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ADMISSIBLE SETS AND RECURSIVE EQUIVALENCE TYPES

CARL E. BREDLAU

Recently there has been much interest in admissible sets. Part of this
is due to the fact that the constructive notions of finiteness and recursion
can be extended to include infinite sets and operations. In such a structure,
recursive equivalence types can be defined which correspond to the
classical ones. We shall show that the Cantor-Bernstein Theorem and the
Tarski Cancellation Law hold in a straightforward manner. However, a
satisfactory definition of an isol depends upon the admissible set. We shall
exclude projectible admissible sets which have elements that include large
Z, definable subsets. Also, we shall need a weak uniformizing procedure to
tie together recursive enumerability and Z, definability. With these
conditions some of the equivalences that hold for isols can be extended to
admissible sets. We shall conclude with a stronger definition of an isol
which preserves a cancellation law similar to that for the ordinary isols.*

1 Definitions and propositions The following definition and Propositions
1-6 are due to Jensen [3]. The definition will give great flexibility in
defining functions. The proofs of the propositions are elementary and can
be found in [1]. Throughout we shall consider a non-empty transitive set
M. Our language contains the predicates = and € with their usual inter-
pretation and constant symbols for each xe; we shall use the same
symbol for both object and name. We allow bounded quantification Vxe€ y¢
and Jxe yp. Those formulas which contain only bounded quantifiers are
called Z, predicates. They are closed under the operations A, v, 1, —, <>,
and Vxey, Jxey. We are particularly interested in the = (II,) predicates
of the form 3x¢(Vxe) where ¢ is Z,. We say M is admissible if M satisfies
the following axioms (called PZF):

(1) Axioms of the empty set, pairing, and union.

*Most of the material in this paper appears in the author’s Ph.D. thesis (Rutgers University,
1972), supervised by Professor Erik Ellentuck whose help and interest were indispensible.
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(2) =, separation: Vx3yvz[zey<>zexaq], where ¢ is Z, and only z is
free in ¢.
(3) =, replacement or collection:

Vx3ye — YudoVxeudye vy,
where ¢ is Z, and only x, y are free in ¢.

If xe M, we say x is metafinite. Let M* denote the set of k-tuples with
elements in M. A set or relation a © M* is = (I1,) definable if there is a
% ,(m,) predicate ¢ with & free variables such that

(%1, .., o)ea<c>(x,, ..., x).

We call a a Z,(I1,) set. A set a is A, definable if it is both T, and II,
definable; we call @ a A, sef. For clarity we shall use the following
conventions: An admissible set is denoted by M. Lower case English
letters a, b, ¢, u, v, w, x, y, z will denote elements of M; the remainder
will denote functions. Lower case Greek letters a, B, y etc. will denote
subsets of M; but we shall reserve the use of ¢ and Y for predicates. Also
dom £, tng f, f"'a, f la; fo g will denote the domain of f, range of f, the image
of a under f, the restriction of f to a and the composition of fand g.

Proposition 1 (A, separation) The intersection of a metafinite set and a A,
set is a metafinite set.

Proposition 2 (Z, collection) Let ¢(x,y) be a T, predicate and suppose
vx3ye(x,y) holds in M. Then for any aeM theve is a beM such that
Vxealdye bo(x,y).

Proposition 3 If ¢(x) is T,, then so is Vxe ap(x) and Ixe ap(x).

We shall say a partial function f from M* into M is partial recursive
(p.r.) if the relation f(x,, . . ., %) = ¥ is £,; a p.r. function is recursive if
the domain of f is all of M. We note that the domain and range of a p.r.
function are Z, sets.

Proposition 4 Let f be a p.r. function and ae M. If a C dom f then f"ae M.

Proposition 5 The composition of (partial) recursive functions is (partial)
recursive. Also, Ux, xuy, {x,, ..., 5}, (x, ..., %), dom x, mg x, x"y,
etc. are recursive functions.

