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MODAL INTERPRETATIONS OF THREE VALUED LOGICS. I

MICHAEL J. DUFFY

0 Introduction The present paper* extends a result of Peter Woodruff's
reported in [1], to the effect that the three-valued logic L of Lukasiewicz
may be interpreted as a modal system. Woodruff obtains his result by
constructing a mapping from the wffs of L to those of the modal system S5.
A definition is then produced which gives directions for the construction of
interpretations of L from interpretations of S5, and it is further shown that
no interpretation of L fails to be thus obtainable. The result is of interest
especially because it has been argued that L cannot plausibly be viewed as
a modal system, even though Lukasiewicz himself viewed it as one.1 Here
the question of the existence of modal interpretations of L via other
mappings into S5 is explored. In order that the present paper be self-
contained, no familiarity with [1] is presupposed; but the reader familiar
with that work will appreciate this author's indebtedness to it.

In what follows, we use ζp's and '^'s as syntactic variables for wffs of
both L and S5, trusting the context to signal which system is under
discussion. It will be convenient to use the bracketless Polish notation,
presumed to be familiar.

1 The Systems L and S52 We suppose L to be constructed from a
denumerably infinite set of atoms, the set of wffs then being the least set
that both contains the atoms and has Cpq and Np as members whenever p
and q are members. An interpretation /for L is any function from the set
of wffs to {1,1, 0} such that I{Np) = 1 - I(p) and I{Cpq) = min(l, 1 - (Up) - /(#))).
A wff p of L is valid (contravalid) if, for every /, I(p) = 1(0); otherwise p
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is said to be indeterminate. We take S5 to be constructed from the same
set of atoms as L, the set of wffs thus being the least set containing the
atoms and such that Cpq, Np, and Mp are members whenever p and q
are.

A K-interpretation Iκ for S5 in a non-empty set K (of possible worlds,
if you like) is any function from wffs of S5 to subsets of K such that
Iκ(Np) = Iκ(p) (i.e., the complement of Iκ(p) with respect to K), Iκ(Mp) =
*Iκ(P) (where *** is an operation defined on subsets of K as follows:
*φ = p ; *G = K for every other G C K), and Iκ{Cpq) = Iκ(p) U Iκ(q). A wff p
of S5 is said to be valid (contravalid) in K if for every /f-interpretation Iκ

of S5 in K, Iκ(p) = K(β). A wff p of S5 is said to be valid (contravalid)
simpliciter, if p is valid (contravalid) in every K. A wff p of S5 will be
said to be indeterminate if it is neither valid nor contravalid. (To
facilitate the exposition, we will henceforth speak of interpretations /, /',
etc. for S5 in a set K, but the reader should note that the choice of
interpretations for S5 is relative to a given K, as the more cumbersome
notation suggests.) The following definitions are adopted, the first for L
only,3 the fifth and sixth for S5 only,4 the rest for both L and S5:

(Dl) Mp =df CNpp (D4) Lp =<// NMNp
(D2) Apq=dfCCpqq (D5) Ctp =d{ KpMNp
(D3) Kpq =df NANpNq (D6) Cfp =<// KNpMp.5

2 Eight modal interpretations of L In this section we develop eight
mappings from the wffs of L into those of S5, and show of each that it yields
an interpretation of L in modal terms. One of our eight mappings is in fact
the one reported by Woodruff in [1], and we obtain the aforementioned
result by generalizing arguments Woodruff produced in obtaining the
result for his mapping. Each mapping will be denoted by a lower case (f
with numerical superscripts and subscripts. Intuitively, the superscript
indicates how to translate negations, the subscript, how to translate
conditionals. We use 'n9 as a variable for the integers 1 and 2, 'ra', for the
integers between 0 and 5 (exclusive). The mappings are defined as follows
for all wffs p, q of L:

(1) where p is atomic, f£p = p
(2) ftNp = Nfϊp
(3) fiNp = ACJip LNf*p
(4) ncpq = KCLfΐpfΐqCfΐpMfΐq
(5) fζCpq = KCLftpfϊqCMflpAflpMfiq
(6) ftCpq = KCLfZpALfZqNfZqCfZpMfZq
(7) ncpq = KCLflpALfUCffUCMftpAftpMfU

(f\ is the mapping due to Woodruff.)

