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Independence in Higher-Order

Subclassical Logic

DAVID BALLARD*

Introduction A formal logic can be distinguished in a variety of ways. In
the case of intuitionistic logic or classical logic it may carry an intended inter-
pretation: If that is lacking, however, it still can be distinguished by the theorems
it generates. Indeed, between the intuitionistic and the classical there extends a
whole hierarchy of uninterpreted logics (the so-called intermediate logics),
generally known by their theorems alone.

A third point of view is possible. Within the logic certain interdefinabilities
of connectives and quantifiers may arise and this would allow one to study the
formalism for redundancy (or lack of it) among the primitives used to present
it. First-order classical logic has a high degree of redundancy, typical examples
being the dualities between v and & and between 3 and V. In higher-order
classical logic we have the curious fact (reported by Henkin [2]) that all connec-
tives and quantifiers are definable just from equality. Intuitionistic logic presents
a quite different picture. Prawitz [3] reports a complete independence among
connectives and quantifiers within first-order intuitionistic logic. Passing to
higher-order intuitionistic logic, he finds a return to redundancy involving a
distinguished pair of primitives. He shows that in higher-order intuitionistic logic
all connectives and quantifiers are definable from — and Vv alone.

A central purpose of this paper is to reexamine the —, v definabilities of
Prawitz from the point of view of independence. The question to ask is obvi-
ously this: Are there other redundancies possible for higher-order intuitionistic
logic and, if not, just how far through the hierarchy of intermediate (higher-
order) logics does the resulting independence of connectives and quantifiers
persist?

If one restricts attention to a reasonably standard list of primitives,
namely -, v, &, —, 3, and Vv, then a fairly pleasant pattern emerges.! Starting
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with intuitionistic logic and extending considerably beyond through other
intermediate logics the following are true:

*) neither — nor Vv is definable
(**) any definition of —, v, &, or 3 requires use of both — and Vv.?

Here (see Prawitz [3]) a connective or quantifier ® is to be definable in a logic
L if for each formula A in the language of L which contains & there exists an
L-equivalent formula 4’ which does not. To say a definition of & requires [
means there exists a particular A containing &, no L-equivalent A’ of which
lacks both ® and .3

A related task of the paper will be to present certain proof techniques by
which the independencies just named can be proved. The full pattern involves
verifying ten separate items. In this paper we shall illustrate the proof ideas by
demonstrating three of the ten, namely,

I. v is not definable
I1. any definition of & requires use of —
II1. any definition of v requires use of v.

The remaining seven independencies have proofs modeled on the demonstrations
given for I and II. We include III as it is a special case and deserves its own
discussion.

The independence proofs are adaptable to higher-order logic in the broadest
sense, namely, to arbitrary type theory. To simplify exposition we will present
the three proofs in a highly restricted context. We will work in a weak form of
second-order logic which omits use of N\-abstraction and has only two types of
variables, both of which are “propositional” in the sense of Henkin [2].
Following the proofs we will discuss their generalization to arbitrary type theory.
We will also indicate by examples how far beyond intuitionism and into inter-
mediate logic the independencies persists intact.

Although technical in nature, the investigations reported in this paper do
have broader philosophical implications. Historically, intuitionistic logic has been
defined and marked out by an intended interpretation of its connectives and
quantifiers. It is now apparent that above the first order this logic possesses an
underlying structure (an independence pattern among primitives) which is
preserved intact in a still larger domain not covered by such interpretation.
Perhaps more of subclassical logic is capable of useful interpretation than is
commonly realized. A final purpose of this paper will be to suggest such an
interpretation.

1 Overview of the proof ideas The approach employs semantic structures
featuring “truncated” extensional equality. With each type 7 in the language is
associated a set M7 (the 7-objects) together with a binary map ~, from M” to
M (the domain of truth values). The map ~, resembles equality in that it is
symmetric and transitive but since ¢ ~, ¢ is not assumed to be T (truth) for
given ¢ € M’, it may fail to be reflexive. Nevertheless it will be extensional: if
7 = (o)m (the type of functions from og-objects to w-objects) then for given
¢ € M7 one has (6 ~, 0') = (¢(0) ~, ¢(6")) is T for every 6, ' € M°.* The
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independence proofs hinge on studying valuations of the formal language onto
such semantic structures. These valuations amount to mappings V, (one for
each 7) of 7-terms into the set M7, where the mappings satisfy certain obvious
conditions. In particular, formulas (terms of type 1) get mapped into M! (truth
values), which is taken to be a complete Heyting lattice H.° V-valid formulas
(those mapped to T € M) form a deductively closed set which, if including the
theorems of a logic L, can be used to gather information on independence in
L. For example, given a formula 4 with occurrence of &, if we can show there
exist no other formula A’ which is V-equivalent to 4 (has the same V-value as
A) and lacks both & and —, we can conclude that for logic L any definition of
& requires some use of —. By construction, all theorems of intuitionistic logic
are V-valid.