Proposition 6 (Recursion Theorem) Let Wy, x,, ..., %) be a recursive
function such that {(z,y)|ze Wy, x,, . . ., %)} is a well-founded relation for
all xy, . . ., xp in M. Let g(y, x,, . . ., %, w) be ap.r. function. Then there
exists exactly onep.r. function f(y, x,, . . ., %) such that

T, %y, ooy ) gy, Xy .. e, (2, Xy .., ) 2Ry, x4, L .. ).
Proposition 7 Let On denote the ovdinals in M. Then On is a Z, set.

We shall use the convention that if x, y are ordinals then x < y means
X€ Y.
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Proposition 8 (Choice function for metafinite sets of ordinals) Forv xe M,
let inf(x) =y if x COn and y is the smallest element in x, and inf(x) = 0
othevwise. Then inf(x) is a recursive function.

2 Simple arithmetic on admissible sels We say ¢ is an admissible
ovdinal if ¢ is the first ordinal not in an admissible set M. We shall
consider subsets of ¢ and assume we are in some fixed admissible set M.
A p.r. function flx) whose domain is ¢ will also be called recursive. (We
can make dom f equal M by letting f(x) = 0; if x¢ On.) The following defini-
tions are standard and can be found in Dekker and Myhill [2]. Denote by
P(c) the set of all subsets of €. We say a, Be £(¢) are vecursively equiva-
lent (a ~ B) if there is a 1-1 p.r. function f(x) such that a C dom f and
f"a = B. It follows that ~ is an equivalence relation; thus =~ partitions #(s)
into equivalence classes. For ae P(g), define (@) ={B[B~a}. If A=(a), A
is called the 7vecursive equivalence type (RET) of a. Let Q be the class of
RETs of members of P(g). If ae Ae Q we call a a representative of A.

We know from the ordinary theory of RETSs that to define addition we
must put a separability condition on the representatives of RETs. If
a, BeP(g), then a is separable from B(alp) if there exist T, sets u, ve P(g)
such that a C y, BC v, and u Nv =9. Given any two RETs we can always
find separable representatives in the even and odd ordinals.

Proposition 9 If a,~a, and B, =~ B, such that a,|B, and a,|B,, then
a, U B, ~a,UB,.

Let A, Be Q and a€ A, Be B, where alB. We define the sum of A and B
by A + B, where A + B=(aU ). From the above, addition can always be
performed and is well defined. If A, Be  we shall say A < B if there is a
Ce§ suchthat A+ C = B.

Theorem 1 (Cantor-Bernstein Theorem) Let A, B be RETs of an admis-
sible ovdinal € > w, the fivst countable ovdinal. Then A< B and B< A
implies A = B.

Proof: We note that a proof of the theorem for the case &£ = w uses the
facts that (1) Z, sets are recursively enumerable, (2) a computation can be
halted before it is completed, and (3) finite sets can be well ordered by a
recursive function. We do not assume these facts; however, there is enough
structure to permit an iteration a countable number of times. The proof
will follow the classical one, modifying where necessary to make it
effective. Since A< B and B < A, there exist RETs C and D such that
A+ C=Band B+ D=A. We can assume that there exist representatives
a, B, vy, 8 of A, B, C, D, respectively, such that @ and B8 are contained in the
even ordinals and y and 6 are contained in the odd ordinals. Moreover,
there exist two p.r. functions p(x) and ¢(x) such that a Uy C dom p,
P(@Uy) = B and (BUGS) Cdom g, ¢""(BUB) =a. Let us also assume O,
2¢dom p. Define the p.r. function 7(x) as follows: Let 7(0) =0, 7(2) = 2.
In the following if ¢”'(x) or p~'¢”'(x) is undefined, 7(x) is also undefined.
For x # 0, 2 compute ¢ '(x); if ¢”'(x) is odd, let #(x) = 0. If ¢”'(x) is even,
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compute 2z =p~'¢” (x). If z is odd, let 7(x) = 2; if z is even, let 7(x) = z.
Note that for xea, 7(x) = 0if ¢ '(x) e 6, 7(x) = 2 if z€ y, and 7(x) = z if z € a.
Define the p.r. function g(y,x,a) as follows:

g(y,x,a) = z<>‘a is a function’Adom a = y A rng @ C On
Ally=0az=7x)]v[0 <y <warz=7a,._)]v]y=wnrz=inf(mng a)]].

