Some Remarks on Equivalence in Infinitary and Stationary Logic

MATT KAUFMANN*

The logic L(aa) is obtained by adding a quantifier *aa* ("almost all") ranging over countable sets (see [1]). If instead one extends first-order finitary logic by allowing arbitrary conjunctions and disjunctions and quantification $\exists \langle x_{\alpha}: \alpha < \lambda \rangle$ and $\forall \langle x_{\alpha}: \alpha < \lambda \rangle (\lambda < \kappa)$ and restricts to formulas with fewer than κ free variables, one obtains the infinitary logic $L_{\infty\kappa}$ (see, for example, [3]). The following theorem extends Section 5 of [1] and answers a question of Nadel.

Theorem 1 For every cardinal κ , there are structures A and B such that A and B satisfy the same sentences of $L_{\infty\kappa}$ but not of L(aa).

Proof: Fix $\kappa > \omega$. It is routine to construct a chain $\langle A_{\alpha} : \alpha < \kappa^+ \rangle$ of structures for the vocabulary $\{X, Y, P, \epsilon\}$, satisfying the following inductive hypotheses (1) through (4) below. Here X, Y, and P are unary relation symbols and ϵ is binary. We write $A_{\alpha} = (A_{\alpha}; X_{\alpha}, Y_{\alpha}, P_{\alpha}, \in)$, and we use the standard notation $[Z]^{\omega}$ for the set of countably infinite subsets of a set Z.

- (1) $A_{\alpha} = X_{\alpha} \cup Y_{\alpha}, Y_{\alpha} = [X_{\alpha}]^{\omega}, P_{\alpha} \subseteq Y_{\alpha}$, and \in is the membership relation on $X_{\alpha} \times Y_{\alpha}$. Also $\alpha < \beta$ implies $A_{\alpha} \not\subseteq A_{\beta}$.
- $(2) |X_{\alpha}| = 2^{\kappa}.$
- (3) Suppose that $Z_0 \subseteq X_{\alpha}$ and $|Z_0| \leq \kappa$, and that $|Z| = \kappa$ and $(Z_0 \cup [Z_0]^{\omega}, P_{\alpha} \cap [Z_0]^{\omega}, \in) \subseteq (Z \cup [Z]^{\omega}, P, \in)$. Then for some $Z' \subseteq X_{\alpha+1}$, there is an isomorphism j from $(Z \cup [Z]^{\omega}, P, \in)$ onto $(Z' \cup [Z']^{\omega}, P_{\alpha+1} \cap [Z']^{\omega}, \in)$ such that j extends the identity function on $Z_0 \cup [Z_0]^{\omega}$.
- (4) If α is a limit ordinal of cofinality ω , then for all $s \in \left[\bigcup_{\beta < \alpha} X_{\beta}\right]^{\omega} \bigcup_{\beta < \alpha} [X_{\beta}]^{\omega}$, we have $s \in P_{\alpha}$.

^{*}We thank Mark Nadel for raising questions that led to the theorems in this paper. We also thank Ken Kunen for bringing Lemma 3 to our attention.

MATT KAUFMANN

Similarly define a sequence $\langle B_{\alpha}: \alpha < \kappa^+ \rangle$ satisfying (1), (2), and (3) above (with $A_{\alpha} = (A_{\alpha}; X_{\alpha}, Y_{\alpha}, P_{\alpha}, \in)$ changed to $B_{\alpha} = (B_{\alpha}; X_{\alpha}, Y_{\alpha}, P_{\alpha}, \in)$), along with (4) changed so that $s \notin P_{\alpha}$, i.e.,

(4') If α is a limit ordinal of cofinality ω , then for all $s \in \left[\bigcup_{\beta < \alpha} X_{\beta}\right]^{\omega} - \bigcup_{\beta < \alpha} [X_{\beta}]^{\omega}$, we have $s \notin P_{\alpha}$.

Now let $A = \bigcup_{\alpha < \kappa^+} A_{\alpha}$ and $B = \bigcup_{\alpha < \kappa^+} B_{\alpha}$.