2 The language

Types The language has two types, 1 and (1)1.° The first is the type of
truth values, the second the type of 1-placed maps from truth values to truth
values. We use Greek letters 7, o, 7, etc. to denote arbitrary types in the
language.

Variables For each type 7 an infinite collection of free and bound variables
is assumed. Free variables of type 7 are written a”, b7, ¢’, etc.; bound variables
are written x”, y7, 7, etc.

Terms Free variables of type 7 are terms of the same type. If A and B are
terms of type (1)1 and 1 respectively then (AB) is a term of type 1.7 If 4 and
B are terms of type 1, then so are ~(A4), (AvB), (A & B), and (A - B). If
A is a term of type 1, if @', x! are free and bound variables of type 1 and A’
is got from A by replacing a' everywhere with x! then (3x'A4’) and (vx'A4’) are
terms of type 1.

Where confusion is not a problem parentheses will be omitted. Thus in
terms formed by repeated disjunction or conjunction, omitted parentheses
associate to the left: AgvA; v...v A, denotes ((...(AgVA;) Vv...)VA,),
and similarly for 49 & A; &...& A,. Following Prawitz [3] we shall call an
expression A which would be a term except for the possible presence of bound
variables not bound by quantifiers a pseudo-term. Terms and pseudo-terms
of type 1 are called formulas and pseudo-formulas, respectively. If A is a
pseudo-term with unbound bound variables among the distinct x{',..., x;"
and B,,..., B, are pseudo-terms of appropriate types, we use the notation
Axlrj[Bj] to denote the result of replacing each unbound occurrence of x7 in 4
with B;. The degree of a pseudo-term is the number of occurrences in it of the
symbols —, v, &, 3, and V plus the number of times application is used in its
formation.

3 Semantics We adopt semantic structures of the form S = (H, <, h)
where (H, <) is any partially ordered set underlying a complete Heyting lattice
and where & € H is a distinguished element. H is assumed to have at least two
distinct members. When dealing with such a lattice (H, <) we use the nota-
tions -, v, &, —, and < to denote the corresponding operations on elements of
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H. Welet T and 1 denote the maximum and minimum elements of H. Lub and
glb denote the operations on nonempty subsets of H assigning least upper
bounds and greatest lower bounds, respectively.

Given the structure S = (H, <, h) we associate with each type 7 a set M”
and a binary map ~, on M7 with values in H as follows:

()M '=H,x~ y=h&(xoy)
(2) MO = {d) € maps(M', M"): for all x, y € M }
X~1y=0¢x) ~1¢6(»)
¢~y ¥ =glb{p(x) ~; Y(x): x € M'}.

By an assignment we mean a mapping ¥ which assigns to each free variable
a” (7 arbitrary) an element of the set M". Given specific a” and ¢” € M7, we let
A2- denote the assignment got from U by altering its value at a” to ¢. A
valuation is a mapping on terms and sends a 7-term A (7 arbitrary) to an
element in M7. It is defined inductively from an assignment 9{:

(1) V(a’, ™) =A(a")

2) V(0A4,A) =-V(A4,A)

3) V(AQ® B, A) =V(A4, A) ® V(B, Y) where ® =v, &, or —

(4) V((AB), A) = V(A, W) (V(B, A))

(5) V(Qx"A,A) =T ({V(A,rla"], U-): ¢ € M™}) where Q, T' = 3, lub
or Vv, glb.

In the last clause @7 is to be an arbitrary free variable of type 7 not already
occurring in A.

We write V(A) when the assignment ¥ is understood. V¢r is the valua-
tion induced by A¢- and V% denotes the obvious generalization,® the entries
of a” being assumed to be distinct. If the pseudo-term A has unbound bound
variables among the (distinct) entries of x” and if the entries of ¢ are in the
appropriate M7’s then V(A),[¢] (or V(A)[¢] if x” is understood) denotes
Ve:(A,-[a”]) where the entries of a” are arbitrary distinct free variables of
appropriate type not occurring in A.

