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RECURSIVE EQUIVALENCE TYPES ON RECURSIVE MANIFOLDS

LEON W. HARKLEROAD

Preliminaries* Standard recursive theory is worked on N= {0,1, 2 , . . .} .
In this paper the theory is worked on recursive manifolds. An enumeration
of a set A is a map from N onto A. If the enumeration is injective, it is
said to be an indexing. The ordered pair (A, tl) is said to be a recursively
enumerable manifold (REM, for short) if A is the union of enumerated sets
(i.e., for some index set P, there is a collection of enumerations {ap}p€P

with A = U Ap. where Ap = ap(N)), with the enumerations satisfying certain
p e P •

conditions. % = {ap}P€pis called the atlas. Each Ap is called a patch. For a
set SQ A each a^iS) is called a pullback (into iV) of S. To make <-A,$ί> an
REM, we require that each aq

ι{Ap) must be recursively enumerable (r.e.,
for short) and the domain of a partial recursive function (p.r. function, for
short) / into ap

1(Aq) satisfying aq = apof. If each a~q

ι{Ap) is recursive (rec,
for short), the manifold is a recursive manifold (RM). If each ap is an
indexing, (A,%) is an injective REM (IREM). A manifold which is both an
RM and an IREM is an injective recursive manifold (IRM). A manifold such
that each patch nontrivially intersects at most finitely many other patches
is said to be finitary. For reasons that will appear in the proofs of the
first two theorems, all manifolds considered in this paper will be assumed
to be finitary IRM's unless otherwise specified. (AT, I) is defined to be the
finitary IRM with I = {a}, a(n) = n.

If (A,%) is an REM and (B, ©) is another REM with enumerations
βq, Qt Q, the cartesian product Ax B can be given a manifold structure as
follows: for each (/>, a) in P x Q, let Ap x Bq be a patch of A x B enumerated
by γPιq where γp>q(σ(n,m)) = (ap(n), βq(m)), σ being the standard rec. bijec-
tion from N2 onto N. This manifold on Ax B is called the direct product of

*This paper is a thesis written under the direction of Professor Vladeta Vuckovic and sub-
mitted to the Graduate School of the University of Notre Dame in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy with Mathematics as the major subject in
August 1976. The author is indebted to his director, Professor Vladeta Vuckovic, for his patient
and constant assistance.
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<A,3I) and (5,53). If two manifolds are finitary IRM's, so is their direct
product.

A subset of A is 21-r.e. iff each pullback of the subset is r.e. in N.
A subset is $ί-finite iff each of its pullbacks is finite, and so on. If (A, 31.)
and (B, 93) are two REM's, a function from X c A into B is $ί-<B-p.r. iff X is
2ϊ-r.e. and for all peP, qeQ, there exists fp>q which is a p.r. map:
Dp§q = ap\XΓ\f~ι{Bq)) — N such that foap = βqofPιq on Dp,q. An f|-»-rec.
function is one which is 2ϊ-$B-p.r. and total, the latter term meaning defined
on all of A.

Two atlases on a set A are strongly compatible when a set is r.e.
(resp. rec.) for one atlas iff it is r.e. (resp. rec.) for the other and a
function is p.r. for one atlas iff it is p.r. for the other.

A function is compact iff each patch's inverse image under the function
may be covered by finitely many patches. An $f-33-p.r. compact function is
called an %-W-morphism. (This differs slightly from the terminology in
Vuckovic [7]. He requires morphisms to be total.) The composite of p.r.
maps is not necessarily p.r., but the composite of morphisms is a
morphism. Still, the inverse map of a 1-1 morphism is not necessarily a
morphism. However, if we define an embedding to be a 1-1 morphism
whose inverse is a morphism, then the set of embeddings is closed under
composition and taking inverses. Occasionally, "embedding" will be used
to mean a not necessarily 1-1 morphism such that the direct image of each
patch is bounded, i.e., covered by finitely many patches. When this
alternative meaning of "embedding" is intended, it will be explicitly
specified. If /: (Au Sli) — (A29 %£ and g: (Bl9 ©J — (B2, ©^ are embed-
dings, so is

/ x g: (Ai x Bl9 5ίi x »!> -> (A2 x B2, %2 x « 2).

If By C are two subsets of A, B j C means that/is an embedding such
that .Bis contained in dom(/), the domain of /, and f(B) = C. If there exists
/ such that B γ C, then we say B ^ C. Since the embeddings from A into A
contain the identity map and are closed under composition and taking
inverses, ^ is an equivalence relation. The equivalence classes are called
recursive equivalence types (RET's).

Two subsets of A, C and D, are separable iff there exist two $l-r.e.
sets, Ei and E2, such that C c Eu D c E2, and EιΠE2 = β. This is denoted
C\D.

Cαrd(S) represents the cardinality of the set S, ord(S) its ordinal
number. We write No f° r cαrd(iV), ω for ord(iV). A map Φ from the power set
of A, P{A), into P{A) is numerical iff cαrd(S) = cαrd(T) < °o implies that
cαrdl(Φ(S)) = cαrd(Φ(T)) < °°. Φ is a combinatorial operator iff it is numeri-
cal and it has a pseudo-inverse Φ"1 (which maps U Φ(S) into the collection

of finite subsets of A) such that#e Φ(S)φ^>Φ~1(x) c S. Two combinatorial
operators, ΦL and Φ2, are equivalent iff cαrdίΦ^S)) = cαrd(Φ2(S)) for all 5.
A dispersive operator is one that is numerical, maps non-identical sets to
disjoint sets, and maps infinite sets to the empty set, φ. The combinatorial
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operators are in 1-1 correspondence with the dispersive operators, via
Φ(S) = U MT), MS) = Φ(S) - U Φ(T). If Φ is a combinatorial operator,

TCS TC\S

Φ(S) = U Φ(Γ) = U Φ(T).
τ£s res

T finite

A convention: the word classical will be used to refer to notions in
standard recursive theory on JV whose analogues on manifolds we will be
considering. One classical concept we will be using is that of an isol. An
RET [B] on JV is an isol iff B contains no infinite r.e. subset (also iff
[B] + [C] = [B] + [D] =Ξ> [C] = [D] for all C, D c JV.) This last formulation is
that of quasi-finiteness of [B] in the groupoid of RET's on JV. If [β] is an
isol, B is said to be isolated. Another classical concept is that of limiting
recursivity. A function /: JV —> JV is limiting rec. iff there exists rec. g
such that f(x) = \\mng(x, n) for all x (\\mng(x, n) = k if there exists M such
that n ^ M implies g(x,n) = k, \\mng(x,n) undefined otherwise). Gold|[4]
has shown that / is limiting rec. iff / is p.r. relative to K, the r.e. but not
rec. set {x\xe 6om(φx)}, where φx is the Λrth p.r. function under the standard
enumeration.

To dovetail is to perform Turing machine computations simultaneously.
For example, perform the first step in evaluating /(0). Then perform the
first two steps in each of the evaluations of /(0) and/(l). Then perform the
first three steps towards /(0), /(I), and /(2), etc. This example shows the
computations of /(0), /(I), /(2), . . . being dovetailed.

The set of constructive ordinals, denoted CO, is enumerated by a which
has domain denoted Do. (We make an exception for a of our convention that
enumerations have domain = all of JV.) If β = a(k), then β + 1 = a{2k), and if
y is a G8del number for / such that/(O), /(I), . . . is an increasing sequence
of ordinals with limit y, then α(3 5y) = γ. All elements of Do are of the
form 2 t χf x = 1 or 3. 5y for some y, where 2 t # = #, 2 t χ= 2(2i*l The

p.r. function I is defined on all numbers of the form 2 £ x, x = 1 or 3 5y for
some y, by I (2 | #) = &.

5 = set theoretic complement of the set i?
JB - C = set theoretic difference of B and C

Xβ = characteristic function of B. XB(x) = 1 if * e 5, 0 if xiB.
fog = composite of functions/ and^
/|,β = restriction of/ to 5

ΛΓ - y = proper difference. x-y=x-yiίx^y, 0 iί x ^y.
A= and
- = o r

Λ = for all x

y = there exists x

μy(. . .) = the smallest natural number y such that ( . . . ) .
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Section I: Finitary IRM's In this section it is shown that addition of
RET's may be defined if the manifold is a finitary IRM. The finitary IRM's
are shown to be equivalent to IRM's with disjoint patches, and a manifold
structure on N2 is defined and discussed.

Theorem 1.1 Let C4, 31) be a finitary IRM which is strongly genuine
(meaning that for all p0 in P, APQ - U Ap is an infinite set. Note that since

U P*Po i I
Aύ = Aϋ - U Ap = APl —a union *of finitely

" r ° PφPio ° ApΩΆpQφφ r fo
P*Po

many Aps.) Then there exist two (injectiυe) embeddings flf f2; (A, 31) —»
(A, 31) such that dom(/i) = A = dom(/2) and range (/J Π range (/2) = 0.

Proof: Let y be the ordinal number of the set 31. (By the axiom of choice,
31 can be well-ordered.) Identify the index set P with the initial segment of
ordinals [0, y). We will inductively construct maps f1Aβ and f2>β for each
β < γ. Let {Aβ, 3lβ) be the submanifold of {A, 31) consisting of U Λδ with the

ιδg.j3

corresponding αδ 's. The /*' |β will be embeddings: (Aβ, %β) — <A3, «P> with
domain A13 and disjoint ranges, these embeddings satisfying the ordering
property that /*'δ c fhβ for δ ̂  β and the two manifold properties:

(A) Each patch of Aβ is mapped by ftS into the finite union of patches of Aβ

which non-trivially intersect the given patch,

and

(B) For every x in Aβ, there exists δ such that Λδ c Aβ and x, flfβ{x), f'[β{x)
are all in A§.

Inductive Construction

I. β = 0. Then let /lfO(αo(w)) = αfo(2w), /2'°(α0W) = ao(2n + 1). Since a0 is
bijective, this construction is well-defined, and / l f 0 , /2'° have disjoint
ranges. These maps are certainly embeddings, and the ordering and
manifold properties hold trivially.

II. Assume inductively that the/*'p have been constructed for all p < β. Let
A= \JAP. Take xeAβ. If xeΆ, set fi>β(x) = f'tx) (where f'~= \Jfip\

So it remains to define f*^ on Aβ - A. This set is infinite by the strong
genuineness. Furthermore, S Ξ oiβl(Aβ - A) = N - U <*al(Ap). Since the

f <'β
manifold is an IRM, each a^iAp) is recursive, and since the manifold is
finitary, (J a^iAp) can be written as a finite union of certain oΓβl(Ap). So

pyβ

aγ(Aβ - A) = iV—a finite union of recursive sets, hence is recursive. Let
glf g2 have domain S and map S into S such that gu g2 are 1-1 p.r. with
disjoint ranges. For x in Aβ - A, set the values of the fiβ(x) as
QβigΛQβ1 (%))), i = 1> 2. We now verify the properties of the/*'!ί3.

Injectiυe: If f1>β{xι) = /lf'β(^2)> o n e o f three cases may hold: (I) xl9 x2tA,
(II) ΛΓI e A, ΛΓ2 e Aβ - A (and the symmetric case), (III) xl9 x2eAβ - A. In case
(I), fltβ{Xi) =/1#*(#*). Since by induction the function / 1 # Λ is 1-1, JVI = x2. In



RECURSIVE EQUIVALENCE TYPES 5

case (II), / 1 < U ) = / 1 | A W ^ , but fιφ(x2) e Aβ - A, so / 1 ( pfc) can never
equal fltβ(x2). In case (III), f1)β(Xi) = ̂ ( g i ^ V i ) ) ) . Since aβ and £Ί are
injective, this implies that xγ = x2. Thus, in all cases where f1>ιβ(xι) =
flfβ(x2), Xi = x2, so it is true that/1"3 is 1-1. Likewise for/2' |β.

By considering cases, it similarly follows that for any xu x2, fι'^(xi) Φ
f2'β(χ2), i e., the ranges are disjoint. And by induction and the fact that fhlβ

restricted to A equals /*'" ft>β Ώfhpfor any p ^ β. So, it remains to verify
(A) and (B) and to show that the ft>β are embeddings.