The class of countable subsets of |A| satisfying the hypothesis of (4) (for some $\alpha < \kappa^+$) is clearly closed unbounded in the class of countable subsets of |A|, so $A \models aas P(s \cap X)$. More precisely, $A \models aas \exists y [\forall x (x \in y \leftrightarrow s(x) \land X(x)) \land$ P(y)]. Similarly, (4') implies that $B \models aas \neg P(s \cap X)$, hence $B \models \neg aas P(s \cap X)$. Therefore A-and B do not satisfy the same sentences of L(aa).

On the other hand, consider the set of all partial isomorphisms f from (a subset of) |A| to |B| satisfying the following conditions: $|\text{domain}(f) \cap X^A| \le \kappa$, $[\text{domain}(f) \cap X^A]^{\omega} = \text{domain}(f) \cap Y^A$, and $[\text{range}(f) \cap X^B]^{\omega} = \text{range}(f) \cap Y^B$. It is easy to see, using (3), that this set is an appropriate backand-forth system for $L_{\infty\kappa^+}$ (cf. [2], or simply check by induction on formulas that every such function preserves truth, and \emptyset is such a function). Therefore A and B satisfy the same sentences of $L_{\infty\kappa^+}$.

Theorem 1 produces structures of power 2^{κ} which are $L_{\infty\kappa^+}$ -equivalent but not isomorphic. We now consider whether $L_{\infty\kappa^+}(aa)$ -equivalent models of power κ^+ must be isomorphic. (Here $L_{\infty\kappa^+}(aa)$ is formed using the formation rules of $L_{\infty\kappa^+}$ and of L(aa), so 'aa' still ranges over countable sets.) This can fail for Abelian groups if $\kappa = \omega$. This follows from the following immediate consequence of [4], 1.5(4) and 5.2, where we write aa^{κ} to denote the interpretation of 'aa' using the cub filter on $P_{\kappa}(\kappa)$ instead of $P_{\omega_1}(\kappa)$: (Assuming V = L) For every regular cardinal κ which is not weakly compact, there are 2^{κ} different Abelian groups of power κ which are pairwise $L_{\infty\kappa}(aa^{\kappa})$ -equivalent.

Here we consider only the interpretation of '*aa*' over countable sets, and we treat only successor κ , leaving open the limit case. A well-known construction easily yields $L_{\infty\omega_1}(aa)$ -equivalent linear orders of power ω_1 which are not isomorphic; this is Proposition 1. Theorems 2 and 3 extend this result to cardinals greater than ω_1 under certain hypotheses.

Proposition 1 There is a family of 2^{ω_1} pairwise nonisomorphic linear orders of power ω_1 which are all $L_{\infty\omega_1}$ (aa)-equivalent.

Proof: For all $X \subseteq \omega_1$, let $\langle L^X, \langle X \rangle$ be the ordered sum $\sum_{\alpha < \omega_1} A_\alpha$, where A_α is (Q, <) if $0 < \alpha \in X$ and A_α is 1 + (Q, <) otherwise. If the symmetric difference $(X - Y) \cup (Y - X)$ is stationary then $\langle L^X, \langle X \rangle$ and $\langle L^Y, \langle Y \rangle$ are not isomorphic. Now it is well-known that there is a family $\{X^Y: Y \subseteq \omega_1\}$ of 2^{ω_1} stationary subsets of ω_1 , each with stationary complement, whose pairwise symmetric differences are stationary. For example, let $\{S_\alpha: \alpha < \omega_1\}$ be disjoint stationary sets by Ulam's Theorem (see, e.g., [6], II.6.11, 6.12), and for $\emptyset \neq Y \subsetneq \omega_1$ let $X^Y = \bigcup \{S_\alpha: \alpha \in Y\}$. It remains to prove that if $X, Y, \omega_1 - X$,