Valuations behave well with substitutions since V(A4,[B]) = V(A),[V(B)]
holds generally. A pseudo-term A of type o becomes, under valuation, an
“extensional” function: If ¢ and y have entries in the appropriate M7’s and if
k < ¢; ~,, y, for each j(k € H) then k < V(A)[¢] ~, V(A)[¥].

Given valuation V on structure S = (H, <, h) and pseudo-terms A, B both
of the same type, we say A and B are V-equivalent if for all appropriate ¢,
V(A)[¢] = V(B)[¢]. Pseudo-formula A is V-valid if for all appropriate @,
V(A)[¢] = T. All theorems of first-order intuitionistic logic written in the type
variables of our chosen language are V-valid. The collection of V-valid formulas
is always deductively closed.

4 Statement of results In the context we have set up we shall prove:

I. There is a valuation ¥ on a structure S such that V(A4) #
V(vx'(a‘Vx")) for every formula A4 lacking v.

I1. There is a valuation V on a structure S such that V(A4) # V(a! & b')
for every formula A4 lacking both & and —.
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III. There is a valuation V on a structure S such that V(4) # V(a'vb!)
for every formula A lacking both v and V.

5 Preliminaries Assume a fixed structure S = (H, <, h). Given a nonempty
subset H' © H we define for each type 7 the H'-portion of M7, written M"(H'),
as follows:

(1) MY(H') = H'
(2) MOV H") = {¢ € MD!: image (¢) € M'(H')}.

If the set H’ has only one element, say k € H, it is clear that each M"(H’) also
has a single element which we denote as k”. Thus k! = k and k("7 is a constant
function with k7 as its only value. The use of H’-portions in the proofs below
hinges on the following triviality: If A4 is of type (1)1 and V(4) € MVY(H"),
then for every B of type 1, V(AB) € M'(H").

An element k € H is (finitely) 3-simple if for every nonempty H' € H
(non-empty finite A’ < H) whenever lub(H’) = k, then k'’ = k for some
k' € H'. We say k is (finitely) v-simple if for every nonempty H' < H
(nonempty finite ' € H) whenever glb(H’) < k then k’ < k for some k' € H'.
Note that whenever k € H is 3-simple, yet distinct from L, the set {k' € H:
k' < k} contains a unique maximum which we denote by k.. If k€ His
v-simple, yet distinct from T, the set {k’ € H: k’ > k} also contains a unique
minimum which we denote by k*. The use of 3- and v-simplicity is recurrent in
the independence proofs. For example, from V(A4 v B) = k and finite 3-
simplicity of k we can conclude that V(A) = k or V(B) = k; from V(vx"4) <
k and v-simplicity of & we can conclude V(A4)[¢] < k for some ¢ € M".

Suppose L is V-simple and that # = L *. Then for each kK € H for which
k = L* and for each type 7 we define a special map A, ;: M™ > M7 ({1, k}) as
follows:

kif ¢ # 1L

(1)  Ax(e) = beM =H
1 lfd) = 1

(2) Anri(d) = Ayped b MO,

One verifies that for all ¢, y € M™ ¢ ~, Y < A, 4(¢) ~, A, «(¥),’ and that for
n

all g € M7, L* < ¢ ~, A, (). If M is the product set [] M7 we let A, ;:
=0

M — M denote the map such that A, ,(¢), = A k() forlj =0,...,n. In the

independence proofs the A, , maps are used to form from a given ¢ € M" a

“thinned out” version A, x(¢) which is “sufficiently” equivalent, with respect

to ~,, to the original.

For given valuation V a formula A will in general not be V-equivalent to
any of its prenex normal forms. However by choosing the lattice (H, <)
carefully and noting the structure of the particular 4 we’re dealing with, a
V-equivalent prenex’'form can be assumed where needed. Obviously if (H, <)
is Boolean, all prenex forms are possible. If A does not contain occurrence
of —, if 1 is v-simple, and H has at most finitely many incomparable elements,
then a prenex form for A is also assured.



