Notre Dame Journal of Formal Logic Volume XX, Number 3, July 1979 NDJFAM

BEYOND NON-NORMAL POSSIBLE WORLDS

ARNOLD VANDER NAT

Formal possible world semantical investigations by Kripke, Hintikka, Lemmon, and others have concerned themselves with the systems C2 and $S2^{0}$ and their various extensions.¹ We shall refer to these semantics as *Kripke* semantics. The present work introduces a semantical framework for a more comprehensive class of systems, containing Kripke semantics as a special case.²

The Kripke semantics for C2 and S2⁰, upon which the semantics for their various extensions are based, may be stated as follows. A C2-model structure is a structure $\mathfrak{M} = \langle w_0, W, N, R \rangle$ such that (1) $w_0 \in W$, (2) $N \subseteq W$, and (3) $R \subseteq W \times W$. The elements of N may be thought of a normal worlds, those elements of W outside of N as non-normal worlds, and R may be thought of as an accessibility relation among worlds. \mathfrak{M} is an S2⁰-model structure if, in addition, w_0 is a normal world. A valuation function for \mathfrak{M} is a function v which assigns to each sentential variable at each world a unique truth-value t or f. The function v is then extended to the full domain of formulas as follows: for all formulas A and B, and all worlds w,

(i) $v(\sim A, w) = \mathbf{t}$ if and only if $v(A, w) = \mathbf{f}$,

(ii) $v(A \land B, w) = \mathbf{t}$ if and only if $v(A, w) = \mathbf{t} \& v(B, w) = \mathbf{t}$,

and

(iii) $v(\Box A, w) = \mathbf{t}$ if and only if $w \in N \& (\forall w' \in W)(wRw' \rightarrow v(A, w') = \mathbf{t})$.

Note here that non-normal worlds are effectively worlds in which every formula $\Box A$ is false. A formula A is *valid in* a model structure \mathfrak{M} =

^{1.} Other contributions here are many. See, for example the works of Prior, Kanger, Montague, Makinson, Routley.

^{2.} Some of the ideas appearing here are to be found in the author's doctoral dissertation, *First-Order Indefinite and Generalized Semantics for Weak Systems of Strict-Implication*, University of Pittsburgh, 1974.

 $\langle w_0, W, N, R \rangle$ if for all valuation functions v for \mathfrak{M} , $v(A, w_0) = \mathbf{t}$, and a formula A is C2-(S2⁰-) valid if A is valid in all C2-(S2⁰-) model structures. By imposing certain *model conditions* on model structures, semantics are obtained for the various extensions of C2 and S2⁰. The main result established for these systems is their *completeness* and *consistency* with respect to the indicated semantics, namely that a formula A is provable in a system \mathbf{L} if and only if A is \mathbf{L} -valid.

We generalize these semantics to include semantics for the systems N^0 and SN^0 , which are presented below. As before, the semantics for the various extensions of N^0 and SN^0 , among which are C2, S2⁰ and their extensions, may be based on those for N^0 and SN^0 .

We say that an \mathbb{N}° -model structure is a structure $\mathfrak{M} = \langle w_0, W, R, S \rangle$ such that (1) $w_0 \in W$, and (2) $R \subseteq W \times W$ and $S \subseteq W \times W$. A set of normal worlds may be defined as $N_{\mathfrak{M}} = \{w: w \in W \text{ and for no } w' \in W, wSw'\}$. Moreover, we say that \mathfrak{M} is an \mathbb{SN}° -model structure if $w_0 \in N_{\mathfrak{M}}$. A valuation function for \mathfrak{M} is a function v which assigns to each sentential variable, world pair a unique truth-value t or f. Again, v is extended to the full domain of formulas, but this time as follows: formulas $\sim A$ and $A \wedge B$ are evaluated as before, but formulas $\Box A$ are evaluated in the manner

 $v(\Box A, w) = \mathbf{t} \text{ if and only if} \\ (\forall w' \in W)(wRw' \to v(A, w') = \mathbf{t}) \& (\forall w' \in W)(wSw' \to v(A, w') = \mathbf{f}).$

We note here that worlds normal in Kripke's sense are worlds to which no world is S-related, and worlds non-normal in Kripke's sense are worlds to which some world is *both* R-related and S-related, for only in such worlds is every formula $\Box A$ false. But we note also that in the new semantics there are worlds which are neither normal nor non-normal in the sense of Kripke.

