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SENTENTIAL NOTATIONS: UNIQUE DECOMPOSITION

JORDAN HOWARD SOBEL

Two notations for sentential logic are compared: that of Chapter II of
Logic: Techniques of Formal Reasoning (New York, 1964) by Donald Kalish
and Richard Montague and a parenthesis-free variant presented in Chapter
VIII*. These notations, SC and SC* respectively, are set out in section 1,
said to be unambigous in section 2, and in sections 3 and 4 shown to be
unambiguous; lastly, and briefly, in section 5 comments are made on their
relative merits.

1 The two notations Symbols: sentence letters P through Z with or
without subscripts, sentential connectives ~, —, v, A, and <>, and in the
case of SC left- and right-parentheses.

The set of sentences of SC is the smallest set such that: (1) Sentence
letters are members of SC. (2) If ¢ and  are members of SC, then so are,
~¢a (¢_-' lp)’ (¢V7-P), (¢MP), and, (¢<_>ll/)

The set of sentences of SC* is the smallest set such that: (1) Sentence
letters are members of SC*. (2) If ¢ and Y are members of SC*, then so
are ~¢, =0y, voy, rdy, and, <>¢y.

The SC-counterpart of an SC*-sentence is reached by successive
applications of the rule:

Where ¢ is an SC*-sentence or sequence of SC-symbols and the left-
most occurrence in ¢ of a binary connective is an occurrence of §,
replace the left-most occurrence in ¢ of an SC*-sentence of the form,

6YX,

*The lemma for Section 4 is entailed by Theorem 1 of Chapter IV, The Elements of Mathe-
matical Logic, Paul Rosenbloom (New York, 1950), p. 154; see also “Bibliographical and Other
Remarks,” p. 205. Theorems similar to that of Section 3 are proved in Introduction to Mathemati-
cal Logic, Alonzo Church (Princeton, 1956), pp. 92 and 122; and in section 2 of “Proof by Cases
in Formal Logic,” S. C. Kleene, Annals of Mathematics, vol. 35 (1934), wherein can be found, see
21, p. 531 an inductive proof for the lemma of our Section 3. I owe these references to Alisdair
Urquhart. None (I confess) were known to me before completion of this paper.
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(¢ and X SC*-sentences) by the sequence,
(¥ 6X).

The SC*-counterpart of an SC-sentence is reached by successive
applications of the rule:

Where ¢ is an SC-sentence or sequence of SC-symbols, replace an
occurrence in ¢ of a longest SC-sentence in ¢ of the form,

(y6X),
(6 a binary connective, ¢ and X SC-sentences) by the sequence,
SyX.

That SC- and SC*-sentences have unique SC*- and SC-counterparts is a
corrollary of the unique decomposition property of SC- and SC*-sentences
described and proved in following sections.

2 Unique decomposition: statement The sentence ‘Helen will attend if
she can and she has been invited’ is ambiguous: it could be a conditional
(Add emphasis to, or place a comma before, ‘if’.) or a conjunction (Add
emphasis to, or place a comma before, ‘and’). No sentence of SC or SC* is
similarly ambiguous. Each decomposes uniquely into component sentences.
More precisely: if ¢ is a sentence of SC, then, exclusive disjunction,
either,

(1) ¢ is a sentence letter,
(2) ¢ = ~¢, where { is a sentence of SC,

or,

(8) there is exactly one triple (6,/,X) such that (i) 6 is a binary connective
and ¥ and X are sentences of SC, and (ii) ¢ = (/8X).

Similarly for SC*

Each sentence of SC or SC* decomposes uniquely into components that
decompose uniquely into components and so on to sentence letters, simple
components. SC and SC* sentences have unique decomposition or structural
diagrams as here illustrated:

~(~PAr((@— P)«<>R v P))) A~ <>PQVvRP
Pr((@ = P)«>(R vP))) ~ «<>PQVRP
<P he (R vP)) <>PQ RP
Yo / o P
\ R P

3 Unique decomposition: demonstration for SC Two terms descriptive
-of sequences: An ordered sequence of parentheses nests under a one-to-one
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pairing # iff each left-hand parenthesis is paired in # with a right-hand
parenthesis to its right and, if left-hand parenthesis 7 and j are paired with
right-hand parentheses n and m respectively, 7 is to the left of j, and j is to
the left of n, then m is to the left of #n. A sequence nests under a pairing iff
paired parentheses can be marked with non-intersecting brackets as here:

Almllm
(O 0)))O)
Count the empty sequence as nesting trivially. A sequence of parentheses
oJ forms a bounded nest under a pairing # iff f nests under # and the first
and last constituents in o/ are paired in #.