INDEPENDENCE 449

Each independence proof begins with an initial reduction. By careful choice
of the lattice (H, <) and the assignment used to form the valuation V, it can
be assumed that the presumed counterexample A, taken to have minimal degree,
has the form Qyx°. .. Q,x;"B, the Q; being quantifiers 3 or v, the x/V being
distinct and B being some pseudo-formula. Some criteria for estimating V(A4)
given the Q;’s and B become necessary and thus we develop the following

n

notion: Let M,, ..., M, be given sets. Write their product M = H M. Suppose
j=0

a € {0,...,n} is any subset. Then call a mapping &: M — M a choice

functional for M relative to o if

(1) for all ¢ € M, ®(¢) | = 6|, '°
(2 forall ¢, y e Mand 0 <j=<nif o= {0,...,/} then q&[aj = ‘lbla!
implies ®(¢)a, = P(¥)|q-

n
Returning to the formula A = Qyx§°...Q,x;"B, let M = H M7 and let

=0
at={0=<sj=smQ=v},a ={0<sj=sn: Q; =13} Thenjthe following is
easily verified: If a choice functional ® for M relative to o™ exists such that for
allg € M, V(B)[®(4)] = k, then V(A) = k; conversely if V(A) = k and k is
3-simple, such ® exists. Similarly, if a choice functional & for M relative to o~
exists where V(B)[®(¢)] < k for each ¢ € M, then V(A) < k; conversely if
V(A) < k and k is V-simple, such & exists.

To speed up description of Heyting lattices used in the independence
proofs, we take each (H, <) to be a substructure of (C, <) where C is the com-
plex numbers and < is the partial ordering of C whereby z < w means Re(z) <
Re(w) in the ordinary sense. Following custom we use i/ to denote V-1.

6 Proofs of independence

ILLet S=(H, =, L") where H={—-1,0} U {l/p:p=1,2,...}. Assume
of V only that for each 7 the V-images of free variables of type 7 include all of
M™({L, T}) (a finite set) yet are restricted to M"(H — {L1*}) and that
V(aD') = g where for k € H g(k) = T if k € {L, L*} and g(k) = k if
otherwise. Thus V(vx!(a!x!)) = L*. One notes that L* is not of the form
—(r) for any r € H, that L* is 3-simple and finitely v-simple and that whenever
r—s= 1% for somer, s € Hone has s = L*. Assume a formula A4 exists which
lacks v yet for which V(A4) = L*. Picking A of minimal degree, we can infer
that 4 has the form 3x”B. Since L* is 3-simple we can pick ¢ € M7 such
that V(B)[¢] = L*. Let ¢’ = A, 1(¢). Since L* < ¢ ~, ¢’ we have L* <
V(B)[¢] ~1 V(B)[¢’] and hence V(B)[¢’] = L*. But for every ¥ € M7,
V(B)[y] < L*soin fact V(B)[¢'] = L*. On the other hand, ¢’ € M"({L, T})
so we must have for some free variable a” that V(a") = ¢’. But then 4’ =
B,r[a"] has lower degree yet satisfies V(A’) = V(B,r[a"]) = V(B)[V(a™)] =
V(B)[¢'] = L*—a contradiction.

II. Let S = (H, =, T) where H = {-3, =2, —1, —i, i, 1} and pick any
valuation ¥ on § such that V(a' & b') = —1 and for free variable a”, V(a") €
{—i, i} if 7=1 and V(a”) = i” otherwise.!! One notes that —1 is not of the
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form — (r) for r € H and that —1 is finitely 3-simple. Assume a formula A4 exists
lacking both & and — yet for which V(A) = —1. Picking A of minimal
degree we can infer that for some n = 0, A4 is of the form Qux{°...Q,x"B
where each Q; is either 3 or v, the x// are distinct and B is a pseudo-formula
n
not itself of the form Qx"B’. Fix M = [[ M7, a* = {0 < j < n: Q; = v}
i=0