and $\omega_1 - Y$ are stationary, then $\langle L^X, \langle X \rangle$ and $\langle L^Y, \langle Y \rangle$ are $L_{\infty \omega_1}(aa)$ equivalent. In fact, we show that for any isomorphism f from an initial segment I of L^X onto an initial segment J of L^Y , such that I and J either both have or both do not have suprema (in $<^X$ and $<^Y$, respectively), we have $\langle L^X, <^X \rangle \vDash$ $\phi(dom f)$ iff $\langle L^{Y}, \langle Y \rangle \vDash \phi(rn f)$, all $\phi \in L_{\infty \omega_{1}}(aa)$; that is, $(L^{X}, \langle X \rangle \vDash \phi[s])$ iff $(L^{Y}, <^{Y}) \models \phi[f \circ s]$ for every assignment s of the free variables of ϕ into the domain of f. (The conclusion follows by setting $f = \emptyset$.) The proof is a standard induction on complexity of ϕ ; we focus on the 'aa' step. (The ' \exists ' step follows as in the proof of (*) in Theorem 2.) Suppose $\langle L^X, \langle X \rangle \vDash aas \phi(s, dom f)$. Then since X and $\omega_1 - X$ are stationary, $\langle L^X, \langle X \rangle \models \phi(s, dom f)$ for some initial segment s which has a supremum, and for one with no supremum. It follows from the inductive hypothesis that $\langle L^{Y}, \langle Y \rangle \vDash \phi(s, rnf)$ for every sufficiently large initial segment s; hence $\langle L^{Y}, \langle Y \rangle \vDash aas \phi(s, rn f)$. The reverse direction is similar. To be more careful we should replace $\phi(s,...)$ by a formula ϕ' in the above argument, in which each occurrence of s(x) is replaced by $\bigvee x = y_n$, where the variables y_i do not occur in ϕ and are interpreted by the $n < \omega$ elements of s. We omit the details.

For the next theorems we need some properties of the cub filter from Kueker [5]. (The first part is Corollary 2.2 of [5]; the second part follows easily and is also well-known.)

Lemma 1 Suppose that D is cub in $P_{\omega_1}(B)$ and $A \subseteq B$. (i) There is a countable family \mathfrak{F} of finitary functions on B such that for every countable $s \subseteq B$ which is closed under the functions in \mathfrak{F} , we have $s \in D$. (ii) There is a cub $C \subseteq P_{\omega_1}(A)$ such that $C \subseteq \{s \cap A : s \in D\}$.

The following well-known characterization of saturated dense linear orders is also useful. For this purpose it is useful to define the *coinitiality* ci(I) of a proper initial segment I of (L, <) to be the cofinality of $\langle L - I, <^{-1} | (L - I) \rangle$. We understand the cofinality to be 0 if there is a greatest element; similarly for coinitiality.

Lemma 2 For any regular cardinal λ , a dense linear order (L, <) is λ -saturated iff $cf(L) \geq \lambda$ or L has a greatest element, $ci(L) \geq \lambda$ or L has a least element, and for every initial segment I of (L, <) with $\emptyset \subsetneq I \subsetneq L$, $cf(I) \geq \lambda$ or $ci(I) \geq \lambda$.

The following theorem generalizes Proposition 1 above using a similar familiar construction of nonisomorphic orders via disjoint stationary sets. We will use the notation $|A^{S}| = A^{S}$, $|A^{S}(\alpha)| = A^{S}(\alpha)$, and so on.

Theorem 2 Suppose $\kappa^{<\kappa} = \kappa$. Then there is a family of 2^{κ^+} pairwise nonisomorphic dense linear orders of power κ^+ which are all $L_{\infty\kappa^+}(aa)$ -equivalent.

Proof: The case $\kappa = \omega$ is just Proposition 1, so suppose $\kappa > \omega$. Since $\kappa^{<\kappa} = \kappa$, there is a saturated model (L, <) of Th(Q, <), of power κ . For each $S \subseteq \kappa^+$ define A^S to be the ordered sum of linear orders $A^S_{\alpha}(\alpha < \kappa^+)$, where $A^S_{\alpha} = 1 + (L, <)$ if $\alpha \in S$ and $cf(\alpha) = \kappa$, and $A^S_{\alpha} = (L, <)$ otherwise. As in the proof of Proposition 1, it suffices to show that A^S is $L_{\infty\kappa^+}(aa)$ -equivalent to $A^{S'}$ for all $S, S' \subseteq \kappa$. This is a special case of the following claim.