Here we use the fact that ¢ is greater than w and that the choice principle
holds for a metafinite subset of €. We define the function f(y,x) by the
recursion theorem. Let Z(y,x) =y, if y ¢ On and 0 otherwise. Then for any
x the relation {(z,y) [z e h(y,x)} = {(z,9) [z < 9} is well-founded. Hence by the
recursion theorem f(y,x) ~ g(v,x,{ f(2,x)|z <)) is a p.r. function. By the
construction of g(y,x,a) we see that for y < w, f(y,x) = ¥**Xx), an iteration
of x by 7(x) for y + 1 times. If x e a, the function f(y,x) is defined for every
y < w and hence, by a slight modification of Proposition 4, { f(y,x)ly < w) is
a metafinite set. Then f(w,r) is always defined for any x € @. Note that if
x€a, flw,x) =0 means that the computations ¢ '(x), p™'¢"'(x), ¢”'p™ '¢"*(x),

. . eventually terminate in §; f(w,x) > 0 means that either the computa-
tions are always in @ and B or they eventually terminate in y. Finally,
define the 1-1 p.r. function #(x) which will map a onto B: #(x) = ¢~ '(x) if
f(w,x) >0 and #x) = p(x) if flw,x) =0, and is undefined otherwise. The
function #(x) corresponds to the classical equivalence. Q.E.D.

Theorem 2 (Tarski Cancellation Law) Let A, B, M be RETs of ar admis-
sible ovdinal € > w. If A + M = B + M, then there exist RETs A', B', N such
that A=A'+N,B=B'+ Nand A' + M=M= B' + M.

Proof: Let a, B, u be representatives of A, B, M respectively such that a
and B are contained in the even ordinals and yu is contained in the odd
ordinals. We also assume that there exists a 1-1 p.r. function p(x) such
that @ U u Cdom p and p"(@ U p) = B+ u. Let po(x) = p(x) and p,(x) = p~'(x).
Define the p.r. function g (y,x,a) for i < 2 as follows:

8;(¥,%,@) = b<>x, ye Onia‘a is a function’ A
[[y=0ab=pix)]v[0<y<wardoma=ya
[[‘ay-,is even’ ab = a,-,]v[ ‘a,-, is odd’ o

b= pi(@-)]llvly = wAb = mg all.

By the recursion theorem define the p.r. function

fi(.x) = gy, x,{fi(2,x)|2< p)),

and 7;(x) = f;(w,%), for ¢ < 2. For xea, 7,(x) is the union of an iteration of
p(x) until p’(x) is in B. We shall now define the 1-1 p.r. functions s;(x) that
will set up our correspondence: For ¢< 2 and ¥ even, compute 7;(x). If
7;(x¥) has an even element w, let s;(¥) = w; otherwise let s;(x) = p;(x). For x
odd, compute 7;(x). If 7;(x) has an even element let s;(x) = x; otherwise let
si(x) = p;(x). If 7;(x) does not exist, s;(x) is left undefined. For xe a, sy(x)
is a member of B if the iteration of p’(¥) ends up in B; otherwise s,(x) is
equal to p(x), an element in u. For xe u, So(x) is x if the iteration ends up
in B; otherwise so(x) = p(x). In both cases sy(x) is in y. In view of the