We can now define a C2-model structure to be an \mathbb{N}° -model structure in which every world is either normal or non-normal in the sense of Kripke, that is, an \mathbb{N}° -model structure $\mathfrak{M} = \langle w_{0}, W, R, S \rangle$ such that $S \subseteq R$. If in addition, $w_{0} \in N_{\mathfrak{M}}$, then we say that \mathfrak{M} is an S2^o-model structure. That such definitions are appropriate follows from the fact that C2-validity in Kripke's sense coincides with C2-validity in the new sense.

Lemma 1 A formula A is C2-valid in Kripke's sense if and only if A is valid in all \mathbb{N}^{0} -model structures $\mathfrak{M} = \langle w_{0}, W, R, S \rangle$ such that $S \subseteq R$.

Proof: The sufficiency clause is seen as follows. Let $\mathfrak{M} = \langle w_0, W, N, R \rangle$ be a C2-model structure, and let v be a valuation for \mathfrak{M} such that $v(A, w_0) = \mathbf{f}$. Let $S_{\mathfrak{M}} = \{\langle w, w \rangle : w \in W \& w \notin N\}$. Then for all worlds w and all formulas B, $w \in N \& (\forall w' \in W)(wRw' \rightarrow v(B, w') = \mathbf{t})$ if and only if $(\forall w' \in W)(w(R \cup S_{\mathfrak{M}})w' \rightarrow v(B, w') = \mathbf{t}) \& (\forall w' \in W)(wS_{\mathfrak{M}}w' \rightarrow v(B, w') = \mathbf{f})$. Hence, v is a valuation for the \mathbb{N}^0 -model structure $\mathfrak{M} = \langle w_0, W, R \cup S_{\mathfrak{M}}, S_{\mathfrak{M}} \rangle$. Also, $S_{\mathfrak{M}} \subseteq R \cup S_{\mathfrak{M}}$. Thus, A is not valid in \mathfrak{N} , a C2-model structure in the new sense. Conversely, let $\mathfrak{M} = \langle w_0, W, R, S \rangle$ be an \mathbb{N}^0 -model structure such that $S \subseteq R$, and let v be a valuation for \mathfrak{M} such that $v(A, w_0) = \mathbf{f}$. Since $S \subseteq R$, we have for all worlds w and all formulas B,

 $(\forall w' \in W)(wRw' \to v(B, w') = \mathbf{t}) \& (\forall w' \in W)(wSw' \to v(B, w') = \mathbf{f})$ if and only if $w \in N_{\mathfrak{M}} \& (\forall w' \in W)(wRw' \to v(B, w') = \mathbf{t}).$

Hence, v is a valuation for the C2-model structure in Kripke's sense $\mathfrak{N} = \langle w_0, W, N_{\mathfrak{M}}, R \rangle$ and A is not valid in \mathfrak{N} . A similar reduction holds for S2⁰-validity, and thus we see that Kripke semantics are indeed a special case of the semantical framework for \mathbb{N}^0 and \mathbb{SN}^0 .

It remains to characterize the systems N° and SN° and to show that they are complete and consistent with respect to their semantics. The primitive connectives of N° and SN° will be '~', ', ', and ' \Box ', the other connectives being defined as usual. In particular, ' $A \rightarrow B$ ' is defined as ' $\Box(A \supset B)$ '. Also, we use 'T' to range over two-valued tautologies. The system N° is axiomatized by the axiom-schemes and rules {PC, MP, R2} and SN° by { \Box PC, MP, \Box R2, $de-\Box$ }.