Take xeAβ. Either xe A or xe Aβ - A. In the former case, there exists
p with ApQλQAβ such that x, fίβ(x) =fi'~(x)eAp by induction. In the
latter case, by construction we have that fhβ(x) e Aβ - A, so x, fhβ(x) e Aβ.
So (B) is satisfied. But now, if xe Aβ, either xe Aβ - A, which implies that
fi>β(x) eAβ, or else xeAβ Π A. In that case, by (B) there exists p such that
x, fi>β(x) e Ap. Since xeAP, Ap Π AβΦ 0. So in either case, fhβ(x) e a patch
of Aβ which intersects Aβ. For the other patches, this property holds by
induction. So the f'β satisfy (A).

Now (A) implies that the {fι'β)~ι are compact. Furthermore, consider
(fitβY\A9). If xe (fiβy1(Ap)9 then f'β(x)eAp. But by (B), there exists p f

such that x, fi>β(x)eApι. Thus xeAp, where Ap, ΠAPΦ0 (since the inter-
section contains fifβ(x)). So we have {filβ)~ι{Ap) c (J Apl, a finite union
of patches, thus the ft>β are compact. AP,ΠAPΦΦ

Hence, everything has been proved except that the fi>β are $I-2!-p.r.,
i.e., for all ordered pairs (pl9 p2) in P x P, the function ap^ fhβ aPι has r.e.
domain and is p.r. for i = 1, 2. Since by induction the/*'"are $t-$|-p.r., we
need only check the behavior of fi>β with respect to ordered pairs i n P x P
of the form (β, p) or <p, β).

(I) (β, p), p Φ β. In this case, we have ^ ( ( / ^ p U p ) ) = ̂ ( ( / ' " ' T 1 ^ ) ) =
U o$\A9ι Π (f'T'Up)). But, oiβ\Ap, n (f'T'iΛp)) = a^ap,a^(Apl Π

Apt'ΠAβΦφ
p'Φ:β

(f'-y^Ap)). Inductively, a.~pΐ{Ap, Π (//'")"1UP)) is an r.e. subset of N. But,
oΓβlapι is a p.r. function on N. Thus αiβ̂ Ap/ Π (fhΛ)~1(Ap)) is r.e., and
Qfβ1((/ί'/3)~1(Ap)), being a finite union of such sets, is also r.e. Furthermore,
a.~~p

ιft>βoiβ when restricted to aγ{Ap, Π (/*'")" 1(AP)) equals a}1ft>βap,ap?~aβ

which equals (aβ1fh'β apι)o (apr aβ)} the composite of two p.r. functions,
hence p.r. Then oΓp

ιftlβa.β, being a finite union of these p.r. functions, is
p.r., as desired.

(II) (p, β), p Φ β. In this case note that ftlβ\Ap= in o/*'~|Λ , where in is the
inclusion: A —> Aβ. Inductively, the/*'" are morphisms, and, in addition, in
is a morphism. Hence, the ino/ f f Λ are p.r. and thus the a^i'ino/*'"μ, ) are
p.r. with r.e. domains α~1(ino/''T1Wβ) S i n c e fSl\AP= 0 n ° / ' ' A ) | v t h i s

implies that aβ

ιfif$ap is p.r. with r.e. domain (α?p1(/*'̂ )""1)(-Aβ), as desired.

(III) (β,β). a;ιf' fiaβ = t[ U ti, where if = α ^ / ^ β ^ - i ^ - ί ) and 4 =
aβlfΊ"βaβ\aQ1{Aβnλl' First, note that t[ is simply the p.r. map (with rec.
domain) g{. Also, t2 - a~βl oino/*'" oin^ocϋβ. Not only is in a morphism,
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but so is in"1, so that t\ is a composite of morphisms, hence p.r. Thus the
overall aβ

ιf1'^ aβ is p.r., as desired.

So the functions ftf'β are shown to be $ί-5f-p.r., completing the proof of
the theorem.

Theorem 1.2 Same as previous theorem, except we remove the hypothesis
of a strongly genuine manifold.

Proof: The same inductive structure as in the previous theorem is used.
Modifications must be made to allow for Λβ - U Ap to be (possibly) finite.

To this end, we associate with each β a number c(β). Initially, all c(β) are
set equal to 0.

I. Construction off1'0 There exist at most finitely many p Φ 0 such that
Ap Π Ao Φ 0. Thus there are at most finitely many p such that Ap - Ao is
finite and nonempty. If no such p exist, construct the/*' 0 as in the previous
theorem. If such p exist, let them be pl9 . . . pk. Since each Ap.- Ao is
finite, each A9i Π AQ is infinite. Thus for each i = 1, . . ., k, there exists a
set Si9 S{ c APj. Π A>, such that cαrd(S, ) = 2 x card(Ap. - Ao) and such that the
sets Sl9 . . ., Sk are pairwise disjoint. Let the set T be defined to be

αoMΛ - Q sη Then T = iNΓ-a finite set, so T is infinite rec. Hence there

exist gi and g2 mapping iVinto T such that domίgΊ) = N = dom(g"2)> range(gj Π
ranged) = 0, and t h e ^ 1-1 rec. Set the value of ftf0(x) to be αo(gϊ(αί *(#))).
Set c(pi) = 1, i = 1, . . ., &.

II. Assume fί>p constructed for all p < β. Iί xeA, setfί>β(x) =fίtΛ(x).

Case A. c(β) = 1. Then inductively there exists-p < β such that Λβ - U An

is finite and such that (range (/'") U range (/2'Λ)) ΠS = 0, where S c A,β Π Ap

has cardinality 2 x card (Aβ - (J Aμ\. Thus define ft>β on Aβ - A such that

V ^ P /
f' PiAβ-A) c S, the functions/'β are 1-1, send fι'β(Aβ-A) Γιf2'β(Aβ - A) = 0.
In this case, the /*'β are now defined on all Aβ.
Case B. c(β) = 0. Then Aβ - A is infinite with recursive image under otβl.
There are at most finitely many p such that p > β, c(p) = 0, and Ap - ^ is
finite. If no such p exist, use the construction of the previous theorem. If
such a p exists, c(p) = 0 implies Ap - A is infinite, thus so is (Aβ Π Ap) - A.
Let pi, . . ., pk be all such p. As before, there exist Sl9 . . ., Sk, pairwise
disjoint sets such that S{ c (AβΠAp) - A, card(Si) = 2 x cαrd(Ap. - Aβ).

T, defined to be oΓβ

ι\Aβ - A - JJ S j , is infinite r e c , so let^Ί, g2 be 1-1 p.r.

with domain a~β

ι{Aβ - A) and disjoint ranges c T. Set f*'lβ(x) = ̂ (^/(ofβ1^)))
for xeAβ - A, and set c(p/) = 1, z = 1, . . ., /?. In this case, the ftf^ are
defined on all A*3. The ft>β have properties as in the previous theorem and
yield the desired fu f2. Q.E.D.

By this last theorem, any two RET's [B] and [c] have separable
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representatives, fι(B) and /2(C), where by the RET [B] we mean the set of
all D such that there exists an embedding / with B c dom(/) and f(B) = D.
Now addition of RET's may be defined-the sum of two RETs is the RET of
the union of separable representatives of the two given RET's. As in the
classical case, addition of RET's is well-defined and satisfies the usual
properties of commutativity, associativity, etc. To obtain the separating
embeddings which allow addition of RET's, the assumption of a finitary IRM
was made. These properties assumed for the manifold figured prominently
in the construction, and it is not clear that separating embeddings exist for
even simple manifolds that violate one of the assumed properties. In
particular, if A has two patches Ax and A2 such that aϊ1^) and a^iA^ are
r.e. but not r e c , the existence of separating embeddings for A is open. On
the other hand, the requirement of finitary IRM is somewhat strict. Using
another inductive proof, we characterize the finitary IRM's.

Definition 1.3: Two atlases 51 and 53 on a set A are matched iff they are
strongly compatible and for every REM (M,TO), / i s an 3W - 51 morphism
(resp. 51 - 9W morphism)<##>/ is an 9W - 53 (resp. 53 - $W) morphism.

Theorem 1.4 Let (A, 51) be a finitary IRM. Then there exists 53, an atlas
for A, such that (1) 51 and 53 are matched, (2) pλ Φ p2 implies that BPι Π BP2 =
0, and (3) βp is 1-1 for each p. (Thus, in particular, (A, 53) is also a
finitary IRM.)

Proof: We prove the result here for the case where (A, tf.) is strongly
genuine. A modification as before will handle the general case. Set βΌ = a0.
For an ordinal p > 0, define βP as follows: oi^ι(Ap - U AΛ is an infinite

rec. set, hence the range of an injective rec. function gp. Let βp= otpiogp.
As the composite of two injective functions, βp is 1-1. Since BP= Ap - (J Λδ,

δ<,p

each patch of 53 is disjoint from all the others. So we have properties
(2) and (3) satisfied. We also have that U Aδ = \J Bb and that BPQAP.

δ<p δ< ; p

Given p, there exist at most finitely many δ such that A§ Π Ap Φ 0, so there
are at most finitely many δ such that BδC)ApΦ 0. Likewise, there are at
most finitely many δ such that Bp Π Aδ Φ φ for a given p.

Let C be 2I-r.e. Then for each p, cΓ^C) is r.e., so βP\C) = gp^oip^C))
is r.e. Hence C is 53-r.e. Conversely, let C be 53-r.e. Then

a'p\C) = apHC Π Ap) = a~P

ι(c n (B}}pφφ(B, Π Ap)))

= U a-p

1(Cn(BbOAp))= U gb(βl\C))
BδΓιApΦφ BδΠApΦφ

= a finite union of r.e. sets, hence r.e. So C is 5ϊ-r.e. iff C is ©-r.e.
Similarly, / is 51 - 9W (resp. m - 51) p.r. iff/is 53 - 9W (resp. m - 53) p.r.

Let / be an 51 - 9W morphism. Then each f~ι(Mt) is covered by finitely
many Ap. But each Apι is covered by finitely many Bb. Since / is also 53 - 9W
p.r., / i s a 53 - 9W morphism. Likewise, if / is a 53 - 9W morphism, / i s an
51 - 9W morphism. Let/be an m - 5ϊ morphism. Then e a c h / " 1 ^ ) Qf'ι{Ap)
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is covered by finitely many Mt, and/is an 9W - 3$ morphism. Conversely,
if / is an 9W- » morphism,

Γ\AP) = f'l( U (Ap Π Bδ)\ c U f-\Bb),

a finite union of sets, each of which can be covered by a finite number of
Mt. So again / is an 9W - 21 morphism, and the proof is completed.

As previously mentioned, in this paper we restrict our considerations
to finitary IRM's. In view of the above theorem, we hereafter assume that
the finitary IRM has an atlas whose patches are pairwise disjoint. In
Vuckovic [1974] is proved the fact that any IRM with finitely many patches
is strongly compatible with an indexing. Since the morphisms under the
two structures coincide, a finite-patch IRM is, in fact, matched with an
indexing. A finitary IRM with a countably infinite number of patches is, by
the construction in the previous theorem, matched with an atlas consisting
of a countably infinite number of disjoint patches. By renaming the points,
this is nothing more than the manifold (AT2, 21) with am(ή) = (m, n). Thus
(N2, 21) merits a closer look. First of all, as Dekker and Myhill pointed out,
all infinite r.e. subsets of N belong to the same RET. However, infinite r.e.
subsets of (N2, 21) belong to four different RET's:

(1) Infinite r.e. sets contained in finitely many patches,
(2) Infinite r.e. sets C contained in infinitely many patches:

(a) Each C ΠAP finite,
(b) C f)Ap infinite for at least one, but finitely many p,
(c) C ΠAp infinite for infinitely many/).

A much more significant difference between N and (N2, 21) is that for
(N2, 2ί), Theorem 23 in Dekker and Myhill [3] fails. This theorem, crucial
in showing that the RET's on N are partially ordered, states that for each
Z>, there exists B such that [C] + [D] = [C] iff [C] ^ [B]9 where [X] z [Y] iff
there exists Z such that [X] = [Y] + [Z], This theorem fails in <iV2, 21) when
D = {(0, 0)}, for if d = {(m, 0)\meN} and C2 = {(0,n)\ne N}, then [ d ] + [D] =
[Ci] and [C2] + [D] = [C2]. If Theorem 23 held, then there would exist B
such that [Ci], [C2] ^ [B] and [B] + [D] = [B]. But [ d ] , [C2] ^ [B] implies
that B is a finite set, which implies that [B] + [D] Φ [B].