Before turning to the proof that each mapping yields an interpretation
of L in modal terms, we pause to note some features of the mappings, so
that the ensuing arguments are simplified. It is well known that, given the
values that an interpretation I for S5 (in a given K) assigns to the atomic
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wffs occurring in a wff p (of S5), one can calculate the value of I(p).
However, we require more than this of the wffs of S5 onto which we map
those of L. Intuitively, we will associate below the value K with the value 1,
the value p with the value 0, and the remaining S5 values with the value \.
As a result, our translations of the wffs of L must be such that we can
determine their values to be K, p, or neither of these on a given interpre-
tation / just from the information that the components of the translations
are assigned K, Φ or neither of these by /. More precisely, if we let (p'
and (q9 represent arbitrary wffs of L, and *J9 and tH9 represent arbitrary
subsets of K other than K and p then our translations are characterized by
the following matrices6'7:

X . / > fίnNp fiNp fΐCpq fn

2Cpq f»Cpq ftCpq
/>\^ K H p K H p K H p K H p

K φ p K H p K H p K H 0 K H 0
J J J K K J K K J K K J K K J
Φ K K K K K K K K K K K \ K K K

We will appeal to these matrices freely below. We now justify each
matrix, but the reader uninterested in these details may omit the materials
within the asterisks without loss of continuity:

Let / be an arbitrary interpretation for S5 in a given K, and p, q be
arbitrary wffs of L.

KfmlNp)=I(Nfm

1p),

so the first matrix is self-explanatory.

n/mNp) = I(ACttipLNfm

2p) = KCtfSp) U l(LNfm

2p).

Suppose first that I(f£p) = K. In this case, I(Ctf*p) = φ and I(LNf£p) = p,
hence I(f^Np)=p. Suppose then that I(f*p)=J. Then I(f£CtP) = J but
I(LNf*p) = p, so I(f^Np) =J. Suppose finally that I(f*p) = p. Then l(f*Np)=K
since I(LNf*p) = K. Thus the matrix for I(f*Np).

KfΊCpq) = KKCLfΐpfΐqCfΐpMfΐq)
= I(CLf?pf?q) Π KCfΐpMfΐq)
= [KLfΐp) U Iifΐq)] Π Wlp) U KMfΐq)]

= [*Ϊ(ΠP) U i(fΐq)] n WΐP) u * iifΐq)]
= [•/(/?/>) u Kfΐq)} n [iifΐp) u * Hfΐq)]

It is easy to see that both sides of the last intersection (and so the whole
intersection) equal K if either I(fn

λq) = K or /(/?/>) = p\ it is also clear that
if IifΐP) = ̂  and I(f?q) = 0, KfΐCpq) = 0 . So suppose first that /(/?/>) = J
and /(/ϊ^) = H. In this case I{f"Cpq) = [* J Ό H] 0 [j U *H] = [K u H] Cλ
[JUK]=KΓ)K = K. Suppose next that I(f"p) = K and I{f"q) = H. Now
KfΐCpq) = [* Z U ^] n[ fUi ϊ ] = [ ^ U ^ Π ^ U i ί l ^ n ί ί = H. Finally,
suppose /(/?/)) = J and /(/Γg) = p. In this case Kf\Cpq) = [* J U JZ>] Π [j U (δ] =
ϋΓ Π J = J. Thus the matrix for flCpq.
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AftCpq) = AKCLftpflqCMftpAflpMfiq)
= I{CLfn

2Pfζq) Π l{CMr2pAfn

2pMfn

2q)

= [KLfζp) u 7(/2

w<?)] n [KMfϊP) u (/(Λ» u / ( M / 2 » ) ]

= [* /(Λwj>) u i{fζq)] n [* / ( / » u (Afip) u * /(/2^))]

