). By R->3, Xf-A D (Λ, D Afeo) D. A, D.

A D A^o. By two applications of MP, Xl-A D A^O.

4d. X\~Ai and I h A j D Ako. Then by MP, Z h ^ .

The entailment fragment of E may be axiomatized by:

E—1. A-D A

E->2. AD £ D . £ D C^. AΌ C

E—3. AD£DJD5DCDC

E-»4. (AΏ. 5 D C) D. AD £ D. A D C.

When Anderson and Belnap [l] developed E-» as a Fitch-style system,

the rules for E-* were a combination of the rules for S4-» and R-». Hence,

it is no surprise that the deduction theorem for E—* combines the

restrictions of necessity and relevance in the deduction theorems for S4—*

and R-+.

Theorem 4 If X, A \^ B and every member of X is strict, then X^ AD

B or X\^B.

To prove Theorem 4, I use:

Lemma 1 If X, A \JΓ;B by MP and every member of X is strict, then

there exists an Aj such that X, A%; Aj D B and X, A]\^. Aj and Aj is either

strict or is A.

Proof: As usual, we denote that X is strict by writing X'. If X, A\-B then



122 M. RICHARD DIAZ, J r .

there is a derivation sequence Al9 . . ., An such that each Ai is (i) an axiom,
(ii) a member of X, (iii) A, or (iv) by MP from previous steps. By proof by
induction on the number K of applications of MP in the derivation, we prove
that if X', AhA{ by MP, then there is some Aj such that X', A \-Aj and X',
A \- Aj D A{ and Aj is strict or is A.

Case a: K = 1. X', A\-A{ is by MP then for some Aj we have X',
AhAj D A; and X', AhAj. Since Ay is not by MP, then Aj is A, 4/ is in X',
or Ay is an axiom. If A7 is in X' or A7 is an axiom, then Aj is strict. Hence
Aj is strict or is A.

Case 0: Assume true for K <K0, prove for K= Ko. If X', A\-A{ by MP,
then for some Aj, X', AhAjΌ A{ and X', A^ Aj. If X'', Ah-Ay then either
(i) Ay is A, (ii) Ay is in X', (iii) Aj is an axiom, or (iv) Aj is by MP. If Aj is
in X' or Aj is an axiom, then Aj is strict. If Aj is by MP, then by the
hypothesis of induction, there exists an Am such that X', AhAm; X',
i4Hi4Λ-) Aj) and Aw is strict or is A. But if X', Ai-AWD Ay and X',
A h Ay => At , then since [^ (Aw D Ay) D ((AJ D A, ) D (AΛ D A / ) ) , and MP
twice, we have X', Ai-AOT ^ A, . Thus there exists a formula, C, such that
X', A h C and X', A h C D At and C is either strict or is A.

We may now prove Theorem 4. If X, A i-Z? then we have a derivation
sequence A u . . ., Aw such that each A, is (i) in axiom (ii) a member of X,
(iii) A, or (iv) from previous steps by MP. By proof by induction on the
length k of the derivation, we prove X\-Aj or Xf- A z> At .

Case α: & = 1.

Subcase 1: A, is an axiom. ThenX^-A,-.

Subcase 2: A, is in X. ThenXHA,-.

Subcase 3: A{ is A. Then Λ> A D A; by E-*l.

Case β: Assume true for k < k0, prove for k = fc0.

Subcases 1-3: same as Case α, Subcases 1-3.

Subcase 4: If A^ is by MP, then for some j <i, X, A\-Aj and X, A h- Ay D A, .
By Lemma 1, we may guarantee that this is true for some Aj such that Aj
is strict or Aj is A. By the hypothesis of induction, either X^Aj or
XH-A ^ Aj, and either Xh-Ay D A, or Xt-A => (Ay D A t ).

4a. XHAy and X h Ay DA t . Thus by MP, X F - A , .

4b. X\-Aj and Xf-A z> (Ay D A;). If Aj is strict, XHA D (AJ D A, ) 3 .
Ay D. A 3 A, . By two applications of MP, X\-AΌ Af . If Aj is A, then
Xh-A and X H A Ό (AΌ A{) and by MP twice Xf-A, .