Section II: Isols In this section the usual characterizations of isolated
sets are seen to remain equivalent in any finitary IRM (A, 2ί). Further-
more, a set satisfies these characterizations iff all of its pullbacks are
isolated and only finitely many are nonempty. The collection of RET's of
subsets of A with only finitely many nonempty pullbacks is additively
isomorphic to the collection of RET's on N. A weaker form of isolation is
also noted.

Proposition 2.1 For B ςz A, let ?{B) mean that B contains no 2l-r.e. subset
C such that cαrd(C) ^ $0, and let Q(B) mean that Bf\Ap=0 for all but
finitely many p and aγ{B) is isolated (i.e., containing no infinite r.e.
subset) for all p. Then P(£)<N>Q(£).
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Proof: Φ= Assume ~ P(£). Then let C be as in the definition of ?{B).

Case I. C ΠAp is infinite for some p. Then C $ί-r.e. implies that a~p

γ{C) is
an infinite r .e. set, so ~Q(J3).

Case II. C ΠAp is finite for every p. Then, since cαrd(C) ^ tf0, C ί l A ? must
be nonempty for infinitely many p, so again ~Q(B).

=Φ Assume ~Q(i?). Then either:

Case I. B ΠAp Φ <jύ for infinitely many p. Then there exists {c^Zi such that
if iΦj, CieAPl, and CjβAP2, then Pi * P2 Letting C = {c^}^ shows that
~ P ( £ ) .

C#S£ II. There exists p such that a.pl(B) is not isolated, hence it contains an
infinite r .e. subset 5. Then ap(S) shows that ~ ?(B).

Proposition 2.2 For B ςzA, let K(B) mean that there exists no f such that f
is an embedding on A, B Q dom(/), f(B) c B, and f has the property that
\fn(xo)}Z ^ an r .e . set for all x0. Then ?{B)Φ^\K{B).

Proof: <̂ = Assume ~P(JB). Let C be as in the definition of P (B).

Case I. C ΓιAp is infinite for some p. ap

λ(C) is an infinite r .e. subset of N,
so contains an infinite rec. subset S. Let S = range (g ), g & total rec.
function. Set f(ap(g(n))) = ap(g(n + 1)), otherwise f(x) = x. The function /
shows that - R.(B).

Case II. C Π Ap is finite for all p. Then C Γ)ApΦ0 for infinitely many p
and, as in the previous Proposition, there exists {CJ}^ c C with the
property described there, l^etfia) = ci+ι, f(x) = x otherwise. T h i s / shows
that ~R(J3).

=Φ Assume ~ R (B). Let / be as in the definition of R (B). Let x0 e B - f(B).
By the standard reasoning, {fn(x0)}^i is infinite. By assumption on /, that
set is r .e. So - P(B).

Definition 2.3: B is regularly isolated (r.L, for short) iff P(B) (iff Q(B))

(iff R(£))

Definition 2.4: B is strongly isolated (s.i.) iff there exists no embedding/
mapping A into A such that B c dom (/) and /(£) c £ .

Since r . i . iff R(B), s.i. implies r. i .

Definition 2.5: B is weakly isolated (w.i.) iff each ap

ι(B) is isolated.

Since r . i . iff Q(£), r . i . implies w.i.

W.i. and r.i . do not coincide, for consider N2 with its usual atlas. If
B = {(n, l ) }^ 0 , then a"^l{B) = {l} for each p, so B is w.i. But since B inter-
sects infinitely many patches, B is not r. i . Note that a set B is w.i. iff any
$l-r.e. subset of B must be $ϊ-finite.

Proposition 2.6 Let [ l] be the RET of any {and hence all) one-element
subsets of A. Then B s.i. = K # ] Φ [B] + [1].



10 LEON W. HARKLEROAD

Proof: Assume [B] = [B] + [1]. Then BJ C Ό {x0}, where C f B, f, g
embeddings with B Q dom(g), C U {x0} c dom(/), xof^C. Thus fog is an
embedding, B c dom(/o^), (fog)(B) c 5. Furthermore, f(x0)fέ(fog)(B), so
(fog)(B) c 5. Hence/o^ shows that J5 is not s.i.

Proposition 2.7 [5] * [5] + [1] =Φ5 r.i.

Proof: Let JB be not r.i. Then ~P(B). The constructions used in showing
that P(B) iff R(£) yield that [B] = [5 - {x0}] for some x0 e B. Then [5] + [1] =

[B-M + ίlM*].
Proposition 2.8 5 r.i. =#>£ s.i.

Proof: Assume I? is not s.i.

Case I. B DApΦ 0 for infinitely many />. Then ~Q(B)9 so 5 not r.i.

Case II. £ Π A p = 0 for all but finitely many p. Consider the manifold
(Ar, 51'), where A' = U A,, and 31 is given by the ap with 5 Π Ap Φ 0.

This is a finite atlas, so there exists an indexing a such that {a} and
{cfyl-B C\ApΦ0} are matched. Now 5 not s.i. implies that there exists an
embedding / such that β c dom(/) and f(B) c B. By restricting / if
necessary, we may assume that dom(/)cA\ We have / embedding =Φ
/$I~$I-p.r.=#>/$t'-2l'-p.r. == (̂by matchedness)/p.r. on the enumerated set
Ar (i.e., /α-α-p.r.). By the classical result, the enumerated set B contains
an infinite r.e. subset. By matchedness, B contains an infinite $l'-r.e.
subset, thus B contains an infinite % -r.e. subset, so ~ ?(B), i.e., B not r.i.

Q.E.D.

Theorem 2.9 B r.i.4Φ[£] Φ [B] + [l]Φ^B s.i.

Proof: The three previous propositions.

In light of this, we call B isolated iff it satisfies any (hence all) of
these equivalent properties.

Notice that a set B is contained in a finite union of patches iff it
non-trivially intersects only finitely many patches. Also note that since
members of the same RET are related by embeddings (in particular,
compact maps), if [B] = [c] and B intersects (non-trivially) only finitely
many patches, then so does C. Let CL ={[i?]|i? is contained in a finite
union of patches of %}. (Notice that the dependence on the manifold is
suppressed in the notation CL.) If [2?]eCL, then B is contained in a
submanifold of (A, 31) whose set of patches is finite, each patch, of course,
indexed by the same map as it was indexed by in (A, 31). We call such a
submanifold a finite-patch submanifold. This submanifold structure is
matched with an indexing α. Set <p([B]) = [αf *(£)]. Thus φ maps CL into the
collection of RET's on N.

Theorem 2.10 φ is well-defined, i.e., independent of representative B and
independent of choice of indexing a matched with some finite-patch
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submanifold of A which contains B. Furthermore, φ is bijective and an
additive homomorphism.

Before proving this, we note an immediate

Corollary 2.11 [B], [C]e CL, [B] ί [C], [C] Ξ [B]=Φ[B] = [C].

Proof of Corollary: [B] I [C], so [C] = [B] + [D], Note that [D] also belongs
to CL. Hence φ([C]) = φ([B]) + φ([D]), SO φ([B]) I φ([C]). Likewise, φ([C]) i
φ([B]). Since l i s a partial ordering on the RET's on N, φ([B]) = φ([C]).
Since φ is 1-1, [B] = [C]. Q.E.D.

Proof of Theorem 2.10: For convenience, we introduce the following
definition: a is an enumeration appropriate for B ([B]eCl) iff a is an
indexing matched with a finite-patch submanifold of (A, 51} which contains B.

Well-defined: Let [Bγ] = [B2], alf a2 enumerations appropriate for Bu B2,
respectively. [Bι] = [B2], SO there exists an embedding / with Bγ c dom(/)
and /CBi) = B2. We may restrict / so that Bι c dom(/) c a^N), B2 c
range (/) c a2OV). By matchedness, / is p.r. on the enumerated sets, hence
g = a2~

ιofoax is p.r. in the classical sense. But g is also a 1-1 map, and
g{aϊι(Bι)) = a^iBj. Thus [aΐ^B^] = [a2

1(B2)], and thus φ is well-defined.

Homomorphism: Let [B^, [B2]eCl. We may assume Bu B2 separable, so
[Bi] + [B2] = [5X u B2], Let a be an enumeration appropriate for Bλ U B2.
Then a is also appropriate for £ x and for B2. φ({B1 U B2]) = [a'1(B1 U B2)] =
[a'1(Bί) U oί^1(B2)]. Since 5X, 5 2 are separable and a is appropriate, a~1(B1)9

oΓι{B2) are separable, so it follows that

[a'iBj u cΓ'Uy] = [α" 1^!)] + [ α " 1 ^ ) ] = <p{[Bj) + <?([S2]).

Thus φ is a homomorphism.

Injective: Let [5X], [^2]^CL such that ^([A]) = <^([ 2̂]), and let al9 a2 be
enumerations appropriate for Bu B2. So there exists g, a. 1-1 p.r.
function, dom(g ), range (^ ) c iV with g satisfyinggiα^iBi)) = α2

ι{B2). Hence
fagα i1)!*! = B2 The composite map α2gαlι is 1-1 p.r. on the enumerated
sets, so by matchedness, it is an embedding on (A, 31) thus [B^ = [B2],
This proves that φ is 1-1.

Surjective: Let [B] be a RET on iV. Let B* be the image in A of B under
any of the enumerations comprising the atlas. Then φ([B*]) = [B], SO ψ is
onto, and the theorem is proved.

In view of the above theorem, we refer to elements of CL as classical
types. Note that if B is isolated, then [B] is classical. Furthermore, B is
isolated iff P (B) iff φ([B]) is an isol. Also, if B and C are separable, so
are a"1(B) and oΓι{C), these two sets being representatives for φ([B]) and
ψiiC]), respectively, a being an enumeration appropriate for BU C.

Definition 2.12: A RET is an isol iff it is quasi-finite in the groupoid of
RET's on the manifold.

Theorem 2.13 B is isolated<φ[B] is an isol.
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Proof: <#= Assume B is not isolated. Then [B] = [B] + [1]. So [B] + [0] =
[B] + [1]. If [B] were an isol, then [φ] would equal [l]. Hence [B] is not
an isol.

==> Let B be isolated and [B] + [C] = [#] + [D']. Thus there exist Blf B2,
C, D QA with Bx^ B ^ B2, C ^ C, Df <* D9 Bγ\C, B2\D, and (B1 UC)γ

(B2 U D) for some /. Because Bλ and J52 are contained in finitely many
patches and / is an embedding, Bλ Uf~ι(B2) is contained in finitely many
patches. Let S = the finite union of these patches. Notice that S and A - S
are rec. subsets of A and, of course, disjoint. Let aι be appropriate for 5,
a2 for /(S). Via a2

 γfau we see that φ([Bt u (C Π 5)]) = <p([£2 U (Z) Π/(S))]),
thus ^([J5j) + φ([C Π S]) = <p([£a]) + φ([D Π /(S)]), i.e., φ([B]) + (̂ ([C Π S]) =
φ([B]) + <̂ ([Z) Π f(S)]). As remarked above, <̂ ([J5]) is an isol among RETs
on N, so φ([C Π S]) = <̂ ([Z) Π /(S)] . So there exists g , an embedding satisfy-
ing CΓ)Scάom(g) and g(C Π S) = D Π /(S). By restricting ^, we may
assume dom(^ ) c S. Let/* be defined to equals on άom(g) c S and to equal
/ on dom(/) Π (A - S). Then / * shows that [C] = [D]. So [Cf] = [C] = [Z>] =
[D'], hence [5] is an isol. Q.E.D.

One last remark on weak isolation:

Definition 2.14: A map / is patch-preserving iff f{Ap) c Ap for all p,
patchwise bounded iff (J fn(Ap) is bounded for all p, and pointwise bounded

iff {fn(x0)}£lι is bounded for all x0. (A set is bounded iff it is contained in a
finite union of patches.)

Patch-preserving => patchwise bounded =#> pointwise bounded, with the
converse implications false.

These four statements are equivalent:

(1) B is weakly isolated,
(2) there exists no pointwise bounded embedding

/: A — A with B c dom(/) and f{B) c Bf

(3) there exists no patchwise bounded embedding

/: A — A with B c dom (/) and f(B) c B,

(4) there exists no patch-preserving embedding

/: A — A with .B c dom (/) and f(B) c 5.

Section III: Multiplication In this section we briefly note that multiplica-
tion of RET's may be defined and will possess the usual properties.