If ¢ is a sentence of SC, then either ¢ is a sentence letter, contains an
initial occurrence of ~, or contains an initial parenthesis. Unique
decomposition holds without argument in the first two cases. We turn to
the third. Let ¢ be of the form, (y6X), (¢ and X sentences of SC and 6 a
binary connective). Let J“”, J“/’, and J* be the (perhaps empty) sequences of
parentheses in ¢, ¢, and X respectively. Then there exists a pairing # for
J% under which the parentheses in J¢, J"[’, and #/* form bounded nests, for
parentheses enter sentences of SC in bounding pairs. Now suppose that ¢ is
also of the form, ('6'X'), (' and X' sentences of SC and &' a binary
connective such that (6',y',X") # (5,,X)): that is, suppose unique decompo-
sition fails for ¢—if it does it must fail in this way for manifestly ¢ is not a
sentence letter or sentence with an initial occurrence of ~. Without loss of
generality suppose further that 6’ stands in ¢ to the left of 6. Then ¢ has
the form (The underlines, for later use, are not part of the form.),

(¥ '6"¢(05m))

where ¢', 6, and 7 are sentences of SC, { and A are sequences of SC-
symbols, £(667)x is identical with the SC-sentence X', and the displayed
occurrences of 6 in (y6X) and (y'6'¢(66m)A) are identical. And there exists
a pairing #' for #% under which the parentheses in J%, #¥', and JX' form
bounded nests, and in which the singly-underlined parenthesis is paired
with a parenthesis, namely the doubly-underlined one, that stands to the
vight of the displayed occurrence of 6. But the singly-underlined paren-
thesis is, in 2, paired with a parenthesis to the left of the displayed
occurrence of &: for the parentheses in #¥ form a bounded nest under .
Thus # # #£'. Briefly, on the hypothesis that ¢, an SC-sentence with an
initial parenthesis, is of two distinct forms, (y6X) and (y'8'X'), it follows
that there exist two distinct pairings under which the parentheses in ¢ form
bounded nests. But this is impossible. Indeed no sequence of parentheses
can have distinct nesting pairings: proof of this lemma is presented below.
Rejecting the hypothesis we conclude that unique decomposition holds for
all sentences of SC.

Proof of the lemma: There exists for a sequence o of parentheses at most
one pairing under which f nests. Suppose there exists for a sequence two
distinct pairings # and #' under which of nests. Then there is a left-hand
parenthesis, let it be the ith parenthesis in o/, that is in # paired with say
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the jth parenthesis and in ' with say the kth, j# k: without loss of
generality we assume the jth parenthesis is to the left of the kth and
display our several part supposition thus—

P
1

of (ovvvnn e ) I ) BN
i j k

,pl
Let LY be the number of left-hand parentheses in the interval ¢ through j

exclusive of i and j and R" the number of right-hand parentheses in this
interval; understand Li* and Ri* similarly. Then,

(1) L = RY .

For the ith and jth parentheses are paired in # and so no parenthesis in the
interval bounded by these parentheses can be paired in # with a parenthesis
outside it on pain of breaking the nest made by #. Similarly,

(2) L9+ L* =R + 1+ R*,

for the ¢th and kth parentheses are paired in #’. Further, though the
sequence in the interval bounded by but not including parentheses j and 2
could begin with a ‘‘run’’ of right-hand parentheses, since each left-hand
parenthesis in this interval must be paired in #' with a right-hand
parenthesis in it (on pain of breaking the nest made by #' in which ¢
is paired with &), we have,

(3) L™ < R*,
But, subtracting (1) from (2),

(4) L*=1+RH*,
and thus,

(5) L’* > r*,

(5) contradicts (3) and concludes the proof of the lemma.

4 Unique decomposition: demonstvation for SC* If ¢ is a sentence of
SC*, then either ¢ is a sentence letter, contains an initial occurrence of
‘~’, or contains an initial occurrence of a binary connective. Unique
decomposition holds without argument for the first two cases. We turn to
the third. Let ¢ be an SC*-sentence of the form, §yX, (& a binary connec-
tive, ¥ and X SC*-sentences). Suppose ¢ is also of the form, 6y'X’, (' and
X’ SC*-sentences distinct from ¥ and X respectively): that is, suppose
unique decomposition fails for ¢—if it does it must fail in this way. Without
loss of generality suppose {’ is of greater length than . Then, ¢’ =90,
(0 a sequence of SC*-symbols): that is, ¢’, an SC*-sentence has as an
initial proper segment an SC*-sentence, namely y. But this is impossible:
no SC*-sentence has as an initial proper segment an SC*-sentence—proof
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of this lemma is presented below. We conclude that unique decomposition
holds for SC*-sentences.