(**PC**). T

(□**PC**). □ T

(MP). From A and $A \supseteq B$ infer B

(R2). From $(A \land B) \supset C$ and $C \supset (A \lor B)$ infer $(\Box A \land \Box B) \supset \Box C$

 $(\Box R2)$. From $(A \land B) \dashv C$ and $C \dashv (A \lor B)$ infer $(\Box A \land \Box B) \dashv \Box C$

 $(de-\Box)$. From $\Box A$ infer A

It is not difficult to show that \mathbb{N}^0 contains Shukla's system $\mathbb{T1}^0$ and is contained in C2, and that \mathbb{SN}^0 contains Feys' system $\mathbb{S1}^0$ and is contained in $\mathbb{S2}^0$. It is of interest to note that Group V, used by Lewis and Langford³ to show the distinctness of S1 and S2, is characteristic for a system that is an extension of \mathbb{SN}^0 , and is the algebraic equivalent of the \mathbb{SN}^0 -model structure $\mathfrak{M}(\mathbb{V}) = \langle w_0, W, R, S \rangle$ where $W = \{w_0, w_1\}$ and $w_0 R w_0$, $w_0 R w_1$, $w_1 R w_1$, and $w_1 S w_0$.

It is a trivial matter to show that N^0 is consistent with respect to its semantics, and we leave it to the reader. Later we demonstrate the consistency of SN^0 . Thus we have the following theorem.

Theorem 1 If $\mathbb{N}^{\circ} \vdash A$, then A is \mathbb{N}° -valid.

The completeness of \mathbb{N}^0 and \mathbb{SN}^0 may be shown by using the Henkin method of maximal, consistent sets of formulas employed by Makinson and Routley.⁴ For details concerning the lemmas and theorems below the reader is asked to consult these works. We will use the following definitions. Where Δ is a set of formulas, $[\Delta] = \{A: \Box A \epsilon \Delta\}, \overline{\Delta} = \{\sim A: A \epsilon \Delta\}, \Delta$ is maximal if for all formulas $A, A \epsilon \Delta$ or $\sim A \epsilon \Delta$, and Δ is L-consistent if for no formulas $A_1, \ldots, A_n \epsilon \Delta, \mathbf{L} \vdash \sim (A_1 \land \ldots \land A_n)$.

^{3.} See [1], pp. 493-494.

^{4.} See [2] and [3].

Lemma 2 If α is a maximal, \mathbb{N}° -consistent set of formulas such that $\Box A \notin \alpha$, then $[\alpha] \cup \{\sim A\}$ is \mathbb{N}° -consistent or $\overline{[\alpha]} \cup \{A\}$ is \mathbb{N}° -consistent. (Cf. M., p. 382; R., p. 242).

Lemma 3 For any system L containing classical two-valued logic, if Δ is an L-consistent set of formulas, then there is a maximal, L-consistent set α of formulas such that $\Delta \subseteq \alpha$. (Cf. M., p. 381).

Theorem 2 If A is \mathbb{N}° -valid, then $\mathbb{N}^{\circ} \vdash A$.

Proof: The proof is similar to [2], p. 382, and [3], p. 243. Let A_0 be a non-theorem of \mathbb{N}^0 . Then by Lemma 3 there is a maximal, \mathbb{N}^0 -consistent set α_0 such that $\sim A_0 \epsilon \alpha_0$. We define W as the set of all maximal, \mathbb{N}^0 -consistent sets, R as the set of all pairs (α, β) in W such that $[\alpha] \subseteq \beta$, and S as the set of all pairs (α, β) in W such that $[\alpha] \cap \beta = \emptyset$. Then $\mathfrak{M} = \langle \alpha_0, W, R, S \rangle$ is an \mathbb{N}^0 -model structure. A valuation function v for \mathfrak{M} is defined by setting $v(P, \alpha) = \mathbf{t}$ if and only if $P \epsilon \alpha$, for all sentential variables P and all $\alpha \epsilon W$. We then extend v to a full valuation function in the usual way. The proof proceeds as in \mathbb{M} . and \mathbb{R} , using Lemmas 2 and 3 to show that for all formulas A and all $\alpha \epsilon W$, $v(A, \alpha) = \mathbf{t}$ if and only if $A \epsilon \alpha$. Since $\sim A_0 \epsilon \alpha_0$, it follows that $v(A_0, \alpha_0) = \mathbf{f}$.