We have seen that the atlas of a finitary IRM is matched with an atlas
which is injective and has disjoint patches. Thus the recursive structure is
that of the set I x N, for I some index set, where the enumerations are
Oii(n) = (i,ri), neN, ie\. If I is finite, then the atlas is matched with an
indexing, i.e., its recursive structure is that of N. Hence we only need to
define multiplication of RET's when I is infinite. In this case, we take
advantage of the fact that (cαrd(l))2 = cαrd(l), in other words, there exists a
bijection between I x I and I.
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Our first step towards defining multiplication of RET's on A, which is
identified with I xN, is the definition of a map Σ: (A xA) —> A by

Σia^M, ai2(n2)) = aσ^ilti2){σ(nlfn2))9

where σ is the standard effective bijection between N x JVand N, and σ* is
any bijection between I x I and I. Σ is thus a bijection. I claim that it is, in
fact, an embedding (using the direct product atlas on Ax A with enumera-
tions γ{flti2)») Σ maps each patch Aίι x AΪ2 of A x A onto exactly one patch,
namely, A0+(iι>z 2), of A, and vice versa for Σ" 1. Furthermore, the map that
Σ induces between the pullbacks of these two patches, α ' ί ^ ^ Σ y ^ , ^ ) , is
just the identity. Hence Σ is an embedding, as claimed.

Now we are in a position to define multiplication of sets—BC =
Σ(B x C), B, C c A. To define multiplication of RET's, we must show that
if [B,] = [B2] and [Cj = [C2], then [Bfi^ = [B2C2]. Let [B,] = [B2] by/, [Cj =
[C2] by g. Then [B.d] = [B2C2] by Σ(/x g) Σ" 1. Thus if we define [5][C] to
be [£C], multiplication of RET's is well-defined.

Let Ex\ (A x A) x A -» A x (A x A) be given by E^a, b), c) = (a, (6, c)j>
for α, 6, c in A. Then the embedding £ 2 = Σ o ( i d x Σ j o ^ o ί Σ ^ x idJoΣ" 1

shows that multiplication of RET's is associative (where id is the identity
map). The embedding E3 given by E3{aσ*a,ji(σ(m,n))) = aσ*^ti) (σ(n, m))

allows us to see that multiplication of RET's is also commutative.
Distributivity holds just as in the classical case. So do Theorems 68-70 in
Dekker and Myhill [3], which say that [1] is the unique multiplicative
identity for the RET's, that a product of RET's is [0] iff one of the RET's
is [0], and that multiplying a RET by the RET containing all sets of
cardinality n yields the same RET as adding the original RET to itself n
times. Also we have that if there exists D with [£][#] = [C] and C Φ 0, then
[C]^[£]. Note also that if [B], [C]eCL, so is [BC], and φ([BC]) =
ψ([B])φ([C]). If we define exponentiation as in Dekker and Mγhill—[B]° = [l],
[B]n+1 = [£]w[£]-then their Theorems 79 (usual laws of exponents) and 80
(isnϊm and [B] ί [C] implies that [B] ^ [B]n s [B]m and [B]n

 =< [C]n) hold
for RET's on finitary IRM's.

Section IV: Combinatorial Functions and Quasirecursivity In this sec-
tion the notion of recursive combinatorial operator is extended to a general
finitary IRM {A, %). To accomplish this, a manifold structure is given to
the collection of finite subsets of A. By considering functions induced by
combinatorial operators, we are led to two subrecursive classes of
functions: the partial quasirecursive (pqr) functions and the incremental
pqr functions. Minimalization of pqr functions leads us to define another
class of functions, which is then shown to be the class of limiting recursive
functions.

We continue to assume that (A, tl) is a finitary IRM with an atlas whose
patches are, in fact, disjoint. In order to consider recursive combinatorial
operators and functions, we define FIN to be the collection of finite subsets
of A. (Notice that the dependence of FIN on i is suppressed in the
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notation.) FIN may be provided with a manifold structure in the following
way:

As before, we identify P, the index set of SI, with an appropriate initial
segment of the ordinals. The index set for the atlas on FIN is Q*, the
collection of all finite nonempty subsets of the initial segment P, i.e.,
Q* = {Q\ Q C P and 0 < cαrd(Q) < No} Let Qe Q*. Then there exist Ύl <
. . . < γk such that Q = {Ύu . . ., y j . The patch BQ of (FIN, »> will be the

collection of all finite subsets of (J Ay,. We enumerate the elements of
ι*ι i β l

U Λγ. by cϋρ, where aQ(mk + n - 1) = aγn(m) for m ^ 0, 1 ^ w ̂  &. We then
enumerate BQ by the usual method: BQ(Π) = {^(raO, . . ., αρ(ra/)}, where
mi < . . . < m/ such that rc = 2Wl + . . . + 2**'; βρ(O) = 0. Notice that each βQ

is injective. If Qi and <?2 are disjoint, then so are BQ1 and BQ2, except for
β'βi(O) = 0 = #ρ2(0). If Qi and Q2 are not disjoint, £ρL Π BQ2 = ̂ n ρg. In the
latter case, let Qλ = {Ύl, . . ., y j , Q2 = {px, . . ., p,}, the elements of Qλ and
Q2 listed in increasing order. Let Qi Π Q2 = {yfl, . . . , y//jfe/} = {p7l, . . ., p7///},
kr = Zf, and again the elements of each set listed in increasing order. Then
βQSBQ2) = {«Iftfcdi) € BQ2} = {0}U {«I VB e i V f . s < „ [ m x < . . . < ms Λn = 2 ^ +

. . . + 2WSΛ Λ( V m̂  Ξ ^(mod k)J I is a rec. set. Furthermore, /3ρ2/3ρ1 has

βρj(5ρ2) as domain, maps 0 to 0, and maps 2Wl + . . . + 2ms {mι < . . . < ms)
to 2Wl + . . . + 2ns, where if ms = Λ:Ŝ  + iu - 1, ws = #SZ + ;M - 1. So each βρ2 /3βl

is p.r. and (FIN, ©) is an IRM. The atlas will be finitary iff P is a finite set
(also iff Q* is a finite set).

Fix QeQ*. For each Se BQ, {τ\ T c S} c BQ. The enumeration on BQ

is just like the standard enumeration of finite subsets of N, so many
classical results carry over to BQ. For example, if S = βρ(rc), n = 2™1 +
. . . + 2OTs, mx < . . . < ms> then T c S iff T = βρ(O) or T= βρ(w*) for some
w* of the form 2mil + . . . + 2mίi for some subset {mil9 . . ., m, y} of
{mx, . . ., ms} with m,! < . . . < m/7 . Thus given w, from n may be effec-
tively obtained all n* such that βρ(w*) c βρ(w). Similarly, from nl9 . . ., rik

may be effectively obtained the 5ρ-index of U=\J /3ρ(w, ), since if m =

Σ 2 S ί / , sn < . . . < 5 ί L , ί/ = βρί Σ/ 2w /j, mx < . . . < mu where there exists

n such that x = mn iff there exist i and Z such that x = s, /. Likewise, there
exists rec. / such that βρ(/(m,/z)) = βQ(m) - βQ(n). Also, if ΓC Nis r.e.,
U βoW is an Si-bounded Sl-r.e. subset of A, where "Sl-bounded" means

"contained in a finite union of patches of SI." Notice furthermore that
S c FIN is ©-bounded iff U T is Si-bounded. In addition, because of the

TeS

construction of 55, S c FIN is ©-bounded iff S is contained in some one BQ.

Proposition 4.1 Let Φ be a combinatorial operator on A (i.e., Φ is numeri-
cal and possesses a pseudo-inverse—see the Preliminaries) such that Φ|F |N

is a ©-©-rec. map and such that each Φ(BQ) is W-bounded. Then Ψ, Φ's
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associated dispersive operator U?(S) = Φ(S) - U Φ(Tπ, is 33-33-rec, and
each MBQ) is 33- bounded. ^ τ c s '

Proof: We must show that for each Qίf Q2e Q*, the restriction ^\BQλ is
(classically) p.r. as a map from the enumerated set BQX to the enumerated
set BQ2. By assumption, ΦCBβj) is 33-bounded, hence contained in one BR,
as remarked above. Since Φ is 33-33-rec, Φ\BQ1 is rec. as a map between
the enumerated sets BQι and BR. Thus, for any n, we can effectively find
the m such that βR(m) = Ψίβρ r̂c)) as in the classical case (by effectively
finding the .^-indices of all T<ZβQi(ή), then finding ^-indices of the
images of those T under Φ, then obtaining the J3R-index of U = U Φ(^),

and finally getting the £R-index of Φίβρ r̂a)) - ϋ, i.e., the BR-index of
^(ββi(^))). In other words, there exists rec. /such that βκ{f{n)) = ΦiβQ^n)).
Then, since (FIN, 33} is an IRM, there exists an effective test if ΨiβQ^n)) e
BQ 2 and, if so, an effective transition from ^ ( β ρ ^ J ' s index in BR to its
index in BQ2. More precisely, letting ^(βρ^)) = βR(f(n)), βQ2(BR) is a rec.
set and the domain of g such that if f{n) e βQl(BR), then βQ2(g(f(n))) =
βκίf{n)) = ̂ (βρ^w)). So Ψoβρ, = βQ2o(gof) for p.r. gof, proving that Ψ
properly restricted is a p.r. map from BQ1 to BQ2, as desired. Further,
if Φ(BQ) is ©-bounded, then U Φ(T) is «-bounded. Since Φ(S) c Φ(S)

Tfβρ

for all S, U Φ(T) c U Φ(T), so U Φ(Γ) is ^-bounded, implying that
ivfBρ TfBρ τv,βρ

Φ(BQ) is 33-bounded, proving the rest of the proposition.

Proposition 4.2 Let ̂  be a dispersive operator which is 33-33-rec. If Φ is
the combinatorial operator associated with Ψ (Φ(S) = [J Φ(T)), then Φ|P M

Tjc^s

zs αZso 33-33-rec. Furthermore, if each Ψ(BQ) is 33-bounded, so is each

Φ(£ρ).
Proof: Again, let Ql9 Q2 be given. As remarked above, from n can be
effectively determined the finite set of £Ql-indices of all TQβQl(n).
Φίβρ r̂c)) e BQ2 iff Ψ(T) e BQ2 for all T c S, so since there is an effective test
of whether the Φ(T), T c βρx(w), are in 5ρ2, there is an effective test of
whether Φίβρ^wJJe BQ2. More precisely, if Φρ1#ρ2 is the p.r. map such that
Φβρα = βQ^Qvϋ2 and Z) β l f β 2 its domain, Φ(βρ») € BQ2 iff A m^DQvQ2>

m€T

where T is the set of all m such that βρx(m) c βρ^rc). Furthermore, m =
βρ^ΦίββiM)) can be effectively obtained from n for those n such that
Φ(βρx(^)) € £ρ2, for from the £S l-indices of the T c βρx(w) may be effectively
obtained the J3ρ2-indices of the <S?(T) for those T and from these the
£ρ2-index of r c β U ( w ) Φ(Γ) = ΦOβ^w)). So Φ|F|N is 33-33-rec. If each Φ(J5β)
is 33-bounded, then U Φ(S) is «,-bounded. But U Φ(S) = U Φ(S), so

5fBρ 5fδβ 56βρ

U! Φ(S) is$l-bounded, implying that Φ(^o) is33-bounded for all Q.
S'epQ «

Definition 4.3: Φ is a C-operator iff it is a combinatorial operator such
that (a) its restriction to FIN is 33-33κrec, and (b) Φ(£ρ) is bounded for all Q.
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Φ is a D-operator iff it is a dispersive operator satisfying (a) and (b).

In the two preceding propositions, we have just established a 1-1
correspondence between the C-operators and the D-operators. Notice that
Φ a C-operator, \£ a D-operator, S $1 -bounded =ΦΦ(S) and \£(S) are both
$ί-bounded.

Proposition 4.4 If Φ is a C-operator, then Φ"1, its pseudo-inverse, is
21-33-rec.