4c. XI-A D Ay and X\-Aj D A,-. By E-+2, X h A D Ay D. Ay D At D .

A D A, , and by MP twice, X I-A D A, .

4d. I h i D Ay and XhA D .(^/..D.^f). By E—4, I H A D (Ay D A, ) D .
A D i 4 ; o . i 4 D A/. By MP twice, Xf-A D At .
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2 Natural deduction systems We may regard X (§ A as a metalinguistic

operator asserting that A is deducible from the set X in S. In the natural

deduction systems to follow we will keep the structural rules for \- fixed.

The structural rules are:

1. If A is a member of X, then XV-A.

2. If YV Bi for each B{ in X = {Bu . . ., Bn}, and XhA, then Y\-A.

3. H ί c l a n d YhA, then X h A

If A follows from the null set <jb of premises in S, we write jδ^ A, or simply

ι§ A. If A does not follow from X in S, we express this by X V$A. Besides

the structural rules for h, the systems will be constructed using the follow-

ing rules:

1. XV-A

—:— Modus Ponens (MP)
X ^~ B

_>—^ Conditionalization (C)
X V- A "D B

3 x'y A h B Necessary
Γ h i D ΰ Conditionalization (NC)

4. X,A±~B
X bfe^JB

-—2 2 1 A Relevant Conditionalization (RC)

SΪ;:::;:;(X)HS:;;:::;:>^)

5. X'^H.B

X' v\c+B Necessary Relevant

S 'Aiy...,An 'ςιAι9...,An Conditionalization (NRC)

vι9...,vn vA ^Ovι,...,vn [A Z) B)

The rules RC and NRC are quite unlike the usual rules given in natural

deduction systems. The point is to restrict conditionalization to cases

where the premise A is "really" needed to deduce B. If B already follows

from X, we may say that A is irrelevant to B, and hence that B does not

follow relevantly from A given the premises X. However, we want to allow

for cases where, although B does follow from X; X, A \-B is an instance of

some case Y, C hD, where Y\f-D. Hence we allow that X\-A D B may also

be permitted if it is a substitution instance of some \- statement for which

RC (or NRC) is admissable. It should also be noted that unlike the deduc-

tion rule of each system, the conditionalization rule, so stated, requires

that B not follow from X in IC-* (IC-+ is the implication fragment of the

classical propositional calculus). This is simply to guarantee that it is

decidable whether or not B follows from X.

Let NH-* be the system with rules MP and C; NS4—> the system with

rules NC and MP; NR-+ the system with rules MP and RC; and NE-+ with

rules MP and NRC. We prove:
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Theorem 5 The following relations hold between these systems:

a. X\&AijfX[sH+A

b. X\s&AiffX^A

c. X^AiffX^A

d. X^AiffX^A.

Proof: The reader may verify that each of the axioms of H-^ (S4-*, R-*,

E—») is provable in NH-^ (NS4->, NR-», NE—0; and since each system has

MP as a rule, they are deductively contained in the systems. Furthermore,

the deduction theorem for each of H—•, S4—>, R—>, E—•, shows that they

contain the conditionalization rule of the corresponding N-system as a

derived rule. Thus anything provable in the natural deduction system is

provable in the corresponding axiom system.

It is well known that H—» deductively contains R!—» and S4-+, and that

each of these systems deductively contains E—> (but not vice versa). The

natural deduction formulations given above effectively display the relation-

ship between implication in each of the systems, and the relationship

between implication and provability within each of them. That is, each

system is constructed by adding one further restriction to the conditionali-

zation rule. Another system that may be treated in this manner is Ticket

Entailment, T—». The system T—» may be axiomatized by MP and

T->1. A-DA

T— 3. A D B D. C D AΌ. C D B

T—4. A D (B D C) -D.A-D B Ώ.AZ> C

T->5. A-D B D. ( A D . £ D C)Z>.A-D C.

The Fitch-style natural deduction system equivalent to T—* involves a

restriction on the rule MP, but otherwise has the same rules as the system

equivalent to E—». Hence it seems plausible to suppose that T—» will have

the same deduction theorem as E—*. However, the proof of the deduction

theorem for E-> makes use of restricted permutation which is not provable

in T—». The problem is that, although the motivation for T-» involved a

natural deduction system with weak MP, the axiom system for T—* makes

use of ordinary MP. Thus the restriction on MP must appear as part of the

deduction theorem. The following lemma is used and, as usual, I use X' to

denote that every member of X is strict.