ADMISSIBLE SETS 359

definition of the function s,(x), it is an easy though tedious exercise to show
that s,(x) is 1-1. By symmetry, we see that s,(x) is 1-1. Moreover, if xea
and so(x) = yeB, we then have s,(¥) =x. Let ¥, ={x|si(x) is even},
yin = {xls;(x) is odd}, for i < 2. These sets are T, such that vy, y; are
disjoint. Let @; = aNy,; and B; = BNy, for i< 2. We then have oy]a,,
BolBy; and a = ay Ua,, B= B UBy If xeay, So(x) is in By; if v € B, then s,(y) =
so'(y) € a;. Hence ay ~ B,. From the definition of s;(x), @, and 8, we see that
So(a, U p) = yand sY(B,U pu) = u. Hencea, U u~ pand B, U u =~ u. Letting
N={(ay = {By, and A, =<a), B,=(B), we have A= N+ A,, B= N+ B, and
A +M=B,+ M= M. Q.E.D.

From the constructions in the proof, we see that a cardinal theorem
whose proof uses a definable countable iteration will generalize to RETs of
an admissible set. For example, in [1], it is proved that if n-A =
A+...+ Amntimes, thenn-A <n. B implies A < B.

3 Recursively enumerable sets We would like to generalize the concept
of ‘‘having no infinite recursively enumerable subset’’ which plays such a
vital role in the theory of isols. It should be clear that ¢infinite’’ now
means ‘not metafinite.”” We have two problems: (1) In projectible
admissible sets, there are elements which contain a large (Z, but not
metafinite) subset. Almost any standard theorem about recursively enu-
merable or immune sets will fail. (2) A priori, there may not be enough
structure to perform a systematic search. For example, since the finite
sets can be effectively enumerated, if a T, predicate 3y¢(x,y) holds we can
effectively find a 2z such that ¢(x,y) holds for y = z but not for y < 2. This
searching enables us to enumerate a Z, set by a recursive function. In an
admissible set, there may be no definable well-ordering of its members;
hence any analogue of recursive enumerability will fail. For our purposes
we shall consider those admissible sets whose £, predicates 3y¢(x,y) can
be uniformized by a Z, function f(x) such that if 3yp(x,y) holds, so does
¢(x,f(x)). Although weaker than well-ordering, we shall be able to
generalize some basic propositions about recursive enumerability to
admissible sets.

The following two definitions and Proposition 10 are due to Jensen [3].
An admissible set M is non-projectible if it satisfies the stronger replace-
ment axiom:

(A) Yu3vVxeu[Iyp <>3Iyeve],

where ¢ is X, and only x and y are free in ¢. Otherwise M is projectible.
We say the function f(x) unmiformizes the predicate ¢(x,y) if dom f =
{x|3ye(x,9)} and vx[3y@(x,y) <> ¢@(x,f(x))]. We say an admissible set is
2, uniformizable if each Z, predicate is uniformizable by a partial
recursive function.

Proposition 10 Let M be a =, uniformizable admissible set. Then the
following are equivalent to (A):
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(B) If ueMm and a is any T, set, then u N ae M.
(C) If ueM and f(x) is a p.r. function, then f"ue M.

We note that (A) — (B) — (C) follows directly from the definition of (A);
we need Z, uniformizability to prove (C) — (A).

A non-empty set a contained in & is recursively enumevable (r.e.) if
there is a recursive function f(x¥) with domain ¢ and range a, i.e., "¢ = a.
Let us say that the empty set is r.e. A set a contained in ¢ is recursive if
ais a A, set.

Proposition 11 Any metafinite set is vecursive. Any r.e. setis Z,.
Theorem 3 Any recursive set is recursively enumerable.

Proof: Leta C ¢ be a recursive set; then there exist £, predicates ¢(x,u)
and Y¥(x,v) such that xe a <>3up(x,u) and x¢ a <> JvyY(x,v). We define the
p.r. function g(x,d) as follows, where xe On and deM is a 1-1 strictly
increasing function with domain x and range contained in €:

g(x,d) = 2<>Vwe g d[z > w]a Sue(z,u)s
vz! < z[3y < x[z2' < dy]vIvy(z'w)].