anda” ={0=<,j=<n: Q;=13}. Since L = j—3 is V-simple, H is finite and A con-
tains no —, we can in fact assume A is in prenex normal form so that B lacks
3 and V altogether. Passing to V-equivalent we can write B=CyvC; V...V C;
where each C, is either a negation —(E) or a variable (of type 1) or else an
applied pseudo-term (EyE;) where E; is again a variable (of type (1)1). In the
latter two cases it turns out that the variable in question must be bound and in
fact be x/V for some j € at. This is seen by noting that V(A4) < —i, i both of
which are v-simple so one can find suitable choice functionals on M relative to
o~ to produce @, ¢y € M such that V(B)[¢] = —i and V(B)[y] < i and yet for
any j € o, ¢; = y; = T 7. If the variable in question (within C,) were not one
of the x/ for j € o™ then it would be the case that V(C,)[¢] = V(C,)[¥] =
one of —i or i which would violate one of V(B)[¢] <= —i or V(B)[y] = i.
Continuing, one notes that ¥(4) = —1 which is 3-simple, so a choice functional
&’ on M relative to ot should exist for which V(B)[®'(¢)] = —1 for each
¢ € M. Define map $: M - M by

o; ifjeat
®(0), =
®'(A;,,+(9)); if otherwise .

Then & is a choice functional on M relative to a*. We shall derive a contradic-
tion by showing that V(B)[®(¢)] = T for arbitrary ¢ € M which in turn im-
plies V(A) = T # —1. Let ¢ € M be arbitrary. We have V(B)[®'(4, *(¢))] =
—1 and since —1 is finite 3-simple we must have V(C,)[®'(A, *(¢))] =
—1 for some C,. If C, is not a negation then it contains (see above) a crucial
variable x/ for j € a* and with (4, ,+(¢)); = A, ,+(¢), = A 10(9)) which
lies in M7({L, L*}) this forces V(C,)[®'(A,  +(¢))] into the set {L, L*}
both elements of which are strictly less than —1. Therefore C, must be a
negation. On the other hand, for each j it is the case that 1* < ®(¢); ~7
®’(A,,1+(¢)); and hence L* < V(C)[®(¢)] ~; V(C.)[®'(4,,.+(¢))]. This
implies L* = V(C,)[®(¢)] and since this value must be among {L, T} (C,
being a negation, L being V-simple) we have that V(C,)[®(#)] equals T. Thus
also V(B)[®(¢)] = T and we have our contradiction.

III. Let S = (H, <, T) where H= {1, —i, i, 1, 2} and pick any valua-
tion ¥ on S such that V(a'vb') =1 and that for each 7, the V-images of free
variables of type 7 comprise the set M"(H — {1}). One notes that 1 is not of the
form = (r) for any r € H, that 1 is v-simple, and that for any r, s € H, if
r—s=1then s =1 is the case. Assume formula A exists lacking both vand v,
yet for which V(A) = 1. Picking 4 of minimal degree we can infer that it has
the form 3x”B. First, suppose V(B)[¢] = 1 for some ¢ € M". An inductive
argument '2 shows that some ¢’ € M"(H — {1}) exists such that 1 < ¢ ~, ¢".
But then 1 < V(B)[¢] ~; V(B)[¢’] so V(B)[¢’] =1 and hence V(B)[¢'] =1
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is the case. By construction there exists free variable ¢” such that V(a™) = ¢’
and hence V(B,-[a”"]) = V(B)[V(a")] = V(B)[¢’'] =1 holds. But B,-[a”] has
lower degree than A so we conclude that V(B)[¢] = 1 is impossible and in fact
V(B)[¢] < 1 is the case in general. However since V(A) = 1 there must exist
¢, ¥ € M7 such that V(B)[¢] = —i and V(B)[y] = i. A further inductive
argument shows that for any type ¢ and elements ¢’, ' € M? there exists § €
M?° such that —i <60 ~; ¢’ and i < 6§ ~, ¢'. Define map A: H - M" where
A(L) = ¢, A(T) = A(1) = ¢ and A(—i) and A(i) are so chosen that —/ <
A(=i) ~, ¢, —i<A() ~, ¢, i< A(—i) ~, ¢ and i = A(i) ~, . One checks
that for all r, s € H that r ~; s < A(r) ~, A(s)."? Now define 6: H — H by
6(k) = V(B)[A(k)]. Then 6 € MV (k) < 1 forall k € Hand 6(T) =i and
¢(L)=—i.Buttheni<io T =<6()<i,soi=<60(i)<1. Weinfer (i) =i. This
implies —i<ie 1L < 60(i) < 0(L) =i (—i) = L which is a contradiction.