= [* KfiP) u /(/2^)] n [* /(/2

wί) u (7(/2

w/>) u * i{fU))}

The left side of this intersection has value φ if I{fζp) = if and I{fζq) = 0, so
AflCpq) = p in this case. It is also fairly clear that both sides of the
intersection equal K if either I(f"p) = Φ or 7(/2

w#) = if, and so HfζCpq) = X
in these cases. So suppose first that I(f%p) = J and 7(/2

w#) = i7. In this case
Kf?Cpq) = [* J U # ] Π [*~J U (J U * #)] = (if U . . .] Π [. . . U if] = K. Suppose
then that I(fip) = K and l{flq) = H. Then Af2Cpq) = [* ΐ? U i/] Π [ T T U
(ϋΓU ^)] = [^ U H] Π ϋΓ_= ^ . Finally, suppose l{fip) = J and I(f"q) = Jδ. In
this case, AfiCpq) = [* J u Φ] n [* J U (J U β)] = K Π J = J . Thus the matrix
for /2

wC/><7.

KfsCpq) = l(KCLfZpALfϊqt*fZqCfSpMf3

nq)
= KCLfZpALfiqNfSq) Π I(Cf3

npMf3

nq)

= [ijLftp) U KALftqNfZq)] Π [/(/3

w/>) U 7(M/3»]

= [* /(Λ^) u (/(L/3^) u /(iVΛ^))] n [ 7 ( ^ ) u * /(/3^)]

= [* /(TsW u (* 70%) u 7(7M)] n [Kfξp) u * 7(/3^)]

The right side of this intersection equals φ when I(f3p) = K and 7(/3

w<7) = p ,
and so l(f3Cpq) = φ in this case. Again it is readily verified that
ΠfsCpq) = K if either 7(/ 3 » = φ or 7(/3

w#) = if. _So suppose first that
7(/3» = J and 7(/3

w<?) = # . In this case l(f3Cpq) = [ * J U . . . ] n [ . . . U * i 7 ] =
if Π K ^_K. Suppose then that I(fζp) = if and I(f3q) = 7ί. Then I{f"Cpq) =
[* If u(* ^ U H)] Π [^ U * H] = [p U {φ U ^)] Π [p U if] = Ή ΠK = # . _ Finally,
suppose 7(/3

wp) = J and 7(/3tf) = β. In this case I(f3Cpq) = [* J U . . .] Π
[J U * P] = if Π J = J . Thus the matrix for f3Cpq.

AflCpq) = IiKCLfZpALfiqCffiqCMfipAftpMfiq)
= HβLflpALflqCffjg) Π KCMflpAfipMfjq)

= [ALftp) U HALfUqCffϊq)] Π [/(M/47>) U l{AftpMftq)]

= [*7(/4» U (7(L/4^) U 7(^/4^))] Π
[* 7(/4» U (7(/4» U 7(M/4V))3

= [* 7(Λ» u (» 7(/4^) u (7(/4^) n * 7(/4

w<7)))] n

[*7(/Γ/))U(7(/4»U*7(/4

wg))]

K 7(/ 4» = if and 7(/4

w^) = β, the left side of this intersection equals φ, so
AffCpq) = φ in that case. Again it is easily verified that if 7|(/4/>) = 0 or
7(/4

w<2r) = if, both sides of the intersection are equal to if and hence
AfiCpq) = if in these cases. So suppose first that 7(/?/>) = J and 7(/4

w#) = i7.
In this case, I{f*Cpq) = [ * J U . . .] Π [. . . U * i / ] = i fΠif =Jζ. Suppose next
that 7(/ 4 » = if and I{tfq) = H. Now l{f"Cpq) = [ * ^ U ( * S u ( 5 n * ^ ) ) ] n
[. . . U * H] = [φ U (φ U S)] (Ί if = H. Finally, suppose I(ftp) = J and
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I(f2q) = Φ- In this case AflCpq) = [* J U . . .] Π [Tj u (J U * φ)] = K Π
[β U J] = tf Π J = J. Thus the matrix for tfCpq.

By means of the following definitions and theorems (holding for every
n(l ^ n ̂  2) and m(l ̂  m ̂  4)), we now show that each mapping yields an
interpretation of L in modal terms. For any interpretation / of S5 (in a
given set K), let If£ be the function from wffs of L to {l, | , 0} defined thus:

ίl,itKf:p)=K
VliP) = j 0, if /(/» = 0

( £ otherwise

Theorem 1 IfZ is an interpretation of L.