(*) Suppose that f maps a proper initial segment I of A^S isomorphically onto a proper initial segment I' of $A^{S'}$, and that $cf(I) = cf(I') = ci(I) = ci(I') = \kappa$. Then for all $\phi \in L_{\infty\kappa^+}(aa)$, $A^S \models \phi(dom f)$ iff $A^{S'} \models \phi(rnf)$.

Noting that the atomic case of (*) is trivial, we proceed by induction on ϕ . The propositional steps are clear, so suppose ϕ is $\exists \bar{x}\psi$ and $A^S \models \psi(\bar{a}, domf)$ where f, I, I' are as in (*). Choose $J \supseteq I$ and $J' \supseteq I'$ such that $\bar{a} \subseteq J$ and $cf(J) = cf(J') = ci(J) = ci(J') = \kappa$. Now J - I and J' - I' are saturated by Lemma 2. Hence they are isomorphic, and if g is an isomorphism then the inductive hypothesis applied to $f \cup g$ to show $A^{S'} \models \psi((f \cup g)(\bar{a}), rnf)$. Hence $A^{S'} \models \exists \bar{x}\psi(\bar{x}, rnf)$. The reverse direction is similar.

Finally, suppose $A^{S} \models aas \psi(s, dom f)$. It is clear that the set of all $s \in P_{\omega_1}(A^S)$ such that the set $[s \cap A^S - I]$ is a dense linear order without endpoints is cub in $P_{\omega_1}(A^S)$. Hence there is a cub family of such s, such that $A^S \models \psi(s, dom f)$. Now by Lemma 1(ii) we may choose a cub $C \subseteq P_{\omega_1}(I)$ such that for all $s \in C$, there is $t \in P_{\omega_1}(A^S - I)$ such that t is a dense linear order without endpoints and $A^S \models \psi(s \cup t, dom f)$. Let $C' = \{f[s] \cup t: s \in C, t \in P_{\omega_1}(A^{S'} - I'), t \text{ a dense linear order without endpoints}\}$. Clearly C' is cub. The proof that $A^{S'} \models \psi(u, rnf)$ for all $u \in C'$ is similar to the argument in the '∃' case, since one may choose 'g' to extend any isomorphism between the appropriate countable dense linear orders without endpoints.

We do not know if the condition $\kappa^{<\kappa} = \kappa$ can in general be weakened to $2^{<\kappa} = \kappa$ in Theorem 2. However, our final theorem asserts that this is the case if V = L. In fact, what we need is the following consequence of Jensen's principle \Box_{κ} .¹

Lemma 3 Assume V = L. Then for every infinite cardinal κ and every regular cardinal $\mu \leq \kappa$, there is a stationary subset E of $\{\alpha < \kappa^+ : cf(\alpha) = \mu\}$ such that for all $\beta < \kappa^+$, $E \cap \beta$ is not stationary in β .

Theorem 3 Assume V = L. Then for every infinite cardinal κ there is a family of 2^{κ^+} linear orders of power κ^+ which are pairwise $L_{\infty\kappa^+}(aa)$ -equivalent and nonisomorphic.

Proof: By GCH in L, we may assume that κ is singular (or else Theorem 2 applies). Then there is a (unique) special model A of Th(Q, <) of power κ . By Lemma 3 there is a stationary subset $E \subseteq \{\alpha < \kappa^+ : cf(\alpha) = cf(\kappa)\}$ such that $E \cap \beta$ is not stationary in β , all $\beta < \kappa^+$. These facts are exactly what we use about L in this proof.

For any $S \subseteq \kappa^+$ define $A_{\alpha}^S = 1 + A$ if $\alpha \in S$, and $A_{\alpha}^S = A$ if $\alpha \notin S$, and let A^S be the ordered sum $\Sigma\{A_{\alpha}^S: \alpha < \kappa^+\}$. By partitioning E into κ^+ disjoint stationary subsets (as before, see, e.g., [6], II.6.11), we see (as in the proof of Proposition 1) that it suffices to prove that A^S and $A^{S'}$ are $L_{\infty\kappa^+}(aa)$ -equivalent whenever S and S' are stationary subsets of E such that E - S and E - S' are stationary.