Lemma 2 IfX', A\ψ;B by MP, then there exists an Aj such that X',

A\f^Aj and X'', A \ji Aj D B and Aj is strict or is A.

Proof: The proof is similar to the proof of Lemma 1 and is therefore

omitted.

Theorem 6 If X, A\ιB and every member of X is strict, and B results

from MP only if the antecedent of the conditional was simple, then

X bμA D B orX \γιB.
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Proof: If Xr, A\γιB then we have a derivation sequence Al9 . . ., Awsuch

that each A, is (i) an element of X', (ii) A, (iii) an axiom, or (iv) from

earlier steps by MP. Proof will be by induction on the length k of the

derivation that if X', A Ί-A, results from MP only if the antecedent of the

conditional was simple, then X\-A D Af or XhA{.

Case a: k = 1.

Subcase 1: A; is a member of X'. ThenΓf-i , ' .

Subcase 2: A, is A. Then X'h A D A/ by T-*l.

Subcase 3: At is an axiom. ThenXΉAj .

Case β: Assume true for k < k0, prove for k = k0.

Subcases 1-3: same as Case α, Subcases 1-3.

Subcase 4: X\ AhAko is by MP. Then for some previous steps we have

X', A\-Aj and X', At-Aj D A&0. By Lemma 2, we can guarantee that A/ is

strict or Aj is A. But by hypothesis, Aj is simple. Hence, Aj is A. Thus

we have X'', AhA and X', AHA D A&0. By the hypothesis of induction:

(i) either X'v-A or X' h i D A and (ii) either I ' h A D ^ o r l ' h A D

4a. Γ H i a n d Γ H i D 4 o . Then by MP, I 'hA^ o .

4b. X'\-A and X'hA D (Λ D Afeo). By using MP twice we arrive at

X'*-Ak0.

4c. X'hAZ) A and X'v-A D A^. Then by T—2, and MP, Γ h i D A^o.

4d. XΉA D A and X'HA D (A z> A^o). By T—5, X'v-A ~D A~D. (A^

(A D Afeo) ^.A^ Ako. Thus by MP, Γ h A D A^O.

If .B results from an application of MP wherein the antecedent of A D I?

was simple, we shall denote this by 'B. Let DT—* be the sequent calculus

with the rules MP and

X', A\-B

5 ^ * (SNRC) .

sΐ;:: :;ί; «*> ^ s ί ; : : : ; ; ^ ^ ) omy a >B
Lemma 3 X \^A iff X\fif+A.

Thus DT-* results from NE-^ by adding one further restriction to the

conditionalization rule for NE-*.

Since part of the restriction on the conditionalization rule for DT—>

involves prior applications of MP, it would be more natural to have the

restriction on MP and use the conditionalization rule of NE—». Let NT—* be

the sequent calculus with rules NRC and

XHA

*ΪA?-* (SMP).
X v-B if A is simple or X is empty.
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Lemma 3 X ^ A iff X ^ A.

The motivation behind the original construction of T—* was that
necessary truths, in general, were only used in proofs as "inference
tickets" ([l], pp. 41-49). That is, we may use them in proofs to deduce
formulas from our hypothesis, but they should not actually become part of
the theorem. SMP achieves this by only allowing entailments, e.g., A~3 B,
to be used as the inference ticket from A to B. HA were allowed to be
strict in SMP, then A itself might be an inference ticket. In that case, B
would be a derived inference ticket that became part of the theorem we
were deriving. We also allow for unrestricted MP in the case where X is
empty. In that case A and A 3 B would both be inference tickets from which
we were deriving the inference ticket B. Thus we allow for the proof of
derived inference rules from other inference rules as required by
Anderson and Belnap.

The Hilbert-style implication fragments with which we are concerned
have been given natural deduction formulations before, both as Fitch-style
systems and Gentzen systems. However, the Gentzen formulations as given
in Anderson and Belnap ([l], pp. 50-68) involve restrictions on both the
structural rules for h and the inference rules for arguments. Hence it is
difficult to compare the properties of D relative to two of the systems when
H in each system has changed properties.