7 Extensions to arbitrary type theory The language is extended as follows:
A second “initial” type O (the type of individuals) is added. For any two types
7 and o, (7)o is also a type. Appropriate variables for each type are introduced.
Terms are built up as before except that (1) for arbitrary types 7, o if A is of
type (7)o and B of type 7 then (AB) (read A applied to B) is of type ¢ and (2)
if A is of type o, if a”, x™ are free and bound variables of type 7 and if 4’ is
formed from A by replacing a” everywhere with x7, then Ax’A4" is a term of
type (7)o.

From the semantic structure S = (H, <, h) the objects M7, ~.,, M"(H’),
k7™ and A, , are all built up for the additional types in the manner suggested for
7=1and (1)1. For 7 = 0 one puts M° = M°(H’) = {0}, 0 ~o0 =h and k° =
Ao, x(0) = 0. Valuations are defined as before with the additional clause

(6) V(AX"A, W) () = V(Ayrla’], Alr),

where a7 is an appropriate free variable not occurring in A. It is necessary to
verify that V(Ax"A) so defined does indeed belong to the set M7 (A being of
type o). % Also to be checked is that ¥ respects A-conversion: that is, (Ax”4)B
and A,-[B] are always V-equivalent.

The proofs for arbitrary type theory go through word for word except for
one minor modification: The possible presence in A (the presumed counter-
example) of subpseudo-terms of the form (Ax"B)C has to be dealt with. These
are eliminated by the process of N\-conversion (replace (Ax”B)C with B,-[C])
which eventually transforms A into a “normal” term, one lacking any subpart
of the form (Ax"B)C. The presumed counterexample A is assumed to be
normal at the outset, to have minimal degree as such, and the proofs proceed
as before. What is missing is the knowledge that the A-conversion process for
arbitrary A does eventually stop and deliver up a term in normal form. This can
be verified by adapting a variant of the notion of “rank” used in Schiitte [4] and
proving by his same line of reasoning that all terms have finite rank. Normal
forms for arbitrary terms are then demonstrated by induction on rank.

8 Independence in intermediate logic Each of the ten independence proofs
involves a valuation ¥ whose valid schemata go far beyond intuitionistic logic.
The case for — deserves special mention. The proof that definition of — requires
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Vv can be done with a two-element Heyting lattice while proof that definition
of — requires — is done with the next simplest Boolean lattice. Thus even for
two-valued logic a definition of — requires Vv and for classical (Boolean) logic
generally, a definition of — also requires —. '3

Consider however the following schemata:

—(A) v (A4)
(Vx7A) - Ix"(A)
vx"(AvB)—> (Vx"A)VvB ,

where in the third, B is not to contain unbound occurrence of x”. These are in
clear violation of intuitionistic philosophy and yet in every case except one, the
three are V-valid. '® It is just the first schema which fails validity and this only
for the valuation V in proof III. Indeed if we add to higher-order intuitionistic
logic the schema —(A4) v == (A4) then Ix'[(=(x') » 4) & (-~ (x') > B)]
becomes a definition of A v B not needing the symbol v. This explains why
independence proof III is qualitatively different from the other nine.

9 An interpretation The Heyting lattice provides subclassical logic with
perhaps its most natural semantic structure. There may be an analogy with
classical logic for which the two-element lattice provides not only a semantics
but also a starting point for interpretation, and so a second look at the general
shape of a Heyting lattice might be called for. Indeed, nonclassical phenomena
arise in a Heyting lattice which even the intuitionistic interpretation, in a sense
to be clarified, avoids accepting at face value.

To illustrate, let us assume that some general Heyting lattice is given and
that all formulas 4, B, C, etc. have been mapped onto it by means of some
valuation. For simplicity we will identify a formula A with its value in the lattice.
What at once catches the eye is that the truth of a formula A (the case where
A = T) is not dependent on the truth or falsity of its subformulas. This is
rather different from the classical situation where the meaning of each connective
and quantifier can be spelled out by means of a truth table.!” On a Heyting
lattice one notes that A - B = T may occur whether or not either of A or B
take on the classical values T or L. It is also seen that 4 v B = T is possible
even though neither A nor B may coincide with T. In an analogous manner
IxA = T is possible even though for no (relevant) ¢ is 4,[¢] = T the case. '8

The idea of a Heyting lattice comes from the pioneering work of intui-
tionists and it is of interest to note their attitude toward this behavior. The
concern of intuitionism is proof and not classical truth, but by observing which
formulas an intuitionist is willing to assert, an interpretation emerges for
comparison. In this interpretation, implication (at least) is treated in a way
befitting the Heyting lattice. The intuitionist is willing to assert 4 — B without
specifically asserting or denying either A or B in the process. However, he will
not assert A v B without first asserting one of A or B and he refuses to assert
axA without previously asserting some A,[¢]. Clearly his loyalties lean more to
the classical than to the Heyting lattice.