Let us say that a dense linear order (L, <), without a last element, is *short* λ -*saturated* if it satisfies the criteria of Lemma 2 except that we make no restriction on the cofinality of L. Now fix a strictly increasing sequence $\langle \kappa_i : i < cf(\kappa) \rangle$

with sup κ . A dense linear order B of power κ is *short special* if it is the union of an increasing chain $\langle B_i: i < cf(\kappa) \rangle$ of elementary submodels such that B_i is short κ_i^+ -saturated for all $i < cf(\kappa)$. We claim:

(1) Suppose $S \subseteq E$. For all $\alpha < \beta < \kappa^+$ let $A(\alpha, \beta)$ be the ordered sum $\Sigma\{A_{\gamma}^S: \alpha \le \gamma < \beta\}$. Then $A(\alpha, \beta)$ is short special.

We prove (1) by induction on β . Suppose (1) holds for all $\beta' < \beta$, and fix $\alpha < \beta$. Notice that if $\beta = 1$ then $A(0, \beta) = A_0^S$ is short special because it is special. Next, suppose $\beta = \gamma + 1$ where $\alpha < \gamma$ (as the case $\beta = \alpha + 1$ follows just as the case $\beta = 1$). Then $A(\alpha, \beta)$ is the ordered sum $A(\alpha, \gamma) + A_{\gamma}^S$. If $\gamma \notin S$ then since $A(\alpha, \gamma)$ is short special and A_{γ}^S is special with no least element, it is easy using Lemma 2 to see that $A(\alpha, \beta)$ is special. If $\gamma \in S$ then $\gamma \in E$ so $cf(\gamma) = cf(\kappa)$. Therefore $A(\alpha, \beta)$ is special, because it is the ordered sum of two special models by the following claim:

(2) If B is a short special dense linear order and $cf(B) = cf(\kappa)$, then B is special.

To prove (2), suppose B is the increasing union of submodels $B_i(i < cf(\kappa))$ where each B_i is short κ_i^+ -saturated. By reindexing if necessary, we may choose an increasing sequence $\langle a_i: i < cf(\kappa) \rangle$ cofinal in B such that $a_i \in B_i$ for all $i < cf(\kappa)$. Then if B'_i is the submodel obtained by restricting B_i to $\{x \in B_i: x < a_i\}$, then B'_i is κ_i^+ -saturated and still $B = \bigcup \{B'_i: i < cf(\kappa)\}$, so B is special. This concludes the proof of (2), and hence of the successor step of (1).

Finally we prove (1) for β a limit, $\alpha < \beta$ fixed. Since $S \subseteq E$, we may choose a continuous strictly increasing sequence $\langle \beta_i : i < cf(\beta) \rangle$ from $\beta - S$ which has supremum β , such that $\alpha = \beta_0$. For each $i < cf(\beta)$ let $A[i] = A(\beta_i, \beta_{i+1})$. Then each model A[i] is short special by the inductive hypothesis, and $A(\alpha, \beta) =$ $\Sigma\{A[i]: i < cf(\beta)\}$. For all $i < cf(\beta)$ we write A[i] as an increasing union of elementary submodels $A[i]_j (j < cf(\kappa))$ such that $A[i]_j$ is κ_j^+ -saturated. Now let $B_j = \Sigma\{A[i]_j: i < cf(\beta)\}$. Since $\beta_i \notin S$ for all $i < cf(\beta)$, no model $A[i]_j$ has a least element (except perhaps for $A[0]_j$). It follows easily that B_j is short κ_j^+ saturated for all $j < cf(\beta)$. Since $A(\alpha, \beta)$ is the increasing union of the models $B_j (j < cf(\kappa))$, it follows that $A(\alpha, \beta)$ is short special, so the proof of (1) is complete.

Notice that since there is a unique special model of power κ , (1) and (2) together immediately imply

(3) if $\alpha < \beta$, $\alpha' < \beta'$, $\alpha \in S$ iff $\alpha' \in S'$, and $cf(\beta) = cf(\beta') = cf(\kappa)$, then $A^{S}(\alpha, \beta) \cong A^{S'}(\alpha', \beta')$.