Proof: Let peP and Qe Q* be given. Consider Φ~ι\Ap- Since Φ is a
C-operator, its associated Φ is a D-operator, so there exists a patch BR

such that BR contains MBQ)- Because ^\BQ is rec. between the enumerated
sets BQ and BR, we can effectively generate the ^-indices of all Ψ(S),
Se BQ. Each of those B^-indices can be effectively tested to see whether or
not a given xeAp is in Φ(S). Since xe Ψ(S) iff Φ'1(x) = S, we thus have an
effective way of obtaining the BQ- index of Φ'^ΛΓ) if Φ^1(x) happens to be in
BQ. More precisely, if R = {pu . . ., pk} with p = pw(piR ^ΦΦ'^Ap) Π
BQ = 0) and ^ R is the rec. map such that βR^QtR = Ψβρ, then Φ'̂ efyίw)) =
βρ(/(rc)), where Λw) = μ3> [3«(« = A»ί + w - 1 and the 2z-place in the binary
expansion of ^QtR(y) is filled by a 1)]. Since / is p.r., Φ"1 is 5l-5B-rec, as
desired.

Remembering that the patches of % are indexed by an initial segment of
the ordinals, we now identify A with an initial segment of the ordinals by
identifying aγ(k) with ωγ + k. This correspondence is well-defined since the
patches of A are disjoint. This device of regarding A as an initial segment
of ordinals will be used in generalizing combinatorial functions. Before
doing so, however, we relate this "ordinal manifold'' concept to CO, the set
of constructive ordinals with recursive structure induced by the enumera-
tion a as outlined in the Preliminaries. Let ωγ = ωω[ be the first noncon-
structive ordinal. CO may be given a manifold structure by taking [0fω[) as
the index set for % and using the enumerations aγ(n) = ωγ + n. There are
only countably many α-r.e. subsets of CO and a-a-p.r. functions: CO —>CO,
but uncountably many $l-r.e. subsets and $I-2(-p.r. functions. So $l-r.e.
does not imply α-r.e., nor does $I-$l-p.r. imply α-α-p.r. Assume B is
α-r.e. and let pe [0,ωβ be given. Let y be any number such that α(3 5y) =
ap(0). B is α-r.e., so {k \a(k) e B} = D0ΠT for some r.e. T. But then ap\B) =
{n\2l 3 5yeT}, so aγ(B) is r.e. for all p. Let F: CO — CO be α-α-p.r.
Thus there exists p.r. /, Do c dom(/) with αo/ = Foa. Letp, ke [0,ω{) be
given, and let y and z be such that cty(O) = a(3 5y), ^(0) = α(3 5 )̂. Then for
n in άom(alιFap), oCk

ι(F{ap(n))) = I (/(2 I 3 5y)), so each Qf^Fα ?hasap,r.
extension.

We now return to the general situation of any finitary IRM identified
with an initial segment of the ordinals as indicated above. For any p in A,
let Lp be the initial segment of A, [0, p]. Three ways of using combinatorial
operators to define functions suggest themselves:

I. / is a combinatorial function: N — N iff f(n) = cαrd(Φ(Lj).
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II. / is a combinatorial function: A -> N iff f(γ) = cαrdίΦ"1^)).

III. / is a combinatorial function: A -* A iff f(γ) = ord(Φ(Ly)).

We examine each of these generalizations in turn.

I. Let / be of the form/(w) = cαrd(Φ(Lw)). Then/(n) = card/ U *(T)\ =

Σ card(Φ(T)) = Σ c{k)[n* ), where c(fc) = card(Ψ(T)) for any Γ of

cardinality k. Further, if Φ is a C-operator, / is rec. Thus, if / is a
combinatorial function under approach I,/is of the ϊormgoh, whereg is a
classical combinatorial function and h(n) = n + 1; if / is induced by a
C-operator, g is rec. The function h is a "correction function" needed
because Ln, in our scheme, has cardinality n + 1. The need for /z could be
avoided by letting Lk = [1,&], but this would negate the influence on / of all
fy(T) with 0 (= αo(0)) e T. So we leave the definitions as they are and obtain
functions of the iormgoh as described above.

Assume that there exists an embedding with domain FIN x N and range
n+i i .v

contained in A. Call it G. Under this assumption, let/(ft) = Σ c(k){ 1 ).
k=o \ k ]

We wish to construct Φ which induces/ and to show that if c is r e c , Φ may
be chosen to be a C-operator. Let Φ(T) = {G(T,ή) \n < F(T)}, where F(T) =
c(cαrd(T)). Then cαrd(Φ(T)) = F(T) = c(cαrd(T)). In particular, Φ is numeri-
cal. Furthermore, Φ is dispersive since G is injective. Thus / is induced
by Φ, where Φ(S) = U ^(T). If c is r e c , F is S3- l-rec, where I = {α},
a(n) = n. Along with the fact that G is an embedding, this implies that Ψ is
a D-operator, and hence Φ is a C-operator. Thus, if we can construct G,
we have that/ is of the form goh, g a classical combinatorial function,
h{ή) = n + 1, iff / is a combinatorial function under approach I. Further,
f = goh, g a classical r e c combinatorial function iff/ is induced by a
C-operator.

Let P be the initial segment of ordinals which serves as index set for
$ί. Let G* be an injection from the collection of finite subsets of P to P
(P is assumed infinite. If P is finite, the existence of the desired G is
trivial). Now a typical Ue FIN is of the form ϋ = {(Xp^nin), . . ., aPl(mLkι),
ap2(

m2i), •> αps(rasfes)}, where pι < . . . < ps and miγ < . . . < m ^ for all i.
Define G(U,n) to be

^ ^ 1 , . . . , ^ i ) ( 2 W 3 m -.5 1 7 ^ . 1 1 1 . . . .
. . . . ( L ( 2 ^ + l))mi2-(L(2k1 + 2))2 . . .

where L(k) = the fcth odd prime.. Set G(0,n) = ao(2n). I claim that G is as
desired. First of all, G(U,ή) completely encodes U and n, so G is injective.
Each G~ι{Ap) is covered by the patch B^G*)-ι^p) x N, and each G(J5ρ x N) is
covered by the finite union Ao U U ^G*(T)> S O ^ a n c * G"1 a r e compact.

Given peP, QeQ*, T = (βρ x i d ) ' 1 ^ " 1 ^ ) ) is a r e c subset of (ββ x
\ό)~\B{Gi,rι{p)χN). Say (G*)"1(/>)={/>;.}^1. For eachtfe T, the corresponding
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niij and n such that (βQ x \d)(x) = ({αfy(m, ; )}, n) may be recovered and
2w 3OT'n . . ., the Ap-index of G((βQ x id)M), computed, so G is an em-
bedding as claimed.

Π. Let f(γ) = cαrdίΦ'^y)). It is obvious that this generalization stands a
good chance of not being very promising. First of all, the composite of two
such functions will not necessarily be total. Secondly, the use of Φ"1,
rather than Φ, allows too much leeway. However, we plunge ahead, anyway.
We start by characterizing the combinatorial functions. Let / be a
combinatorial function in this generalized sense. Suppose m e range (/) - {θ}.
So there exists y with m = cardΐΦ'^y)). If ieΦ(S), where card(S) =
cardCΦ"1^)) = m, then Φ"1^) = S, so f(x) = m. Since ye ^(Φ'^y)), card(S) =
cardίφ-'ίy)) implies that cαrd!(Ψ(S)) = card (ΦίΦ^ty))) > 0. Hence card (A)
equals card ({#!#€ Ψ(S) for some S with card(S) = m}). Thus we have proved
that / a combinatorial function implies that carά(f'1(m)) = cαrd!(A) for
all me rαnge^/) - {θ}. F u r t h e r , cαrdί/"1^)) = cαrd({y I Φ'^y) = 0}) =
card (Ψ(0)) < °o.

Conversely, let /: A —* N be such that caxd(f~l{m)) = card {A) for all m
in rαngeί(/) - {θ} and cαrdt/"1^)) < °o. Set Ψ(0) =/"1(0), *(S) = 0 if 0 <
cαrd[S)/rαnge(/). If me range (/) - {θ}, card ({S | card (S) = m}) = card (A) =
cardί/'^m)). Let gm map {S|cαrd(S) = m} 1-1 onto f'\m). Set Ψ(S) =
{̂ cαrd(5)(S)}. (Equivalently, if f(x) = 0, set Φ~\x) = 0. Otherwise, set
Φ~LW = *̂/(1

Λ;)W ) ^ is a dispersive operator with Φ"1 the pseudo-inverse of
its associated combinatorial operator.

Thus combinatorial functions under approach II are those for which
f~ι(m) is either empty or of maximum cardinality for all non-zero m and
is finite when m = 0. This obviously provides little restriction on a
function. If Φ"1 is^-Φ-rec. and bounded (a function is bounded iff it maps
each bounded subset of the domain to a bounded subset of the range), then /
is5l-Γ-rec. The converse does not hold: onN2, set f(am(ή)) = m + 1. This
/ i s certainly $ϊ-1-rec. and is combinatorial by the above characterization.
But if / i s induced by Φ, then neither Φ nor Φ~L nor Ψ is bounded. However,
on the other hand, the $ί-33 - recur sivity of Φ"1 in itself is not sufficient to
insure that/ is 31'-I-rec. For let /* be any total nonrec. function which
maps N onto N - {θ}. Set f{a^{n)) = f*(n). Then / is not 51-I-rec, but is
combinatorial. I claim there exists a Φ inducing/ with Φ and Ψ ©-©-rec.
and Φ' 1 51-©-rec. We take Φ(0) = 0. By a back-and-forth construction, we
may establish a 1-1 correspondence (denoted by It) between A and {S e FIN I
S c A and cαrd(S) > 0} satisfying (1) if a^n) I ts, cαrd(S) =/*(w), (2) if nγ Φ n2

and Sj It ajnj, S211 anin2), then there exist All9 . . ., AUl, A2l, . . ., A2,2 such

that Si c y/ Am, S2 c j j A2t, and (,U Aιtj n (.U A2ή = 0. We set φ-ι(am(n)) =

S, where 5 It aj^ri) under the above correspondence. Φ(S) = {α?OT|(w)}. Φ"1 is
5ί-©-rec. since each ( Φ " 1 ) " 1 ^ ) dAp is finite. Also, each Ψ " 1 ^ ^ ) Π BQ\2 is
finite and Φ is ©-©-rec. Likewise, Φ is also ©|-©ι-rec.

III. /: A -> A is combinatorial iff there exists Φ such that /(y) = ordί(Φ(Ly/)).
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This is the most fruitful of the three definitions and the one that we will use
for the rest of this paper. Note that if / is combinatorial in this sense,/
maps Ao (=N) to itself, and the restriction of / to Ao is of the form
f(m) = g(m + 1), g a classical combinatorial function. If we augment Ao to
At = Ao u {-1} and set /(-I) = ord(Φ(0)), then f(m) = g(m + 1) holds for all
m ^ -1. Furthermore, if Φ is a C-operator, g is rec. The function/
induced by a C-operator is called a C -function for short. Contrary to the
classical state of affairs, a C-function is not necessarily $l-9ί-rec.
However, the C-functions may be characterized in terms of notions related
to recursivity, as we shall see.

Let us deal with the manifold N2 with the usual atlas structure—am(n) =
(m,ή). Under this structure we identify N2 with ordinals of the form
ω m+n. For the rest of this paper we restrict our consideration to
submanifolds A of N2 which are of the form N2 itself or Ao U . . . U Ak for
some k. If larger manifolds are considered, the situation becomes more
messy than worthwhile.

Proposition 4.5 Let Φ be a C-operator. Then (1) Φ(LΎ) is 21-r.e. for each
γeA, and (2) for each m, there exists an effective algorithm such that
given input n, that algorithm yields the elements of Φ(Lωm+n).

Proof: (1) Let γ = ω m + n = am(n). Then all subsets of Lγ are contained in
Ao u . . . U Am hence all finite subsets of Lγ belong to one BQ^Q^ =
{θ, . . ., m}), hence all their images under Φ lie in one BQ2. Let ΦQh,Q2 be
the rec. map β^ ΦβQl, and let Sn = {τ\ Te FIN and T c Ly}. Thens/3ρJ(SJ =

{0} U ίfcl V V mγ < . . . < msΛk = 2*1 + . . . + 2*SΆ Λ Γ(W* =
\ S'^k+l «i,...,»sέ* w _! i = 1 L

ra(mod m + I) Ami - m ^ n(m + 1)) v V m{ = j(mod m + 1) |, so βρJ(Sw) is

rec. Hence 7, defined to be ΦQlfQ2(βQ[(Sn)) is r.e., so Φ(Iy) = (J βQ2(n)
is5I-r.e. neV

(2) For each m, there exist Qx and Q2 as in (1). From n we can effectively
generate the I^-indices of all the finite subsets of Lω^nf hence we can
effectively generate the Z?ρ2-indices of their images under Φ. But from the
BQ2-index of a finite set, we can effectively recover the identities of its
elements. More precisely, βρ|(5w) is r.e. uniformly in n [see (1)], and
*(£«,.*.) = K<*)l Y, , € ,*Ci.e.(y) h a s a 1 i n t h e 2(i'ί)k+z place of its
binary expansion!, where Q2 = {γl9 . . ., γk}.