Can the phenomena arising in a Heyting lattice be taken at face value? A
bit of reflection may convince one that we regularly experience truths in our
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world in a most unclassical manner. Standing on the edge of a high cliff
confronting the view which drops away at our feet we can be struck with the
truth of “I would fall to great injury if I were to take another step forward.”
This forms a nonclassical experience of implication in that it is felt without first
rejecting as false a premise (I step forward) or affirming as true a conclusion
(I fall). For disjunction one can remember the afternoon we realize we have
mislaid a garden tool which has got to be on the front or back lawn where we
last used it. Although it does not turn up after considerable search we are
unshaken in our certainty that it lies either out front of the house or out back.
We are unclassically in the grip of the truth of A v B and not that of either A
or B. With fair frequency, existence is also viewed in this nonclassical manner
as, for example, when we see a face and experience the strong sense of recog-
nition and yet are completely unable to make an identification.

Based on these considerations, we suggest the following interpretation for
subclassical logic:

—(A) = anything would be true if 4 were true
AvB =itisasif A is true or B is true

A & B = both A and B are true

A - B = B would be true if A were true

axA =itis as if for some x, A4 is true of x
vxA = for all x, A is true of x.

The interpretations for & and V are self-explanatory. The interpretation for —
is based on the lattice equivalence of = (A4) with A — L. The novel features of
the interpretation are contained in the treatment of —, v, and 3.

Since the examples given above for motivating the interpretation were
drawn from personal subjective experience it might seem that the use of this
interpretation is restricted to that domain. This is not so. One is quite free to
treat the interpretation as involving an externally existing reality. Of course the
world so viewed no longer fits the classical mold. Truths seem to form a part
of the world in analogy with physical matter: the apple (a thing) and the danger
(an implication) can both be perceived directly. The environment at times seems
to hold truths (disjunctions) which are potent and yet not fully formed in the
classical sense. In addition one encounters quasi-existing realities (truths involv-
ing existential quantification) for which the classical view has no name.

NOTES

1. The pattern’s appeal is definitely related to this choice of primitives. Other choices
do not reproduce its tidiness.

2. For reasons of symmetry we differ from Prawitz [3] by substituting — for L.

3. One can refer to Umezawa [5] for comparable results. His focus is a proof-theoretic
restriction of Prawitz’s definability rather than the role of - and v.

4. Note that the ~, maps are structure on the semantic system itself and not in the
formal language. The logics studied in this paper do not include equality.

S. Also called a pseudo-Boolean algebra by some authors.
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(=)

10.
1.

12.

13.

14.

17.
18.

(1]

(2]

B3]

(4]
[5]

. The notation is chosen to be compatible with arbitrary type theory.
. Such a term is said to be formed by application.

. Boldfaced ¢, 7, a’, etc. denote finite sequences of appropriate objects, their j-th
element being written ¢;, 7;, a7, etc.

. In arbitrary type theory this is simply A, , € MD7({ L, k}).

We are temporarily considering elements ¢ as functions on the set {0, ..., n}.

Recall that i” is the sole element of M7({i}) and similarly for T~ which is used
later in this proof.

The induction is taken over types and is really only needed for the generalization
to arbitrary type theory. In the present context, verification for types 1 and (1)1 is
performed directly. Further reference to “inductive argument” elsewhere in this
proof is to be read in the same light.

In arbitrary type theory this is simply A € MV,

This amounts to showing the sets M” form a “general model” in the sense of
Henkin [1].

. These remarks are of course relative to our chosen list of connectives and quanti-

fiers.

. That the second schema is V-valid in proof III requires argument similar to that
developed within that proof.

Infinitary truth tables in the case of quantifiers.

Of course the classical situation and the Heyting lattice do exhibit some similar
behavior. For both A & B = T is the case only when each of A = T and
B = T hold; vxA = T is the case only when for all (relevant) ¢, A, [¢] = T
happens to be true; = (A) = T holds only if A = L is the case. Beyond this, similar-
ities cease.
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