Proof: It suffices to show:

(a) If I (Np) = 1 - tfZip);
(b) ifACpq) = min(l, 1 - (Ifn

m<φ) - 7/^))).

For proof of (a): Ifm(Np) = 1 iff K = I(fmNp). But as the matrices show,
A" = / ( / » iff Tt/2/0 = p, and /(/^) = φ iff 0 = //:(/?). Hence Ifi(Np) = 1 iff
1 = 1 - 7jf5(/>). Similarly, //̂ (iNφ) = 0 iff Φ = I(f£Np), and again the matrices
show that 0 = Λ/ίtf/O iff I(fmp) = K. But / ( / » = K iff 1 = //ftp). Hence
//^/>) = 0 iff 0 = 1 - ̂ (/?). This suffices for (a).

For (b): Ifl(Cpq) = 1 iff K = I(fmCpq). But as the matrices indicate,
K = I(fmCpq) iff at least one of the following holds: (i) i(fmP) = P;
(ii) /(/fr) = K; or (iii) both /(/^) Φ φ and /(/m

w£) ̂  K. Note that (i)-(iii) are
respectively equivalent to: (if) If Up) = 0; (iif) Ifi(q) = 1; and (iii') both
ffi(q) Φ 0 and If Zip) Φ 1. Since min(l, 1 - (//*(£) - //^(^))) = 1 iff at least one
of (i')-(iii') holds, Ifϊippq) = 1 iff 1 = m.n(l, 1 - {IfZip) - Ifliq))). Likewise
IfmiCpq) = 0 iff Φ = I(fZCpq), and the matrices indicate that β = I(flCpq) iff
both / ( / » = ff and /(/Λ) = φ. But /(/^) = /C and I(fiq) = φ iff If Zip) = 1
and / / ^ ) = 0, the last holding just in case min(l, 1 - (IfZ(p) - IfZiff))) = 0.
Thus IfZiCpq) = 0 iff 0 = min(l, 1 - (IfZip) - ffliq))). This suffices for (b)
and the theorem is proved.

Theorem 2 For any interpretation I of L there is an interpretation 3 of S5
such that I = JfZ.

Proof: Let/be an arbitrary interpretation of L. We define JinK(={l,θ})
as follows for atomic p: if I(p) = 1, J(p) = K; if lip) = 0, Jip) = Φ JiP) = {θ}
otherwise. It is well known of both L and S5 that any interpretation of the
atoms determines a unique interpretation for the system. Hence we have
characterized an interpretation of S5 by our definition of J ; moreover, it is
clear by construction that /and ΛfZ agree on the atoms of L, and hence are
the same interpretation of L.

Theorem 3 For every wff p of L:

(a) p is valid (in L) iff f^p is valid iin S5).
(b) p is contravalid iin L) iff fmP is contravalid iin S5).
(c) p is indeterminate iin L) ifffmP is indeterminate iin S5).
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Proof: (a) and (b). Suppose first that f£p is not (contra-)valid in S5. Then
by Theorem 1 p is not (contra-)valid in L either. So suppose on the other
hand that p is not (contra-)valid in L. Then by Theorem 2 there is an
interpretation for S5 in K that does not assign fmPkΨ) K, and hence fmiP) is
not (contra-)valid in S5. Hence (a) and (b).

(c) Proof immediate from (a) and (b).

3 A sense in which the mappings are exhaustive In this section we will
sketch a proof to the effect that, within certain constraints, the list of
mappings from L to S5 we have provided is exhaustive. We require some
additional terminology. The wffs p, q of S5 will be said to be strictly
equivalent on a given interpretation / of S5 if /(/>) = I(q); we indicate this in
symbols by writing p<j>q. And p, q will be said to be semantically
equivalent (in S5) if p<^j>q for every / (in symbols: p = q). Finally, the
mappings m and m' from the wffs of L to those of S5 will be said to be
equivalent if mp = m'p (in S5) for every wff p of L. We will also employ the
following notational device: where p, . . .,q are wffs of L (S5), (Z{p, . . ., q)
is to be taken as denoting a wff of L (S5) compounded from just p, . . ., q by
means of the usual formation rules. Other script Roman capitals will
appear in place of & when clarity so demands, their role being exactly
similar.