Theorem A (4.6) Let A = {0, 1} x N with atlas {oto, a^}, αt (w) = (i, n), which is
identified with ω-i + n. Then there exists a C-operator on A whose induced
function is not 51-31-rec.

Proof: Let K be the standard r.e., but not r e c , set. Let q: K —> {2n\ne N}
be 1-1, onto, and p . r . Let Ek = {q(kj\ ilk eK,0iί k^K. Let Olk = {2σ(k, n) +

l\neN}, where σ is the usual rec. bijection between N2 and N. Let
Sk = Ok U Ek.
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Claim: There exists p, a rec. permutation on N, such that p(σ{{k}x N)) = S*.

Construction of p: Since q is p.r., by Kleene's normal-form theorem 3ze N
and rec. υ, t such that q(x) = v(μy(t(z,x,y) = 1)). Set

( q(m) if t(z, m,n) = 1 and t(z, m, k) Φ 1 for all k < n
2σ(ra, n) + 1 if t(z, k, n) Φ 1 for all k ^ m
2σ(m,n - 1) + 1 otherwise.

Keeping in mind that ί may be characterized in terms of outputs from
Turing machines, we give an alternate construction of a p satisfying the
claim. For any given xe N, compute p(x) as follows:

(1) Find m, n such that x = σ(m, n).
(2) Start generating outputs 2σ(m,j) + 1, j = 0, 1, 2, . . .
(3) Dovetail in with (2) an attempt to evaluate q{m), yielding q(m) as output
if and when this q{m) computation terminates.
(4) Set p(x) to equal the nth output to result from (2) and (3).

As A = Λo UAl9 FIN = Cx U C2 U C3 U C4, where

( ^ { Γ e F I N l Γ c A o } ,

C2 = {TeFIN|0 Φ TQAL},

C3 = {Γe FIN I cαrd(T Π A 0 ) U and cαrd|(T Π Ax) > l},
C4 = {Te FIN I cαrd(T Π Ao) ^ I and cαrd|(T Π Aλ) = l}.

Note that each d is a «-rec. subset of FIN/. For a given Te FIN, let £ be
its BAςμAχ-index. [Note the abuse of notation. The proper terminology
should be B\OιL\ -index. However, the notation used more clearly indicates
what is happening in the construction.]

If T e C, , set Φ(Γ) = {ao(4t + *)}, i = 1, 2, 3. We must still define Φ(Γ)
for T in C4. If TeC4, we can effectively determine from its £A0U4I-index,
t, the numbers m, n such that T = {a^m)} u βA0{n). More precisely, if

t = 2mi + . . . + 2ms, mγ < . . . < ms> then m = —^r—, where m, is the one

and only odd m^ and

n = 2mi/2 + . . . + 2 ^ + 2 ^ + . . . + 2^ / 2 .

Let t(T) = p(σ(m,n)). So f is 93-1-p.r. Define υ: N-* FIN by v(2k + 1) =
{αo(4(2& + 1))}, z;(2 )̂ = {a^k)}. Clearly, v is I -©-p.r., hence υot is φ -©-p.r.
For ΓeC 4, set Φ(Γ) = ϋ(?(T)).

Since Φ is ©-δ-p.r. on each of the ©-rec. sets Cu C2, C3, and C4, Φ is
©-©-rec. <& is numerical, mapping every set to a one-element set. Since Ψ
is injective, it maps different sets to different one-element sets, in
particular, to disjoint sets, hence \I> is also dispersive. Since © is a finite
atlas, Ψ is, in fact, a D -operator, so its associated Φ is a C -operator.

Thus it remains to show that the induced function / is not $ί,-2I-:rec.
First, note that Φ(A0) is an infinite subset of Ao, hence is of order type ω.
So for xe N, fia^x)) = α^cαrd(W(x))), where W(x) is defined as {y\ye Ax and
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{3;}= φ(r) for some T c LOl(x)}. Let F(ΛΓ) = card(WW). For x z 1, F(#) -
F(ΛΓ - 1) = cardίίylyeAx and {y} = Φ(T) for some T c Lαi(x) such that
fli(#)e T}). But such y's are in 1-1 correspondence with the n's such that
t({*i(x)} U βΛ0(w)) is even, viz., the w's such that />(σ(#, »)) is even. But the
number of such n's is simply Xκ(#), i.e., F{x) - F(x - 1) = XKW for x £ 1.
If / were $I-$f-rec, then, since f(adx)) = βiOPX*)), F would also be rec.
Thus the function G(x) = F(x) - F(x - 1) would be r e c , hence X|< would be
r e c , implying that K is a r e c set. Since K is not r e c , it follows that/ i s
not $l-$ί-rec, and Theorem A (4.6) is proved.

If the / induced by a C-operator is not necessarily $!-$(-rec, what
properties does it have? Let us consider again the general situation where
A = N2 or a submanifold of N2 of the form Ao U . . . U Ak. We have already
observed that / maps Ao into Ao and that f(oio{m)) = ao(g(m + 1)) for some
r e c combinatorial function g*. We also know that/ is non-decreasing on the
ordinals since γx ^ γ2=ΦLΎι c LΎ2 ==> Φ(Lyi) c Φ(Lγz)=Φ /(γj = ord(Φ(Lyi)) i
ord(Φ(Ly2)) = /(y2). Since Φ is bounded, for each n there exists s (dependent
on ή) such that Φ(A0 U . . . u An) c i 0 U . . . U AS} hence/(ω n + k) < ω(s + 2)
for all k. In conjunction with / nondecreasing, this implies that for each n,
there exist integers q and M such that f(θn(k)) e Aq for all k ^M. Let υ be
the largest integer such that Φ(L<ZW(ΛI)) Π ^ is infinite, and let A* = Av+1 U
. . . UAS. Iί x ϊM + 1 and /(<*„(* - 1)) = aq{y), then f(an(x)) = <̂ (y +^M),
where g(x) = cαrd({^eΛ*| there exists Te FIN such that 2 e Ψ(T) and
(̂ (ΛΓ) e T c I/Q!̂ (x)}). The previous theorem constructed a Φ whose associated
g was XKJ SO g will not, in general, be p.r. However, Φ a C -operator implies
that g will be nearly computable in some sense. For, given x ^M + 1, we
may do the following:

(A) Set i, j = 0. Yield 0 as output.

(B) Test T = £AOU...UAW00 to see if an(x)e T c Laφ). If so, go to (C). If not,

goto(F).

(C) Find c, the #AOU...UAS-index of Ψ(T).

(D) Determine how many elements of βAou...uΛs(c) are in A*. If 0, go to (F).
If nonzero, go to (E).
(E) Increment j by the nonzero number from (D). Give the new value of j
as output.
(F) Increment i by 1 and go to (B).

For each x, stage (E) is reached only finitely many times. Further-
more, the last output yielded by this procedure is g(x). Note that this
algorithm has an infinite loop. In general, there is no effective way to tell
which output is the last so that the loop may be terminated—if there were, g
would be p.r.

In light of the above, the following definition is introduced:

Definition 4.7: A function/: N —> iV is partial quasirecursive (pqr, for short)
iff there exists an algorithm with the following properties:

(1) If #/dom(/), then no output results from the algorithm when x is input.
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(2) If xe dom(/), then, if x is input, a finite sequence of outputs will result
(however, the algorithm will not necessarily terminate after the last
output). The last output in this sequence will bef(x).

[This notion may be phrased in terms of Turing machines. Davis' definition
of a simple Turing machine is a consistent set of quadruples of the form
qiSjSkQh o r QiSjRQu o r QiSjLqi, i, I = 1, j, fc = 0. We expand the alphabet
with a distinguished character S-λ and add an internal configuration q0.
Allowable machines for pqr functions will consist of quadruples of the above
form with i, I ~ 1, j, k Ξ -1 plus quadruples of the form <7;S7gW/ subject to
the restriction that for each input x, quadruples of the final type are used
only finitely many times during the computation, and, in addition, such a
quadruple is used only when there are exactly two S.^s on the tape. This
machine is to be thought of as providing output when one of these qtSjqoqι
occur, the output being the number of Γs on the tape between the two S^'s.]

For example, consider the following algorithm: For any input x9

immediately output 0. Then start testing if xeK. If and when it is
determined that xeK, give output 1 and then terminate. This procedure
shows that Xκ is a total pqr (also called quasirecursive or qr) function.

Minimalization: By use of the standard codings of Nmby N, we may speak
of pqr functions on Nm. Let/be a pqr function onNm, m > 1. Let g(x) be the
smallest y such that/(#,;y) = 0 (xe AT"1).

Algorithm: Given x, start the procedure by dovetailing pqr computations
for f(x, 0), f(x, 1), . . .. Construct two lists—an output list (which will
contain either (a) nothing or (b) the most recent output for g) and a wait
list. If and when during the dovetail a 0 results as output for some f(x, k),
give output k and put k on the output list. Thereafter, if during the dovetail
some f(x, m) yields 0, either:

(a) put m in the wait list if m > k,

or

(b) give m as output for g, put m in the output list, remove k from the
output list, and put k on the wait list—these steps to be taken if m < k.

(In both (a) and (b), k is the number in the output list. If nothing is in the
output list at the time, output m and add it to the output list.)

If for some m in one of the two lists, a nonzero output for f(x, m)
results, either:

(a) remove m from the wait list if it is there,

or

(b) if m is in the output list, remove it from the output list, replacing it
with the smallest k in the wait list, give that k as output for g, and remove
k from the wait list. If the wait list is empty when m is removed from the
output list, dovetail in with this whole procedure a routine which outputs
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0, 1, 2, . . ., leaving the output list empty. As soon as something is added
to the output list, stop these outputs of 0, 1, 2, . . . towards g.

What will the above algorithm do ? If an x for which g(x) is defined is
given as input, the algorithm will yield a finite sequence of outputs, the last
member of which is g{x). However, if xj. dom(g), the algorithm will either
yield no output or an infinite sequence of outputs. A function with such an
algorithm is called semipartialquasirecursive (spqr).

Composition: Let g, hu h2, . . ., hm be ]pqr. Given x, start the algorithms
for the hi's with input x. If and when all the hi yield outputs, use the latest
output from each as input for g. Start computing the outputs for g, mean-
while continuing the algorithms for the hi's. If any hi yields a new output,
restart the procedure for g with this new value as input in the z'th argument,
and continue. This procedure will be a pqr algorithm for the composite /,
Ax) =g(hi(x), . . ., hm(x)). Similarly, the composite of spqr functions is spqr.

Other Remarks: P.r. implies pqr, and pqr implies spqr. The function XK
shows that-pqr does not imply p.r. By the usual argument counting the
number of Turing machines of the type described above, there are only
countably many pqr functions. Likewise, using the appropriate modification
of the Turing machine definition, there are only countably many spqr
functions. Other characterizations of pqr and spqr functions will appear
later.

A subclass of pqr functions is now introduced: The pqr function g
induced by a C-operator algorithmized as described above has a special
property—each output is the previous output incremented by a certain
amount. Thus the sequence of outputs is increasing.

Definition 4.8: A pqr function / is incremental iff there exists a pqr-type
algorithm for /such that for each x in dom(/), the finite sequence of outputs
is an increasing sequence.

For our next result, we use a helpful device. For a pqr-algorithm, Dn

is defined to be the set of all x such that the output sequence for input x has
OO

n outputs. D% is defined to be U Ώi% The D{ are not, in general, r.e. For
i=n

example, in the above algorithm for XK, A = K. However, the D* are r.e.
For, given x in N, start the pqr-algorithm with input x. If and when n
outputs result, set h(x) = 0, then terminate. Thus we have a p.r. function,
h, whose domain is Z>*. Hence D% is r.e.

Result 4.9 There is a qr function which is not incremental.