The element g(x,d) is the first element of a not in the range of d. By the
recursion theorem we can define a function f(x) such that

Flx) =~ glx, () |y < x)).

We note that if f(x) is defined, then f(x) is an element of @, and that for any
y< x, yea iff there is an x' < x such that f(x') =y. Also, f(x) is a 1-1
strictly increasing function whose domain is an ordinal w <e. If w<cg,
then it follows that @ is metafinite. If we let f(x) = f(0) for x = w, then f(x)
enumerates a. If w = g, then a cannot be metafinite. Moreover, if yea,
9y < f(y) and, from the above there is some x <y such that f(x) =y. Thus a
is the range of a strictly increasing recursive function. Q.E.D.

We would like to enumerate a =, set but, as mentioned earlier, we may
not be able to do so. However, the following will be sufficient for our
purposes.

Theorem 4 Let M be an admissible set which is non-projectible and T,
uniformizable. Let a C & be an infinite (i.e., not metafinite) Z, set. Then a
contains an infinite r.e. subset.

Proof: Let x e a <>3yp(x,y) where ¢ is Z,. Consider the Z, formula ¢'(x,z)
where ¢'(x,2) <>z = (v,w)av =2x r@(v,w). Given any x€ On there must be a
v = x which is in a; otherwise x Na = a would be in M. Since M is non-
projectible, this contradicts our hypothesis. Thus there is a w ¢ such that
¢(v,w) and hence a zeM such that ¢'(x,z). We have shown that 3z¢'(x,z)
holds for x € On. Since M is T, uniformizable there is a recursive function
f(x) such that vx¢'(x,f(x)). Define the familiar recursion functions k(z),
1(z) by z = (k(2),l(z)) and 0 if z is not an ordered pair. Let i(x) = &(f(x)).
Then for any ¥ we have Z(x) =x and @(k(x), I(f(x))); therefore rng % is an
unbounded subset of a. Q.E.D.
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Corollary Assuming the hypotheses of Theorem 4, a contains an infinite
recursive set.

Proof: We claim B = g & is a recursive set. For ye f<>3x[A(x) = y] and
yEB<>Vx <y Iw[h(x) = waw # y]. Q.E.D.

We conclude this section with a well-known theorem which also merges
the ideas of non-projectibility and Z, uniformizability. The proof uses a
weaving technique and is a variation of that found in [2].

Theorem 5 Let M be an admissible set which is non-projectible and T,
uniformizable. Let a and B be infinite T, subsets (not necessarily r.e.) of ¢
such that their complements a', B' are vecursively equivalent. Then theve
exists a 1-1 vecursive function h(x) such that W'a = B and W'a’' = B'.

Proof: Assume a'=~ ' by a 1-1 p.r. function p(x). We first note that
g =dom pUa=rng pU B and that the relations xedom p, xea, x€ rng p, x€
are Z,. Let

xedom p<«>3z¢p,(x,2), x € a <>3z,(x,2)

where ¢, and ¢, are Z,. Similarly, let ¢, y, be defined for x€ rng p and
xefB. From the above ,we have, for xeOn, Elz[<p1(x,z)vq02(x,z)] and
Jz[ Y (x,2) viya(x,2)]. Since M is I, uniformizable, there exist recursive
functions fi(x), f,(x) such that for xeOn, ¢(x, fi(x))ve,(x, fi(x)) and
Y (x, (%)) valx, fo(x)). Thus, given ¥ we can decide whether xea or
xedom p (or sometimes both). The same applies for xe 8 and xe rng p.
Secondly, since a and 3 are infinite Z, sets and M is non-projectible, @ and
B contain infinite recursive subsets y and 6 which can be enumerated by
strictly increasing recursive functions ¢, and d.. Let the p.r. function
g(x,a,,a,) =y, where xe¢On and a,x) and a,(x) are 1-1 functions with
domains and ranges contained in the ordinals, be defined as follows: If
x€rmg a,, let y=a;'(x). If not, but xedom a,, we let y = a,(x). If x is in
neither, we compute f,(x) and check the validity of ¢ (¥, f,(x)). If it is true,
then we know xedom p; we compute p(x) and see it is in rng @, U dom a,. If
p(x) is not a member, let y = p(x); if it is we let y be equal to the first
element in 6 not in rng @, U dom a,. If ¢ ,(x,f,(x)), let y be the first element
in 6 not in rng @, U dom a,. Similarly we can define g,(x,b,,b,), substituting
by, by, Y(x, fo(x), p71(%), ¢ for a,, a,, ¢,(x,f(x)), p(x), d, respectively.