Now let @ be a mapping from wffs of L into those of S5, with @
presumed to satisfy both of the following conditions.

Condition 1: @ has a definition of the following form: For all wffs p, q of L:

(i) if p is atomic,@p = p.
(ii) @Np = Λ(@p)
(iii) @Cpq=tf(&p@q).8

Condition 2: @ is such that the following definition, in which p is a
variable for wffs of L and / is an arbitrary interpretation of S5 in an
arbitrary K, guarantees that the appropriate analogues of Theorems 1-3
hold true of 7@9:

I I, if/(©/>) =ϋΓ
0, if/(©/>) = 0
\ otherwise.

We now show that @ is equivalent to some fm. In the following lemmas and
theorem, K is an arbitrarily chosen set and / an arbitrary interpretation
for S5 in K. As before, J and H are arbitrary non-empty proper subsets
of K.

Lemma 1 Let I(p) = J. Then one of the following is sure to hold for ύl(p):

(i) I(a(P)) = K

(ii) nau>)) = Φ
(iii) HaiP)) = J
(iv) imp)) = J.
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Proof: By strong induction on the length of d(p). Details left to the
reader. In the basis, (Z(p) = p. In the inductive step, there are three cases:
a(p) = Ntf(p); Okp) = Mtf(p);O>(p) = C#(p)O(p). The hypothesis is of course
that (i)-(iv) hold true of any wff Ή(p) less complex than (Zip).

Lemma 2 If p <η>q, thend{. . . , / > , . . )<r~>Cl{. . . , # , . . . ) .

Proof left to the reader. (The lemma records an obvious consequence
of the familiar fact that strict equivalence is preserved in S5 under
substitution of strict equivalents).

Lemma 3 Let I(p) = K and I(q) = H. Then one of the following is sure to
hold for £Z(p,q):

(i) I(a(p,q))=K
(ii) I(a(p,q)) = p
(iii) I(a(p, q)) = H
(iv) I(<Z(P, q)) = H

Proof: Since I(p) =K and I(q) = H, I(Mq) (= * H = K) = /(/>). Hence, p*f>Mq,
so by Lemma 2, έl(p, q)<η> ίl{Mq, q). But (Z(Mq,q) qualifies as a compound
Ή(q) of q, hence Lemma 3 by Lemma 1.

Lemma 4 Let I(p) = J and I(q) = p. Then one of the following is sure to

hold for a{p,q):

(i) I(a(P,q))=K

(ii) na(ρ, q)) = φ
(iii) I(a(P, q)) = J

(iv) HOU>, q)) = J

Proof: Like that for Lemma 3.

Lemma 5

(a) Ifl(@p)=β, thenI{@Np) =K.

(b) If I(@ p) = K, then I(@ Np) = <p
(c) If I(@ p) = J, ί/ί̂ w ezί^er 7(@ A^) = J or I(@ Np) = J.

Proof: (a) Suppose I(@p) = ft. Then I@(p) = 0, in which case I@(Np) = 1
(since I@ is an interpretation of L by Theorem 1). But I@(Np) = 1 iff
I(@Np) =K. Hence, (a), (b) Proof like that of (a), (c) Suppose I{@p) = J .
Then I@ (p) = \, in which case I@ (Np) = i this last holding iff K Φ I(@Np) Φ
φ. But by Lemma 1, together with our supposition that I(@p) = J, one of the
following holds:

(i) I(@Np)=K
(ii) I(@Np) = β
(iii) I(@Np) = J
(iv) /(@iVί) = J .

Hence, since neither (i) nor (ii), (c).
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Lemma 6

(a) If K@p) = K and 7(@ q) = p, then 7(@ Cpq) = p
(b) Tjf tfny o/ the following obtains:

(i) K@P) = P
(ii) 7(@<7) = K

(iii) 7(@/>) Φ K and 7(@ ?) Φ p,

then I(@ Cpq) = K.

(c) If both I(@p) = K and I(@ a) = H, then either I(@ Cpq) = H or I(@ Cpq) = H.
(d) 7f δotf* 7(@/>) = J and 7(@ <?) = 0 , then either 7(@ Cp?) = J o r 7(@ Cpq) = J .