The usual interpretation of Al9 . . ., An\§A is that there is a proof from
Al9 . . ., An to A in the system S. A deduction theorem for S tells us what
conditions are sufficient for asserting that AL9 . . .9 An-L\-Άnz> A. In the
classical propositional calculus Al9 . . ., An\\-A iff Al9 . . ., An^h AnΏ A.
This tells us that we may assert that An implies A, given the premises
Ai9 . . ., Aw_x, iff A may be asserted on the hypothesis Al9 . . ., An. In other
words, the classical calculus is deductively complete.

But it must be remembered that a very weak relationship is being
asserted between Ax, . . ., An and A by H, and that, correspondingly, a weak
relationship is being asserted between An and A by D. The sense in which
A is proved using Al9 . . ., An requires only that something in that set be
used, and that something, of course, may even be the null set. If we keep
this weak sense of h, but strengthen our notion of D, different deduction
relationships will obtain between h and D than in the classical calculus.

The deduction theorems for R—>, S4—», E—», and T—•, tell us what
conditions are sufficient for asserting that An entails A in these systems
given that h only requires that some of the hypotheses be used to deduce A.
Suppose we wanted a relevance logic in the sense that A o B would be
asserted in that system if both B followed from A and A was relevant to B.
We might claim that if A19 . . ., AnhB, then A/, 1 < i < n, is relevant to B
if Ai is actually used in the proof of B from the hypotheses Ai9 . . ., An. If
so, we may assert that {Al9 . . ., An} - {A^KA* D B. AS the deduction
theorem for R—> shows, such is the case in R—>. Of course, to formalize
the intuitive idea, it is necessary to replace the concept of "is used in the
proof of B" with the formal concept of {Al9 . . ., An} - {At}ψB. Thus the



DEDUCTIVE COMPLETENESS 127

deduction theorem for R—> tells us under what circumstances R—* is
deductively complete. Or alternatively we could view it as redefining the
notion of deductive completeness to take into account relevance.

In a like manner, the deduction theorems for S4—», E—>, T—* give us
certain conditions in which we are allowed to assert that the implication
relation of the system holds (given that certain H relations hold). InS4-^,
we are allowed to assert that Alf . . ., An^vΆn z> A on the basis of
Al9 . . ., An\hΆ9 if each of Alf . . ., An.± is "necessary". This shows that
S4-> excludes certain members of Au . . ., An on the basis of their modal
characteristics, just as R-* excludes certain members on the basis of
relevance. E-*, of course, considers both requirements. Finally, T—» tells
us that inference patterns used in the inference from Al9 . . ., An to A are
not to be thought of as being hypotheses themselves. They belong to a
different category of things: propositions (that are not inference patterns)
do not follow from them, instead the inference patterns allow us to show
that a proposition follows from other propositions.

Exhibiting R—• as a natural deduction system using only MP and
relevant conditionalization shows that the requisite concept of deductive
completeness entails the entire theory of relevant implication. That is, if
we define relevant deductive completeness as: if Alt . . ., An\-B andA^tf-B
then Aίf . . ., An^\-An z> B, then relevant deductive completeness entails
the entire theory of relevant implication. In a like manner, the natural
deduction formulations given here for S4—>, E—>, and T—* show that the
concept of deductive completeness, as expressed by their respective
deduction theorems, entails the entire theories of strict implication,
entailment, and ticket entailment, respectively.

Of course many logicians might claim that it is counterintuitive to
suppose that there might be a proof from A to B while we were unwilling to
assert that A entailed B. I would agree that this is the case as long as we
have the proper notion of "proof of B from A". That is, if " h " is given
the classical interpretation, then we might be willing to assert A hB, but
not to assert that A entails B. On the other hand, in constructing a system
of entailment, it would be desirable to have a simple correlation between
valid entailments and proof, and this can be done for S4-*, R—», E—»,
and T—•. The so-called i'Merge formulations" of these systems in
Anderson and Belnap each has the rule

X, AhB
ϊhΪDΪ '

while modal, relevance, and ticket fallacies are avoided by various restric-
tions on the other rules (including the structural rules for H).