Proof: Let S be a simple set, i.e., S is r.e. and its complement in N,S, is
immune, immune meaning isolated and infinite. Consider Xτ, where T = S.
Xτ is qr (for any input x, immediately give output 1, then test x for
membership in S. If and when x is determined to belong to S, give output 0).
Now assume that Xτ is incremental. Consider an algorithm which satisfies
the definition of incremental for the function. This algorithm must yield 0
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as the final output whenever the input is in S. If Xτ is incremental there
must be no output before that 0. Hence S c Dlt This implies that ^ c 5,
i.e., Ώt c T. Dt r.e., T immune imply that D$ is finite. Thus the
algorithm yields only one output for almost every input. By altering the
algorithm to terminate after the first output, we see that XT restricted to
iV— the finite set D$ is p.r. Hence XT is rec. Since Xτ is known not to be
r e c , the assumption of incremental must be false. Q.E.D.

Let / be a function with an incremental pqr algorithm. The algorithm
may be modified to "remember" the most recent output x. Then, when the
next output x + k is about to be given, the modified algorithm will instead
yield x + 1, x + 2, . . ., x + k (in that order) as outputs.1 Further, for any
input, if the first output of the original algorithm is z, the modified
algorithm will yield 0, 1, . . ., z as the first z + 1 outputs. For example, if,
in evaluating /(0), the original algorithm gives as outputs the numbers
3, 5, 8, the modified algorithm will first yield the four outputs 0, 1, 2, 3 in
place of the original output 3, then yield 4, 5 in place of 5, and then 6, 7, 8
in place of 8. This modified algorithm is still an incremental pqr algorithm
for /, but it has the property that for each input n in dom(/), the outputs
towards f(n) form an initial segment of N. Such an algorithm is called a
canonical algorithm for the incremental pqr function /.

Proposition 4.10 A function f is incremental pqr iff {(x, y) \ f(x) exists and
y ^ f(x)}is r.e.

Proof: =#>Let / be incremental pqr,. Apply a canonical pqr algorithm for /
to inputs 0, 1, 2, . . . simultaneously by dovetailing. If an output y is about
to result from input x, yield the ordered pair (x, y) as output instead.2 This
procedure then yields all (x,y) such that f(x) exists and y i f(x). So if / is
incremental pqr, {(x,y) \f(x) exists and y ^ f(x)} is r.e.
4=ι For f:N->N such that S = {(x, y) \ f(x) exists and y ^ f(x)} is r.e.,
consider the following algorithm: for input x, test if (x, 0) e S. If so, yield 0
as output and continue by testing if (x, ΐ) eS. If (x, 1) is in S, yield 1 as
output and test (x, 2) for membership in S, etc. The sequence of outputs
from input xe dom(/) will have as last member the largest k such that
(x,k)eS, i.e., f(x). If f(x) does not exist, this procedure will yield no
output. Thus / is pqr. Further, / is incremental since for each x in dom (/)
this algorithm yields outputs 0, 1, . . ., f(x) in that order. (Thus, this
procedure is, in fact, a canonical incremental pqr algorithm for /.)

1. This heuristic statement means "at each output stage, if x + k were to be given as output, yield
outputs x + 1,. . .,x + k in its place." In terms of quadruples, this may be accomplished by
replacing each qiS/qoqι with a qiSjSjqm (qm not a state of the original machine) and inserting
a subroutine (1) whose first quadruple begins qmSj, (2) whose second quadruple ends qι, and
(3) which will yield x + 1,. . .,x + k as outputs and then restore the Turing machine tape to its
pre-subroutine condition.

2. Cf. footnote 1.
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Let / be any pqr function and ALG a pqr algorithm for /. The reasoning
of the preceding paragraphs may be used to show that S = {(x, y) \ f(x) exists
and ALG yields y as one of the outputs towards f{x)} is r.e. But then dom (/)
(= the projection of S onto its first coordinate) is r.e. Thus i f/is pqr, / i s
spqr with r.e. domain. Conversely, let / be spqr with r.e. domain S.
Consider the following procedure: given input x, test if xe S. If and when it
is determined that xe S, apply the spqr algorithm for/to x. This procedure
is a pqr algorithm for /, as no output will result if xfίS = dom(/), while if
xeάom(f), a sequence of outputs whose last member is f{x) will result.
Hence:

(4.11) f is pqr ifff is spqr with r.e. domain.

The pqr functions may also be characterized in terms of the incre-
mental pqr functions. Let g be pqr. For each n, we generate the sequences
of outputs for two functions, gλ and g2, as follows: start the pqr algorithm
for g. As soon as an output results, give this output for the first output of
gl9 and give 0 for the first output of g2. Thereafter, if the algorithm for g
yields output v (and the previous output for g was x, the most recent output
for gι was y, and the most recent output for g2 was z), then yield y + υ - x
as output for gλ in case υ > x, yield z + x - υ as output for g2 in case υ < x.
So if the sequence of outputs for g(n) is xθ9 xl9 . . ., xk, the final output for
gίin) will be x0 + Σ (XJ - Xj-i), and the final output for g2(n) will be

- Σ (XJ - Xj-ι). Along with 0 = Σ/ (Xj - AΓ-.J, this implies that g^n) -

g2(n) = x0 + Σ (XJ - Xj-i) = xk = g(ή) for all n in dom(/). If g{n) is undefined,

then gγ and g2 will yield no outputs when given input n. So g = gλ - g2, all
three functions having the same domain. Thus if g is pqr, g = gι - g2 for
two incremental pqr functions gl9 g2. Conversely, if g: N—>N can be
expressed as the difference of two pqr functions, then g is pqr by our
remarks on composition of pqr functions. Hence

(4.12), for g: N-* N, g is pqr iff g = gι - g2, where gγ and g2 are incre-
mental pqr.

Our quasirecursive notions are similar to concepts developed in
Gold [4] and Putnam [5]. We now characterize spqr functions in terms of
limiting recursive functions.

Theorem 4.13 A function is spqr iff it is limiting rec.

Proof: <̂= Let / be limiting rec. Then there exists rec. g such that for all
x, limfcgfa, n) = f(x). Consider the following procedure: given input x,
compute g(x,0) and yield it as output. Then compute g(x, 1). If g(x9 1) Φ
g(x, 0), yield g(x, 1) as output. Then compute g(x, 2), yielding it as output if
it does not equal g(x, 1), etc. If xi dom(/), lir%£-(#, n) does not exist, so
there are infinitely many n with/(x, n) Φf(x,n - 1). Hence, if #/dom(/), the
procedure will yield an infinite sequence of outputs. If xe dom(/), f(x) =
\i™ng(x,ri)9 i.e., there exists k such that g(x, k - 1) Φg(x,k) =g(χ,k+ 1) =
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. . . =/(ΛΓ). Hence if xe dom(/), the procedure will yield a finite sequence of
outputs, the last of which is g(x, k) = f(x). So this procedure provides an
spqr algorithm for /.
=> Let / be spqr. We may assume that if #/dom(/), the algorithm, when
given input x, yields infinitely many outputs. This may be done by altering
the algorithm, if need be, as follows: given input n, perform the original
spqr algorithm on n, but also simultaneously yield outputs 0, 1, 2, . . . until
the first output from the original algorithm results. Then discontinue the
0, 1, 2, . . . outputs. But if, under the original algorithm, no output results,
by this new procedure all of N will be output. Next, modify the algorithm
so that whenever output m is about to be yielded, the algorithm instead
yields m + 1, then m.z For example, if the original output sequence for /(0)
were 5, 3, 10, the modified algorithm would yield 6, 5, 4, 3, 11, 10. If the
original output sequence were 0, 1, 2, . . ., the modified algorithm would
yield 1, 0, 2, 1, 3, 2, . . . .

The modifications in the preceding paragraph result in an spqr
algorithm, ALG', such that if x is given as input to ALGf, then (1) xe dom(/)
implies that a finite sequence of outputs, the last of which isf(x), results,
and (2) Xfίdom(f) implies that an infinite sequence which has no limit
results. We now modify ALG' so that at each step of ALGf, if no new
output results from ALG', the most recent output is output again. As
Putnam wrote in referring to a similar technique, we "program the
Turing machine so that at any stage y it repeats the last number it put
down, if no new . . . answer is forthcoming at that stage." For example, if,
during the computation of /(0), ALG' yields output 1 and then, after the
application of three quadruples, yields output 5, the modified ALG' will
yield output 1, then repeat output 1 three more times before yielding
output 5. This final modification produces an algorithm ALG such that if x
is given as input to ALG, then (1) xe dom(/) implies that an infinite
sequence of outputs with limit f{x) results, and (2) xfί dom(/) implies that an
infinite sequence of outputs without a limit results. Take £•(#, n) to be the
nth output to result from applying ALG to input x. Then g is a rec. function
such that/(#) = Wπ\ng(x,n) for all x. In other words, / i s limiting rec. Q.E.D.

Section V: C-functions In this section the C-functions are characterized.
Extension of C-functions to functions on REΊΓs is also considered.

By techniques we have been using, we will now characterize the
C-functions on {A, %), a. submanifold of N2 of the form N2 itself or
Ao U . . . U As for some s. Again, we identify αm(ή) with ω m + n, so that, in
particular, Ao is identified with N. A\ is the augmented Ao u {-1}. If / is a
C-function induced by Φ, then, as we have remarked in the paragraphs
preceding Proposition 4.5, / maps At to Ao with f(m) = g(m + 1) for some

rec. combinatorial function g. There are basically three types of C-
functions, described in terms of the action of Φ. We now consider and
characterize each type.

3. Cf. footnote 1.
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Case I. MS) = 0 if cαrd(S) > 0.

Then, letting y0 = cαrd(Φ(0)), (A):/ is of the form/(#) = ao(yo) for all #.
Conversely, if / defined on A satisfies (A) for some y0, / i s a C-function
induced by Φ, where Φ(S) = {αo(l), . . ., ao(yo)} ίor all S.

Case II. Ψ(S) = 0 if card(S) > 1, but *({#}) * 0 for x e A.

Let y0 = card(Ψ(0)), z = card(Φ({ao(0)})). Then I claim that (B): ( i)/j Λ +
satisfies /(m) = (m + l)z + y0 for all m,
(ii) for each k > 0, there exists s(&) such that /(AJ c As(k) and &! ^ k2=Φ
s(kι) ^ s(&2) In addition, gfe(m) defined to be (*s(k) f ak(m f 1) ~ al>lk) f ak(m)
is a rec. function with range contained in {0, 1, . . ., z},
(iii) either: (a) there exists M such that /(A) c A 0 U . . . U AM, or (b) for
each n, there exists M > n such that there is no K with

f(AM) c {αs(M)(0), as(M)(l), . . ., α?s(M)(̂ )},

(iv) if f(an(K)) = /(«„(«• + l ) ) = . . . = ω β + 5, and /(αw+1(0)) =ωa' + b'9 then

Proof: (i) For m ^ 0, /(θo(w)) = Σ/ c(fe) (m

f e

+ ^ = g c(fe) ( m ^ + X) = c(0) +

(m + l)c(l) = 3>o + (m + l)z. If m = - l ,/(- l) = ord(Φ(0)) = ̂ o = ("1 + 1)* + 3Ό

(ii) /(oίfe(m + 1))

= ord(Φ(L^(OT+1)))

= ord(Φ(Lα^)) U M{ak(m + 1)})),

so f(ak(m)) s /(^(m + 1)) 5 f{ak(m)) + ̂ . Thus f(ak(y)), y = 0, 1, 2, . . . are
all in the same As, and ^ has range c {0, 1, . . ., z}. Furthermore, gk is
recursive by techniques previously used (let T = Φ({α (̂m + 1)}) and use
steps (B) through (E) of the algorithm following Theorem A (4.6). The
implication kγ s k2=^> s^k^ s s(k2) follows from the fact t h a t / is non-
decreasing.