Proof: Proof of (a) and (b) like proof of Lemma 5 (a) and Lemma 5 (b).
Proof of (c) like proof of Lemma 5(c), using Lemma 3 in place of Lemma 1.
Proof of (d) like proof of (c), using Lemma 4 in place of Lemma 3.

Theorem 4 @ is equivalent to some fZ.

Proof: @ and each f% have the same values for atomic arguments.
Consider then the possible matrices for @Np. By Lemma 5, these will be
identical to the matrices for fjNp and fJ Np, so suppose the actual matrix
for @Np is identical to that for fΪNp. Next consider the possible matrices
for @Cpq. By Lemma 6, these will be identical to the matrices for
fn\Cpq, . . ., f^Cpq, and suppose here that the actual matrix for @Cpq is
identical to that for f£Cpq. A straightforward induction (omitted here)
shows that @p = f£p for every wff p of L, and thus proves @ to be equivalent
to//.

4 Peculiarities of the mappings The reader familiar with [1] may recall
that the mapping devised by Woodruff (f\, in the present paper) suffers
from a certain defect: it does not preserve semantic equivalence. Given
that p = q in L, Woodruff has shown that it is not always the case that
f\p = f\a in S5.10 In this section we show that none of the mappings
constructed thus far preserves semantic equivalence. This result is of all
the more significance since the preceding section shows that we have
exhausted the ways of translating W and 'C into S5. Of course, if one is
willing to modify the syntax for S5, further translations may become
possible.11

We will show that none of the four ways of translating *C9 preserves
equivalence by means of a test case. It is well known that in L Apq = Aqp
(in primitives, that CCpqq = CCqpp); but we now show that in S5 fmApq ̂
fmAqp (fmCCpqq ± fmCCqpp). We proceed by constructing matrices, taking
it that two wffs are semantically equivalent iff they have identical matrices.
To construct the matrix for f*CCpqq, recall first the matrix for f"Cpq:

/ ^ \ K H 0

K K H p
J K K J
p K K K
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It is useful to note that this matrix simply defines a function from pairs of
subsets of if to subsets of K. If we denote this function by ζF * and think of
ιf\p9 and 'f"q' as variables for subsets of K, the matrix may be thought of
as shorthand for the following definition:

F&fΐPtflq)* \κ, ufniP = P
[ */Γ# U/i/> otherwise.

The matrix for f"CCpqq will similarly be a shorthand description of
the compound function i^ίi^/?/*,/?#),/?#), and the following is readily
verified to be that matrix:

. / f r ^ ^ K H p

K K K K
J K H J
p K H p

By analogous reasoning, the matrix for f^CCqpp may be gotten from the
matrix for f"Cqp:

\/Γtf fiCqP fΐCCqpp
fΐp^κ^ K H P K H P

K K K K K K K
J J K K K J J
P p H K K H p

And similarly by reflecting on these matrices,
N N J & f'Cpq fζCqp tfCpq ftCqP ftCpq tfCqp
O X ^ K H p K H p K H p K H p K H p K H p

K K H p K K K K H p K K K K Έ p K K K

J K K J J K K K K J J K K K K J J K K

P K K K p H K K K K p H K K K K p H K

we get these:

\ / Λ fϊCCPqq tfCCqpp tfCCpqq f?CCqPP f?CCpqq ftCCqpp
/ O T " p \ . K H p K H p K H p K H p K H p K H p

K K K K K K K K K K K K K K K K K K K

j K H J K J J K U J K J J K Έ J K J J

P K H p K H φ K Έ p K H p K Έ φ K H p

The matrices thus show that fmApq φ f^Aqp.

5 Conclusions and further issues Those who are not disconcerted by
the result of the immediately preceding section may be interested to know
that the eight mappings may be multiplied by treating the defined connec-
tives of L as primitive and compounding mappings from our original eight.
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For example, consider the following definition of a mapping m, like f\

except in clause (iv), which is like fΐCCpqq:

(i) where p is atomic, mp = p.

(ii) mNp = Actmp LNmp

(iii) mCpq = KCLmpALmqNmqCmpMmq

(iv) mApq = KCLKCLmpmqCmpMmqmqCKCLmpmqCmpMmqMmq.