3 Natural deduction systems with a restriction on MP If we make a
diagram of the inclusion relationships holding between the N-systems, with
—» representing "is contained in", we see that each of the N-systems
resulted from adding a further restriction to conditionalization, except for
NT-* which resulted from adding a further restriction to MP in NE-».
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ιc->

S M P r? M P
 NE->

 S M P «9
RC Ύ( NRC N t I NC I ?

" M P | , P T - > , SMP I
SNRC NRC

What about the N-systems other than NT-+ containing SMP as a rule?
We might suppose that the system consisting of SMP and NC would be
included in NS4—>, and perhaps wonder what its relationship might be to
NE -». Let a be the system with rules SMP and NC, y the system with rules
SMP and RC, and β the system with SMP and C. We may prove:

Lemma 4 a and NS4—• are equivalent, y and NR—* are equivalent, β and
NH—> are equivalent.

This lemma tells us that the addition of the restriction on MP that X be
empty or the antecedent be simple has no effect on our stock of theorems
when added to NH^, NR-*, or NS4-*. But surprisingly, if we add the
restriction to NE|—• we lose some theorems. Why is this the case?

We must consider what effect SMP has on proofs in NE!—». For
example, we know that permutation can be proved in NR—•.

1 . A D ( 5 D C), B,AhAΌ (£D C) hyp.

2. A-D (BΌ C), B, AhB hyp.
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3. A D (B D C), J3, A h A hyp.

4. A D (B D C), B,A\-BDC 1, 3 MP

5. A D (£ D C), 5, AhC 2, 4 MP

6. A 3 (£ D C), £ H A D C 5 RC

7. Λ Z) (5 D C) H^ D (Λ D C) 6 RC

8. HA D (5 D C) 3. 5 D (A D C) 7 RC.

In steps 5, 6, and 7, RC is applicable since, for instance, A 3 (2? D C) »/•

A z> C in IC—*. If we add the condition that our premises be strict, however,

step 6 would be an error. Since B is not strict in line 5, NRC may not be

used to arrive at line 6. Hence, permutation may not be proved inNS4-+ or

NE-*. Nonetheless, a form of permutation called restricted permutation

may be proved in NS4—• and NE—».

1. A D (Bf =) C), B\A\-A D (£' D C) hyp.

2. A D (£' D C), 5 ' , A HE' hyp.

3. A D (Bf
 D C), 5 ' , A HA hyp.

4. A D (Br D C), 5 ' , A H£' DC 1, 3 MP

5. A D (5' D C), ^ ; , A h C 2,4 MP

6. A D (Bf D C), ΰ ' h i D C 5 NRC

7. A 3 (B' D C ) h 5 ' D ( A D C ) 6 NRC

8. HA D (£' D C) D. ^ ' D (A D C) 7 NRC.

In this proof, since B' is strict, we may apply the rule NRC (or the rule

NC) to achieve the desired result. Now if we add our condition of simplicity

to MP, the last proof will fail, because B1 was used to produce C from

B' D C. Thus, restricted permutation, as well as permutation, fails in NT-*.

However, the addition of the same restriction to MP in NR-+ fails to block

restricted permutation. It does not fail because we can reproduce the proof

given above for restricted permutation. On the contrary, that proof is not a

valid proof in y. But we can bypass this restriction by noting that

restricted permutation is an instance of permutation. Thus the proof given

earlier for permutation in NR—• is also a proof of restricted permutation in

NR-*. Since that proof does not violate the restriction imposed on MP in y,

it is also a proof of both permutation and restricted permutation in y. The

key is, I believe, that the restriction on MP in SMP blocks the proofs of the

"restricted" versions of certain theorems, such as:

restricted permutation: A D (Bf D C) D . B' D (A z> C)

restricted conditioned modus ponens: Br D. (A D. B' D C) D. A D C

restricted assertion: A D ^ D . A D J 5 D C D C

specialized assertion: A z> A D B D B.

The simple versions of the theorems are blocked by considerations of

relevance or necessity. In T—•, neither the simple nor the restricted

versions are provable, while in E—», only the restricted versions are

provable. However, in the absence of the combination of necessity and

relevance, the simple versions are provable and the added restriction to

modus ponens in SMP is bypassed.
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