Proof of the lemma: Let the length of a sentence ¢ be the number of
occurrences of symbols in ¢.

Basis—the lemma holds for sentences of length-1: the lemma holds for
sentence letters.

Inductive step—hypothesis: the lemma holds for sentences of lengths <n.
Let ¢ be of length-(n + 1). There are two cases to consider:

(i) ¢ = ~y, ¥ an SC*-sentence of length-n.
(ii) ¢ = 6y X, b a binary connective and ¢ and X SC*-sentences of length <.

Case (i): Suppose the lemma fails for ¢. Then, ¢ = A9, (A an SC*-sentence,
6 a non-empty sequence of SC*-symbols), A = ~y', (' an SC*-sentence)
and, ¢ =y'0, that is, an SC*-sentence y of length » has an SC*-sentence,
Y', as an initial proper segment. This contradicts the inductive hypothesis.
Case (ii): Suppose the lemma fails for ¢ in this case. Then, ¢ = A8, (A an
SC*-sentence, 6 a non-empty sequence of SC*-symbols), A = 6y'X’, and so,
¢ =0y 'X'9, (y' and X' SC*-sentences). There are three cases to consider
[under Case (ii)] regarding the relative lengths of ' and y. First case, '
is shorter than y. In this case, contrary to the inductive hypothesis, an
SC*-sentence of length <#, namely Y, has as an initial proper segment an
SC*-sentence, namely '. Second case, Y’ is of the same length as ¢. In
this case, X = X'6, and, contrary to the inductive hypothesis, an SC*-
sentence of length <%, namely X, has as an initial proper segment an
SC*-sentence, namely X'. Thivd case, ' is longer thany, and contrary to
the inductive hypothesis, an SC*-sentence of length <#, namely ¢', has as
an initial proper segment an SC*-sentence, namely .

5 SC and SC*—velative merits The SC-notation has, at least for some
purposes, certain advantages. Consider the counterparts ¢,

(~((PvQ)<>T) — (PA~R)vS))
and ¢*,
—~<> vPQTvAP~RS.

Suppose the context is that of a derivation. Discerning the bounded nest of
parentheses, one can straight-away find ¢’s major connective and, finding
it, identify antecedent and consequent without infer alia doing all that is
required to determine the total structure of either. (So one knows what is
needed, for example, for modus ponens, and what it yields. More detailed
information regarding ¢’s structure is not required for this purpose—may
not be required for any purpose in the context.) In contrast, were ¢* given,
though one could determine its major connective straight-away, one could
not determine its antecedent and consequent without infer alia performing
enough thought-operations to also determine the total structure of the
antecedent: setting aside the initial occurrence of ‘—’, one would search
for the shortest SC*-sentence that follows it examining in turn initial
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segments of increasing length and deciding of each whether or not it is an
SC*-sentence—no more is required, and no less is sufficient, to identify
¢*’s antecedent and consequent and no more is needed than this segment-
by-segment examination to determine the total structure of the antecedent.

An advantage of the SC-notation lies in this: to read an SC-sentence
one performs a number of discrete operations that provide information of
progressively greater detail and the process can be stopped, with results
useful at least in inference-contexts, at many mo7re points than can its
SC*-counterpart. Much more needs saying if the widespread preference
for parenthesis notations is to be fully explained. But what remains
consists, I think, mainly of psychological analyses of such things as
pattern-discernment, scanning techniques, ‘record-keeping’, etc.

If the choice is of a notation to use, most persons will choose SC.
But if the issue is what notation to develop and take as ‘official’ (with
others perhaps brought in as informal variants) or what notation to
discuss and, for example, show to be unambiguous, then legibility will
matter less, relative simplicity and economy more, and SC* may be
preferred. (Thus Kalish and Montague present a parenthesis-free notation
as ‘official’ in their general grammar for first-order theories, Chapter VIII
of Logic. And the argument of section 4 of this note was more easily found
and is perhaps more easily followed than that of section 3.) Choice of
notation should depend upon purposes to be served. Often, of course, it
depends in fact largely on taste and tradition.
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