Theorem 1-3 will still hold of such mappings. The same, however, cannot

be expected of Theorem 4 since these mappings do not have a definition in

the requisite form. Of course, no such compound mappings will preserve

semantic equivalence.

Those of us of a more conservative bent, on the other hand, may find

the peculiarities of the mappings discussed here somewhat objectionable.

A sequel to the present paper will show that if S5 is modified slightly, the

number of mappings from L to S5 is increased, and some of the new ones

preserve semantic equivalence. The functionally complete version of L

developed by Slupecki in [4] will be discussed in detail, so we do not dwell

on the problem of giving a modal interpretation to that system here. But we

do note in closing that the results for our mappings extend to the

functionally complete case along the lines discussed by Woodruff in [lj.

NOTES

1. As Woodruff notes in [ 1 ], Lukasiewicz advances the view that L is to be understood modally
in [2], and this view receives criticism in Rescher [3] (see p. 98). It is interesting to note,
though, that Woodruff's vindication of -Lukasiewicz's view is foreshadowed by remarks of
Turquette in [6] (see esp. p. 267).

2. Much of the material here follows Woodruff's account closely and is included only so that the
present paper be independent of Woodruff's. However the account of an interpretation for
S5 is an adaptation of material presented in Chapter XVII of [5].

3. Lukasiewicz attributes this definition to Tarski.

4. Intuitively, D5 and D6 define contingent truth and falsity. We hesitate to adopt these defini-
tions for L since the definiens are semantically equivalent in L. Thus we find it philosoph-
ically preferable to say that the notions of contingent truth and falsity cannot be adequately
represented in L.

5. At this point, we calculate from the definitions how the defined symbols of S5 are inter-
preted. This material will prove useful below. I(Apq) = I(p) U I(q). I(Kpq) = I{p) Π ί(q).
I{Lp) = *7{pj. I{Ctp) = 0 if either I(p) = Koτί(p) = φ; otherwise I{Ctp) = I(p). I(Cfp) = 0 if
either I(p) = K or I(p) = 0 I(Cfp) = Tζp) otherwise. It is also useful to note that I(Lp) = K if
I(p) = K, I(Lp) = 0 otherwise.

6. Notice that the arrays of 0's and ICs do not change from table to table. The remaining
entries, however, guarantee that no two of the mappings are equivalent in the sense of section
3 (below).

7. In the arguments to follow, the fact that the entries of the matrices unambiguously denote
either AT, 0, or neither of these plays an important role. Not all wffs of S5 have matrices that
are unambiguous in this respect: e.g., the matrix for Kpq contains the entry '/ Π H9 for the
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case where p is assigned / and q is assigned H. But that entry is ambiguous, in a sense we
cannot allow, since in some cases (i.e., for some values of / and H) it denotes φ, and in
others, it does not denote φ. The reader familiar with [ 1] will find that these remarks com-
pare interestingly with those on p. 436 of [ 1 ].

8. The constraint that where p is an atom, @p = p might at first appear overly stringent. (The
other constraints should, I hope, appear to be quite natural.) But there is nothing of great
theoretical interest in allowing atoms of -t to be mapped onto more complex wffs of S5,
given that we require Th2 to hold of @ (see condition 2 below). In order to obtain Th2 for @,
different atoms of -t must be mapped onto wffs of S5 whose values can vary independently,
because the values of the atoms oft. vary independently. Suppose that @ does not map atoms
into atoms, and let SA be the set of values for @ at atomic arguments. Let S include SA plus
all the wffs compounded out of the members of SA by means of the usual formation rules.
The fragment of S5 made up of members of S is shown to be synonymous with the whole of
S5 by mapping the members of SΛ onto the atoms of S5 and reducing the other members of
S accordingly.

9. By "appropriate analogues" is meant the result of replacing occurrences of '/JJ,' by '@'.

10. The problem, intuitively, is that when p and q evaluate to 1/2 in L, they are not automat-
ically assured of being mapped onto wffs of S5 that get assigned to the same proper non-
empty subset of K. Woodruff comments that nonetheless the S5 translations are equivalent
in the sense of both being contingent. But this seems rather strained.

11. In fact, further mappings do become possible. But discussion of this must be saved for a
future time.
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