We now weave the two functions together by defining the p.r. function
gs(x,a) = (¥,,9,), where a(x) maps ordinals into ordered pairs of ordinals
and k(a(x)) and [ a(x)) are 1-1, as follows: vy, = g(x,koa,loa) and
Y, = g&(x,loa,koa U{(x,y)}). Apply the recursion theorem to obtain the p.r.
function

g(x) ~ g4(x, (g [y < %)) = gs(x,8 M x);

by transfinite induction we can conclude that g(x) is in fact a recursive
function. Finally, let Z(x) = k(g(x)) and 2'(x) = I(g(x)). We claim that A(x)
has all the desired properties and that 2~ '(x) = 2'(x). Let us assume that
hMx and &' Mx are functions such that the following hold:
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(1) 2Mx and ' x are 1-1;

(2) for y<x, vea<>h(y)epB;

8) fory<x,yeB<>h'(y)ea;

(4) for y, z < x then h(y) = z<=>h'(z) = y.

We shall show that (1)-(4) hold with x replaced by x + 1. From the
definitions, we can see that Z(x) = g,(x, s Mx, 2" x); we shall examine the
definition of g,. Suppose x is k'(y) for y < x; then A(x) = y. If h(x*) = y for
x* < x, then by (4) R'(y) = x*, a contradiction. By (3) ye B<=>h'(y) = xe a;
hence xe a <> h(x) = ye B. Hence (1), (2), (4) hold for x + 1 in this case.

Suppose x is not in the range of 'l x and ¢ ,(x,f(x)) holds. We compute
p(x); if p(x) is not in the mg hlxUdom h'lMx, then A(x) = p(x). Hence
Alx +11is 1-1 and xea<>h(x) = p(x)eB. If p(x) =y is in the g A Px U
dom h' Mx, then we let h(x) be the first element of 6 C B which is in neither.
Thus 2Mx +1 is 1-1. If y = h(x*) for x* < x, then Z(x*) cannot equal p(x)
since p(x) is 1-1. Either x* is a c,ea or y is a d; e B. In either case we
can conclude p(x) = ye P and hence xea. If yedom h'lMx =x, then h'(y) #
p~'(y) = x because x is not in the range of ' 'x. Hence, as in the previous
case p(x) € B and therefore x e a. Finally, if 1¢(x, f\(x)), then @,(x, f,(x)) and
so x e a and %(x) is an element of B not in rng 2 'x. In a similar manner we
can show that 2' Mx + 1 satisfies (1), (3), and (4).

By induction we can conclude that %(x) is a 1-1 function which maps a
into B' and a' into B'. Moreover, given x either %z 'x + 1 maps an element
into x or #'(x) > x. But then h(k'(x)) = x. Therefore k(x) maps a onto B and
a' onto B'. Q.E.D.

4 Immune sets and isols  We say a C ¢ is immune if a contains no infinite
r.e. subset.

Proposition 12 Let M be non-projectible. If a is metafinite, then a is
immune.

Proof: The same argument is used as in the proof of Theorem 4. Q.E.D.

Theorem 6 Let M be non-projectible and T, uniformizable. Then the
following are equivalent:

(1) a is immune;
(2) a contains no infinite =, set;
(3) a contains no infinite recursive set.

Proof: (1) — (2) If a contained an infinite ¥, set, then by Theorem 4, a
would contain an infinite r.e. subset.