Lemma 4 (i) If A is \mathbb{N}° -valid, then $\Box A$ is \mathbb{SN}° -valid,

and

(ii) if a set \triangle is SN° -consistent, then \triangle is N° -consistent.

Proof: By a simple *reductio* argument (i) may be established. To show (ii) we note that if $\mathbb{N}^0 \vdash A$ then $\mathbb{SN}^0 \vdash \Box A$, as may be established by a simple induction on the length of proof in \mathbb{N}^0 . Hence, by the rule $de-\Box$ we have that if $\mathbb{N}^0 \vdash A$ then $\mathbb{SN}^0 \vdash A$, and (ii) follows.

Theorem 3 If A is SN° -valid, then $SN^{\circ} \vdash A$.

Proof: The proof is similar to [3], p. 251. Let A_0 be a non-theorem of \mathbb{SN}^0 . Then by Lemma 3 there is a maximal, \mathbb{SN}^0 -consistent set α_0 such that $\sim A_0 \in \alpha_0$. We define W, R, S exactly as in Theorem 2. By Lemma 4 α_0 is a maximal, \mathbb{N}^0 -consistent set and hence belongs to W. Thus, $\mathfrak{M} = \langle \alpha_0, W, R, S \rangle$ is an \mathbb{N}^0 -model structure. But, $\Box \mathsf{T} \in \alpha_0$, so that for no $\alpha \in W$ do we have $\alpha_0 S \alpha$, and \mathfrak{M} is an \mathbb{SN}^0 -model structure. Now, as in Theorem 2 a valuation function v for \mathfrak{M} is defined, and it follows that $v(A_0, \alpha_0) = \mathsf{f}$.

Lemma 5 If $\Box A$ is SN° -valid, then A is N° -valid.

Proof: The proof is similar to one given by Kripke [4] and consists in extending a given \mathbb{N}^0 -model structure which falsifies a formula A_0 into an \mathbb{SN}^0 -model structure which falsifies the formula $\Box A_0$.

Theorem 4 If $SN^{\circ} \vdash A$, then A is SN° -valid.

Proof: The proof follows by a simple induction on the length of proof in SN^{0} . The cases when a theorem of SN^{0} is an axiom or comes by the rule

MP are trivial, and the case when a theorem comes by the rule $de - \Box$ follows by Lemma 5. The case when a theorem comes by the rule $\Box \mathbb{R}2$ is as follows. By inductive hypothesis the theorems $(A \land B) \exists C$ and $C \exists (A \lor B)$ are \mathbb{SN}^0 -valid. By Lemma 5 the formulas $(A \land B) \supseteq C$ and $C \supseteq (A \lor B)$ are \mathbb{N}^0 -valid, and by Theorem 2 they are provable in \mathbb{N}^0 . Thus, $(\Box A \land \Box B) \supseteq$ $\Box C$ is provable in \mathbb{N}^0 and by Theorem 1 is \mathbb{N}^0 -valid. By Lemma 4 it follows that $(\Box A \land \Box B) \exists \Box C$ is \mathbb{SN}^0 -valid.

REFERENCES

- [1] Lewis, C. I. and C. H. Langford, Symbolic Logic, Dover Publishing (1932).
- [2] Makinson, D., "On some completeness theorems in modal logic," Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 12 (1966), pp. 379-384.
- [3] Routley, R., "Extensions of Makinson's completeness theorems in modal logic," Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 16 (1970), pp. 239-256.
- [4] Kripke, S., "Semantical analysis of modal logic, II," in *The Theory of Models*, Addison, Henkin, Tarski (eds.), North Holland Publishing Co. (1965), pp. 206-220.

Loyola University of Chicago Chicago, Illinois