This yields the ' \exists ' step in the proof of the following claim, as in the proof of Proposition 1.

(4) For $\alpha < \kappa^+$ let $A^S(\alpha)$ denote $A^S(0, \alpha)$ (and similarly for S') and suppose $cf(\alpha) = cf(\alpha') = cf(\kappa)$ where $\alpha \in S$ iff $\alpha' \in S'$. Also suppose $f: A^S(\alpha) \cong A^{S'}(\alpha')$. Then for all $\phi \in L_{\infty\kappa^+}(aa)$, $A^S \models \phi(domf)$ iff $A^{S'} \models \phi(rnf)$.

Having commented on the ' \exists ' step of the proof (by induction on ϕ) of (4), and noting that the atomic and propositional steps are obvious, let us treat the case

 $\phi = aas \psi$. Moreover, even this step follows as in the proof of Theorem 2 if $cf(\kappa) > \omega$, since in that case we have $(A, s) \cong (B, t)$ for all special $A, B \models Th(Q, <)$ of power κ and all countable $s, t \models Th(Q, <)$ which are contained in A and B (respectively). (This follows just as the proof of uniqueness of special models.) So let us assume $cf(\kappa) = \omega$ and $A^S \models aas \psi(s, dom f)$, where $f: A^S(\alpha) \cong A^{S'}(\alpha')$. Also let us assume $\alpha, \alpha' \notin S$; the case $\alpha, \alpha' \in S$ is similar. By Lemma 1 there is a countable family \mathfrak{F} of finitary functions on A^S such that for every countable $s \subseteq A$ which is closed under the functions of \mathfrak{F} , $A^S \models \psi(s, dom f)$. Since S is stationary, we may choose $\gamma \in S$ such that $A^S(\gamma)$ is closed under the functions of \mathfrak{F} , and such that γ is the limit of an ω -sequence $\alpha = \gamma_0 < \gamma_1 < \ldots < \gamma_n < \ldots$ of elements of $\kappa^+ - S$ of cofinality ω . For each n, (3) shows that there is an isomorphism f_n from $A^S(\alpha)$ onto $A^S(\gamma_n, \gamma_{n+1})$. Let

C consist of all countable sets $s \subseteq A^{S}(\alpha)$ such that the set $s \cup \bigcup_{n < \omega} f_{n}[s]$ is closed under the functions in \mathfrak{F} . Clearly C is cub in $P_{\omega_{1}}(A^{S}(\alpha))$. Now whenever $\alpha' \leq \delta < \eta < \kappa^{+}$ with $cf(\delta) = cf(\eta) = \omega$ and $\delta, \eta \notin S'$, fix an isomorphism $f_{\delta,\eta}$ from $A^{S'}(\alpha')$ onto $A^{S'}(\delta,\eta)$, by (3). Let D be the family of countable subsets of $A^{S'}$ which have the following properties.

- (I) $f^{-1}[s \cap A^{S'}(\alpha')] \in C.$
- (II) For all $a, b \in s$ and $\alpha \leq \delta < \eta < \kappa^+$ with $cf(\delta) = cf(\eta) = \omega$ and $\delta, \eta \notin S$, if $a \in A^{S'}(\delta, \delta + 1)$ and $b \in A^{S'}(\eta, \eta + 1)$, then $f_{\delta,\eta}[s \cap A^{S'}(\alpha')] = s \cap A^{S'}(\delta, \eta)$ and $f_{\alpha,\delta}[s \cap A^{S'}(\alpha')] = s \cap A^{S'}(\alpha', \delta)$.
- (III) For all $a \in s$ there is $\delta \in \kappa^+ S$ of cofinality ω such that $a \in A^{S'}(\delta)$ and $s \cap A^{S'}(\delta, \delta + 1) \neq \emptyset$.