(2) — (3) If a contained an infinite recursive set B, then by Theorem 3 and
Proposition 11, 8 would be r.e. and hence Z,.

(3) = (1) If @ were not immune, a would contain an infinite r.e. subset. By
Proposition 11 and the Corollary to Theorem 4, a then contains an infinite
recursive set. Q.E.D.

Proposition 13 Let a, 8 be subsets of € such that a ~ B. Then a immune iff
B immune.
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For the remainder of this paper, let us assume that we are in a
non-projectible, X, uniformizable set M. An isol will be a RET of an
immune set. Let A denote the collection of all isols. By Proposition 13,
every element of an isol is an immune set. Note that by Proposition 12 any
RET of a metafinite set is an isol.

Theorem 7 The following ave equivalent for a RET A:

(1) A¢A;
(2) e< A;
3) A+e=A.

Proof: (1) — (2) If A¢A, then by Theorem 6, A has a representative a
which contains an infinite recursive set 3. By Theorem 3, 8~ ¢. More-
over, Bla - Banda = (a - B) U B; hence, A={a - pB) +¢;i.e.,e<a.

(2) — (3) Weknow ¢ + £ =¢. If ¢ <A, there is a RET B such that ¢ + B = A.
Thus e+ A=¢+e+B=¢+ B=A.

(3) — (1) If A+¢e=A, there exist disjoint, separable representatives a, &’
of A and ¢ and a p.r. function p(x) such that p""(a U e') D a. Since &' is an
infinite r.e. set p''e¢ C a is also an infinite r.e. set. Q.E.D.

The following two propositions can be proved in a standard manner.
Proposition 13 If Be A and A < B, then Ac A.
Proposition 14 If A, Be A, then A + Be A.

We shall try to establish a cancellation law for the isols.

Proposition 15 If A, Be A and A + € = B + ¢, then theve exists a Z < g such
that A+ Z=Bor B+Z=A.

Proof: By Theorem 2, there exist RETs U, V, and N such that A = U + N,
B=V+N, and U+e=¢=V +¢&. Since U< A and V< B, Uand V must be
isols. Hence U< ¢ and V< g, and thus U and V are RETs of metafinite
sets. Following the proof of Theorem 3, we can map any metafinite set of
ordinals into an initial segment of €. Therefore, U and V are comparable;
if U< V, there is a RET Z< ¢ such that U+Z=V. ThenA+Z=U+ N+
Z=U+Z2+ N=YV + N= B. The other case is similar. Q.E.D.

For w < ¢, we have w + 1=w, but 1 # 0; we cannot expect to have any
absolute cancellation law for the isols. The most we can expect would
result from an application of Theorem 3. We shall now strengthen our
definition: We observe that if a metafinite set is mapped properly into
itself, the remainder is metafinite and separable from the range; this
property fails for €. Let a C ¢ be isolated if whenever k(x) is a 1-1 function
such that @ Cdom &, #'a C a and h"ala - #''a, then a - A'"a is metafinite.
Thus %'"'a almost fills a.

Proposition 16 If a ~ 8 and a is isolated, then $ is isolated.

Proof: Let a =~ B by a 1-1 partial recursive function p(x). Suppose a 1-1
partial recursive function %(x) mapped B into itself and B - &'’ Bln'"B. Then



364 CARL E. BREDLAU

gx) = p~'(h((x))) maps a 1-1 into itself and a - g'alg’a. Hence the
remainder y is metafinite and a = g"’a U . Applying p(x) to both sides of the
equation and noting the definition of g(x), we have B = p''a = 2B U p''y. But
p''y is metafinite, hence 8 is isolated. Q.E.D.

If a is isolated, then A = (a) will be called a Cancellation type (C-type).
By the previous proposition, every member of a C-type is an isolated set.
Also, every metafinite set is a C-type.

Theorem 8 The following ave equivalent for a RET A:

(1) If a€e A, then a is isolated;
(2) If A=A + B, then B < &.