(iii) Assume (b) of (iii) does not hold. We wish to prove that (a) then
must hold. If (b) is not satisfied, then there exists n such that for all
M> n, there exists KM with/(AM) c {as(M)(0), . . ., asM(KM)}. Let t be such
that Φ(A0 U . . . u Λ ) c A o u . . . U A ί ( Since

ω s(n + 1) s f(an+1(0)) = orό(Φ(A0 U , , . U Λ ) U *({«e+i(0)})),

ω s(n + 1) ^ ord(Φ(A0 U.. .UAn)). Along with Φ(A0 U . . .U An) c Ao U . . . U Au

this implies that there exists Bn+1 with card (Bn+1) ^ Kn+1 + 1 such that
Φ(A0 U . . . U Λi+i) U o U . . U ^ U Bn+1. Likewise, Φ(A0 U . . . U An+2) c
Ao U . . . U At U Bn+ι U i?w+2 for some Bn+2 with cαrd(5w+2) ^ i^w+2 + 1, and so

on. Thus for all j , there exists a finite set £ * (= 0 Bn+λ such that
7 \ ί=i /

Φ(A0 u . . . U An+j) cA0U...UAtuBf. But this means that f(A) Q Aou

. . . U At+U so (a) holds.
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(iv) Let n, K, a, a\ b, br be as in the hypothesis of (iv). Let υ be the
largest υ such that Avf) Φ(L<4(/θ) is infinite. Then card(Φ(La^K)) f) (A-
(Ao U . . . U Av))) = b. For each m ^ k, since f(an(m)) equals ω a + b,
^{{an{mj}) c ^ u . .UA,, But then Φ(A0 U . . . U 4 ) has order type
ω α* + b for some a*. In fact, since

ωa' + V =/(αn+1(0)) = ord(Φ(A0 U , . , U 4 ) U *(K+i(0)})),

a* = a'. Further, ω a' + b' = ord(S U Φ({α^+1(0)})), where ord(S) = ω a' + b,
implies that b + z £ b* ^ b.

Conversely, if / satisfies (B), / is a C-function induced by Φ whose
associated Ψ satisfies cαrd(Φ(0)) = y0, card W{ao(0)})) = z, and Ψ(S) = 0 if
cαrd(S) > 1. The proof for this converse is similar to, but less instructive
than and about as complicated as, the proof of the theorem in Case III.

Case III. There exists d > 1 such that Ψ(S) φ 0 for those S of cardinality d.

In this case, (C): (1) / μ + satisfies/(m) = g(m + 1) where g is induced
by a classical rec. combinatorial operator Φ* with associated dispersive
operator ^ * such that Ψ*(S) Φ 0 for those S of cardinality d, (2) for each
An c A, there exists AqQ A and M such that x ^ M implies /(<*„(#)) e A ,̂ and
£*„ defined on {M,M + 1, . . .} by #*(#) = a^ιfan{x + 1) - oiq1/ an(x) is incre-
mental pqr, (3) / is nondecreasing.

Theorem 5.1 If f satisfies (C),fis a C-function.

Proof: If S c 4>, say S = αo(S*), set Φ(S) = αo(cr({0} x Φ*(S*))). Φ(S) will
equal a0(σ({θ}x Φ*(S*))). Now inductively assume that for k = 0, 1, . . .,
m - 1, Φ and Ψ have been extended to P(A0 u . . . u Afe) so that:

(i) *\puov...viAk) induces / | Λ o u . . . u ^

(ii) Φ(A0 U . . . U 4 ) c J J ^ Upαs(σ({n} xN))J ,

(iii) /(Λ:) = co a + b implies that Φ(LX) Π At is infinite for t < a and
cαrd(Φ(Lx) Π A,) = b,

(iv) Φ|^(ΛoU...uAfe) and Φ|/IKAOU...UΛΛ) are a C-operator and a D-operator,
respectively.

(
m v ί»- l

U AΛ. If S c U As, then Ψ(S) has already
;=0 '7 ; = O ;

been defined. So it remains to define Ψ(S) for those finite sets intersecting
Am. If such a set S has cardinality other than d, do the following: Let s be
the ^ΛoU. .uiΛ^-index of S. Let S* be the subset of N whose index under the
usual enumeration of finite subsets of N is s, and let T = Φ*(S*). Set
T* = σ({m} x T). Take *(S) c N (= Ao) to be σ({cαrd (S)}x\ T*), where σ ί α ^ ) ,
a(n2)) = α(σ(wi, w2)), α being a rec. bijection from JVonto σ({m}x N).
[We will use more constructions similar to that in the preceding paragraph
throughout this proof, so some notation will be introduced. If R is an
301-rec. 9W-bounded set in some manifold <M,SW), then there is an l-9W-rec.
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bijection from N onto R, say h. The image in R (under h) of σ({z}{xN) is

called the (z, .) cross-section of R (cross-section will be abbreviated cs).

In the above paragraph, we would abuse notation by identifying S with S*

and would say that we "pushed Φ*(S) into the (cαrd(S), •) cs of the (m, •) cs

of A,."]

Note that by the above construction, those sets intersecting Am that
have cardinality other than d will contribute nothing to /, as Φ(A0) is
already an infinite subset of Ao. Likewise, if S intersecting Am has
cardinality d but is not of the form {#}u {yu . . ., y^} for some xeAm and
y{ in Ao, we push Φ*(S) into the (0, •) cs of the (d, ) cs of the (m, •) cs of Ao to

tn

obtain Ψ(S). Thus we only need to define Ψ(S) for 5 c U Aj of the form

{x}u {yi, . . ., 3V_i} as above. Such a set we write as [#,3;*] for short. We
will now indicate how to define the M[χ>y*]) so as to induce/. To see how
this should be done, we first note that by properties (2) and (3) of (C), we
have:

f(oίm(0)) =ωao + bQ

f(am(l)) =ωaλ + bλ

f(am(t)) = ω at + bt

f(a,n(t + 1)) =ωat +b,t+1

f(am(t + k)) = ω at + bt+k

where a0 s aλ s . . . < at_ι < ah and if α, = «y for i < j ύt - 1, then h s bj,
and finally bt ^ bt+1 ^ . . ..

We take ω«-i + δ-i to be the ordinal of φl U Λ/). By induction, we

U Aj) c U Ah while if b^ Φ 0, Φ ( U AA C

. . . . . . 7=0 '' 7=0 7 .m-\ v \,/-0 7

U Aj with all Φ( U Ay) Π A/ infinite except for Φl U A ) Π V , , which has
; = 0 \ / = 0 / V7 I = O '

cardinality δ_\.

One of two cases must hold: either a0 = a-γ or a0 > a_x.
In case a0 = a^u then b0 Ξ δ-i. Let the collection of [0,3^*] be effectively

enumerated by α. Obtain Φ(a(k)) by pushing Ψ*(α(&)) into the (0, •) cs of the
(1, •) cs of the (d, •) cs of the (m, •) cs of Ao, if k ^ b0 - δ . l β If k < b0 - δ_1?

we take ty(a(k)) to be

{aaQ+1(σ(m,σ(0, k)))}u the push of ύ*(a(k)) into the (1, •) cs of the (1, •) cs of

the {d, •) cs of the (m, •) cs of Ao, where Ψ*(S) = Ψ*(S) - {the least member

of Φ*(S)}.

In case «0 > «_1? then push Ψ*(S) for S in the (i, •) cs of the collection of

[0,y*] into the (0, •) cs of the (m, •) cs of Au i = α_i, . . ., a0 - 1. This will

insure that ω a0 ^ f(θm(0)) < ω (a0 + 1). (Note: A slight alteration in this
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( m-Λ .

U Aj). But
) ; = 0 7

Then map the rest of the
[0, y*\ by a procedure as in Case I to insure that f(θm(0)) = ω OQ + b0.

To define ^(S) for S of the form [l,y*], use a similar construction,
pushing into the (2 •) and (3, •) (rather than the (0, •) and (1, •)) cross-
sections of the (1, •) cs of the (d, •) cs of the (ra, •) cs of Ao when necessary.
Continue until <k(S) has been defined for all S of the form [£,3>*] where
zik t. This technique may not be used to define Ψ on all the [s,;y*] since
bz - δ*-i, in general, will not be a rec. function of z. However, by assump-
tion, it is a pqr function of z, so we will be able to use the techniques of
Theorem A (4.6) to define Φ appropriately.

For k * t9 set Ek = 2 σ({k} x {θ, 1, . . .,gw(k)}). Let Ok; be as in
Theorem A (9.6). I claim there is a 1-1 p.r. map defined on σ({t, t +
1, . . .} x N) such that p(σ({k} x N)) = Sk = Ek U Ok.

Proof of Claim: (1) For given x, find α, b such that x = σ(a, b).
(2) Start generating the 2 σ(a,j) + 1, j = 0, 1, . . . as outputs for p.
(3) Dovetail in a canonical incremental pqr algorithm evaluation of gm[a).

For each output z to result from the pqr algorithm, yield 2 σ(α, z) as
output towards p.

(4) Take p(x) to be the bth output towards p that results from (2), (3).

Let β index the collection of finite subsets of N which contain d
elements. Set v(2k + 1) equal to the push of Ψ*(β(2fc + 1)) into the (2, •) cs of
the (d, -) cs of the (m, •) cs of Ao. Set v(2k) = {at(σ(m, σ(l, k)))} U the push of
ύ*(β(2k)) into the (2, •) cs of the (d, •) cs of the (m, •) cs of Ao. As in the
proof of Theorem A (4.6), this construction will now work if we take
*([k,y*]) to be v(p(σ(k - 1, i))), where i is the BΛ<)U...UAfnΓindex of [k - 1, y*].
This completes the inductive definition of Φ. Its associated Φ will induce /,
proving Theorem 5.1.

Summarizing the three Cases I, II, and ΠI, we obtain:

(5.2) f is a C\-function iff it satisfies (A), (B), or (C).

Now that the C|-functions on A have been characterized, we consider
extending C!-functions to RET's. Classically, if / is a rec. combinatorial
function induced by a rec. combinatorial operator Φ, / is extended to fςi
defined on RETfs by faf[B)) = [φ(B)]. Now let/be a C-function on C4,«0.

Case I. 511 is finite, so that A = Ao u . . . U Ak,ior some integer k.

Let fi and f2 be two C|-functions (induced by C -operators Φ: and Φ2,
respectively) which have the same restriction to At = Ao U {-1}. Index A
by α, a(n(k + 1) + m) = a,φt), 0 = rn = k. 31 and {a} are matched atlases on
A. Consider Φ* and Φ$, rec. combinatorial operators on N, given by
Φ?(S) = a'^ΦiiaiS))). Since /I |Λ+ = / 2 | ^ + , Φf and Φ* are, in fact, equivalent
rec. combinatorial operators and hence yield the same action on RET's of
N. In other words, Φ*([#]) = Φ$([B]) for all [B] which are RET's on N. But
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then, since [Φ, (S)] = [α(Φ*(α(S)))] = φ'^&ϊiφ&S]))), Φi and Φ2 yield the same
action on RET's of A. Thus the action of a C-operator on the RET's of A
depends only on the action of its induced function on AQ, the function f(ή) =
g(n + 1), g rec. combinatorial. Furthermore, this action is exactly the
action on the RET's of N by a classical combinatorial operator inducing g",
if we identify, via φ, the RET's on A with the RET's on N.

Case II. A = N2.

Consider / defined on A by f(ao(n)) = ao((n + I)2) and /(αfc(w)) = Qfi(O) for
k ^ 1. Under the identification of iV2 with the initial segment [θ,co2), this
definition becomes f(x) = (x + I) 2 for x < ω and f(x) = ω for x ^ ω. By our
characterization of C-functions, / is induced by a C-operator. Let Φ be any
C-operator inducing /. Φ(A0) is contained in Ao U . . . U ^ for some k and
has order type ω. But then, since Φ(Ly) has order type ω for all γ ^ ω, all
Φ(Ly) are contained in Ao U . . . U Ak. Let T be the collection of all sets of
the form {ao{no), a^nj, a2(n2)y . . .}, nOy nu n2, . . . e N. All members of T
belong to the same RET of N2. But if Si and S2e T and Sλ Φ S2, then ΦίSj Φ
Φ(S2). So since there are uncountably many members of T, there are
uncountably many Φ(S), Se T. Index Ao U . . . U Ak by a, a(n(k + 1) + m) =
am(ri), 0 ^ m ^ k. If all the Φ(S), Se T, belonged to the same RET of N2, say
[So], all the a~γ{${$)) would belong to the same RET of N, φ([S0]). But there
are uncountably many cΓ^Φ^)), Se T, whereas each RET of AT contains only
countably many members. So not all the Φ(S), Se T, belong to the same
RET of N2, hence Φ does not preserve RET's.

Summarizing, if A has only finitely many patches, extending C-
functions to RET's by /Q([B]) = [Φ(#)] yields just the classical extensions,
using the 1-1 correspondence φ. If A = iV2, then such an extension would
not be well-defined, as even very simple C-functions may be such that for
any Φ inducing the C-function, there exist Bι and B2 such that [Bι] = [B2\
but [φ(Bχ)] Φ [Φ(B2)l
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