It is easy to see that D is cub in $P_{\omega_1}(A^{S'})$. We will prove:

(5) For all $s \in D$, there exists $t \in C$ and $g \supseteq f$ such that $g\left[t \cup \bigcup_{n < \omega} f_n[t]\right] = s$ and g maps $A^{S}(\gamma)$ isomorphically onto $A^{S'}(\delta)$ where $\delta = sup(s) =_{def} sup\{\eta: (\exists a \in s) \ a \in A^{S'}(\eta, \eta + 1)\}.$

By the inductive hypothesis, since $A^{S} \models \psi \left(t \cup \bigcup_{n < \omega} f_{n}[t], dom f \right)$ for all $t \in C$, then (5) implies

(6) For all $s \in D$, if $sup(s) \in S'$ then $A^{S'} \vDash \psi(s, rnf)$.

A nearly identical argument (starting with $\gamma \in \kappa^+ - S$ of cofinality ω rather than $\gamma \in S$) gives a cub $D_1 \subseteq P_{\omega_1}(A^{S'})$ such that

(7) For all $s \in D_1$, if $sup(s) \notin S'$ then $A^{S'} \models \psi(s, rnf)$.

From (6) and (7) one obtains $A^{S'} \vDash \psi(s, rnf)$ for all $s \in D \cap D_1$, and hence $A^{S'} \vDash aas \psi(s, rnf)$. The reverse direction of the 'aa' step is of course similar.

It remains then only to prove (5). Fix $s \in D$, and choose an ω -sequence $\alpha = \delta_0 < \delta_1 < \ldots < \delta_n < \ldots$ with supremum $\delta = sup(s)$, such that for all n > 0, $s \cap A(\delta_n, \delta_n + 1) \neq \emptyset$ and $\delta_n \in \kappa^+ - S'$ has cofinality ω . (Such a sequence exists by III.) Now let $g = f \cup \bigcup_{n < \omega} (f_{\delta_n, \delta_{n+1}} \circ f \circ f_n^{-1})$; so g maps $A^S(\gamma)$ isomorphically onto $A^{S'}(\delta)$. Let $t = f^{-1}[s \cap A^{S'}(\alpha')]$. Then $t \in C$ by (I), and

$$g\left[t \cup \bigcup_{n < \omega} f_n[t]\right] = f[t] \cup \bigcup_{n < \omega} f_{\delta_n, \delta_{n+1}} \circ f[t] = f[t] \cup \bigcup_{n < \omega} f_{\delta_n, \delta_{n+1}}[s \cap A^{S'}(\alpha')] = [s \cap A^{S'}(\alpha')] \cup \bigcup_{n < \omega} [s \cap A^{S'}(\delta_n, \delta_{n+1})] \text{ (the latter is by (II))} = s, \text{ as desired.} \Box$$

NOTE

1. Ken Kunen brought Lemma 3 (and its proof) to our attention in the case $\mu > \omega$. A proof can be found for $\kappa = \omega$ in Baumgartner [2], p. 221, who attributes the result to "Magidor (and possibly others)". The proof for arbitrary κ is essentially the same; just begin by restricting at the start to $\{\alpha < \kappa^+ : cf(\alpha) = \mu\}, \mu$ as below.

REFERENCES

- Barwise, J., M. Kaufmann, and M. Makkai, "Stationary logic," Annals of Mathematical Logic, vol. 13 (1978), pp. 171-224.
- [2] Baumgartner, J. E., "A new class of order types," Annals of Mathematical Logic, vol. 9 (1976), pp. 187-222.
- [3] Dickmann, M., Large Infinitary Languages, North-Holland, Amsterdam, 1975.
- [4] Eklof, P. and A. Mekler, "Infinitary stationary logic and Abelian groups," Fundamenta Mathematica, vol. CXII (1981), pp. 1-15.
- [5] Kueker, D., "Countable approximations and Löwenheim-Skolem theorems," Annals of Mathematical Logic, vol. 11 (1977), pp. 57–103.
- [6] Kunen, K., Set Theory, Studies in Logic and the Foundations of Mathematics, Vol. 102, North-Holland, Amsterdam, 1980.

Department of Mathematics Purdue University West Lafayette, Indiana 47907*

^{*}Present address: Austin Research Center, Burroughs Corporation, Austin, Texas, 78727.