Proof: (1) — (2) Suppose there are representatives a, 8 of A, B such that
alg and a 1-1 p.r. function k(x) such that @ U 8 C dom & and A'"(a U B) = a.
Then #'a C a and #'ala - #a because a - #'a = K'B. Since a is isolated,
the remainder 7''8 is metafinite, and hence also 8 = 2~ '(#''8); thus B< ¢.

(2) — (1) Suppose a 1-1 p.r. function #(x) maps @ into itself such that
h"ala - '"a. Then a =~ h"a and a = k"a U (a - #"a). Taking types, A= A+
(@ - h'"a) = A + B. Because B < g, the remainder is metafinite. Q.E.D.

Proposition 17 If A is a C-type, then A is an isol.
Proof: If A is not an isol, then A = A + ¢. Q.E.D.

The converse does not hold, as shown by the following example. Let a
be an immune but not metafinite set of limit ordinals. Let 8= {x + n|xeaa
n< w}. If B contained an infinite r.e. subset , then  would be unbounded,
since our admissible set is non-projectible. The projection of y into a by
the recursive function f(x + n) = x, where x is a limit ordinal, would also be
an unbounded r.e. subset. If we let g(x) = x + 1, then g(x) maps B into itself
with separable remainder a. Hence B =~ g'"SU a; taking types, B=B + A,
but A is not metafinite.

Theorem 9 (Cancellation Law for C-types) If A is a C-type and X, Y are
RETs and X + A=Y + A, then theve is a RET Z < g such that either
X+Z=YorY+2Z=X.

Proof: By Theorem 2, there exist RET's U, V, and N such that X = U + N,
Y=V+N,and U+A=A=V +A. Since A is a C-type, U and V must
be metafinite RETs and hence comparable. If U< V, then there is a RET
Z<gsuchthat U+Z=V. ThenX +Z=U+N+Z=U+Z+N=V+N=Y.
The other case is similar. Q.E.D.

Theorem 10 If A and B ave C-types, then A + B is a C-type.

Proof: Suppose A+B+X=A+B. then (B+X)+A=B+A, and by the
previous theorem there isa Y<e suchthat B+ X+ Y=Bor B+X=B+ Y.
In the first case, X <X + Y< ¢ since B is a C-type. In the second case,
apply the theorem again so that for some Z < ¢ either X +Z =Y < ¢ or
X =Y+ Z<g. Ineither case X < g. Q.E.D.



ADMISSIBLE SETS 365

Theorem 11 If A < B and B is a C-type, then A is a C-type.

Proof: LetA +C =B and suppose A +X=A. ThenA+C+X=A+X,i.e.,
B +X = B. Q.E.D.

Theorem 12 Let A be a C-type and X, Y be RETs. If A + X< A + Y then
X<Y+Zwhere Z< ¢.

Proof: Let A+X +V=A+Y. By Theorem 9, there is a U< ¢ such that
X+V+U=Yor X+Y=Y+U. In the first case let Z = 0; in the second
let Z=10. Q.E.D.

A RET A is an orvdinary isol if A # A + 1. Then an ordinary isol is a
C-type since, if A=A +X and X #0,thenA<A +1<A + X = A and hence
A=A+1. An isol A is indecomposable if A =B + C implies B< ¢ or
C < e. An indecomposable isol A is also a C-type. We therefore have
finite sums of metafinite RETs, ordinary isols, and indecomposable isols
which are C-types. It is not known if there are others.

A final comment should be made about the importance of non-
projectibility. Suppose an element of M contained an infinite r.e. subset 7
of ordinals. Let us denote by ¢* the smallest ordinal such that 7 C g*.
Then ¢* or any ordinal greater than it cannot be immune. Also 7 cannot
have an infinite recursive subset B; for if it did, 8 = £* N B3 would be in M by
Proposition 1. This fact causes (3) — (1) of Theorem 6 and (1) — (2) of
Theorem 7 to fail when we let @ and A equal £* and (c*), respectively.
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