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Extensionαlity in Bernαys Set Theory

MITSURU YASUHARA

Gandy has shown, in [3], that the consistency of Bernays-Gόdel set theory
can be reduced to that of the theory without the axiom of extensionality. We
verify a parallel result for the theory presented in [1], Appendix. Since one of
the axioms (schemes) in [1] is the reflection principle, which is of rather different
character than other axioms about set existence, some new considerations are
required. Also we take a "top down" approach, which seems to work more
quickly in this context than Gandy's "bottom up" one. At the end, we comment
on other set theories with regard to extensionality and the "top down" approach.

The theory B is a single-sorted first-order theory with a binary predicate
G, a monadic function symbol σ, and a term forming operator {x/...}. Using
obvious abbreviations like a<Ξ b and αΠft, the nonlogical axioms of B can be
stated as follows:

(Ex) [The axiom of extensionality] a - b&aEc-+b Gc, where 'α - b9 is
for 'a^b&b^a'.
(CF) [The axioms of choice and Fundierung] aEc-+ [σ(c) Gc&a^ σ(c)].
(Cp) [The axiom of impredicative comprehension] cE {x/φ(x)} ++ S(c) &
φ(c)9 where 'S(c)' is for 63zcGz\
(Rf) [The axiom of reflection] φ -> 3γ[ST(y) & S(y) & φy].

Here, 'STiyY is for 'Vu9υ(vGy&(ucvvuGv)-+uey) [y is strongly
transitive], and φγ is the result of relativization of φ to y> i.e., any free variable
a in φ is replaced by aΠy unless S(a) is given, vxψ(x) is replaced by
vx(x^y-+φy(x)), lxψ(x) by 3x(x^y&\l/y(x))9 and {x/ψ(x)} by {x/xGy&
ψy(x)}.

(Eq) [An axiom of equality] a~b-> σ(a) ^ σ(b).
(Em) ->3;t xG a-+ ~^3x xG σ(a).

(Actually, the last two axioms do not appear in [1]. Indeed, (Eq) is provable
from (Ex), (Cp), and (Rf) The last determines the value of σ at a = 0, which
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is not given by (CF). Both are natural requirements for σ to be a function. And
so, we add them.)

By B~, we mean the theory that does not have (Ex).
We are going to define a transformation * among formulas such that:

(a) if Bl-</> thenB" \-φ*

and

(b) if φ is a closed formula, then (φ & -ιφ) * is φ* & —«φ*.

And thus, the relative consistency of B to B~ will be established.
Confusing syntax and semantics conveniently, we sometimes call a term

{x/φ(x)} a class, and a set if S({x/φ(x)}) is provable. We will list below several
formal definitions and theorems in B~. We omit quotation marks in defini-
tions, and Έ~ι- ' in theorems.

(1) V is for {x/x = x). 0 is for {x/x ψ x}.

(2) S(0). α c * & S ( b ) ->S(a). These are proved in [1] without using (Ex).

(3) TR(a) isforVxxEia^x^a. [a is transitive.]

(4) TR(0). Use (1) and (Cp).

(5) tc(a) is for {x/Vz[a^z& TR(z) -+xGz]}. ltc(a) is the transitive
closure of a. ]

(6) a c tc(a). tc(0) - 0 . Both are obvious from relevant definitions.

(7) aebva^b^tc(a) <^tc(b). So, a^b-^tc(a) =^tc(b).

(8) TR(tc(a)).

Proof: We are to show, from cEbEtc(a), that cEtc(a). So, assume
a^z& TR(z). As b G tc{a), we have from (5) that b Gz&TR(z). So b c z by
(3). From c E b, we have c E z. Thus c E fc(tf) from (5). So the proof is fin-
ished.

(9) a E tc(b) ++[aE:bv 3y(y €b&aE tc(y))].

Proof: The direction -». Let p be {x/x Gbw3y(yGb&xG tc(y))}. We aim at
showing J c p and TR(ρ). For then, by aE /c(6) and (5), we have aGp, hence
the right hand side (RHS) holds by (Cp). That b c= p is obvious. In order to show
TR(p), we assume dEc and c E p. The second assumption causes case distinc-
tions.

Case cEb. Then, as c c fc(c) by (6), d E /c(c). Thus cGb&dGtc(c), whence
] ^ G f t & r f G / φ ) . So dGp.

Case yGb&cGtc(y) for some y. Then we have dGtc(y) from dGc,
cE fc(j>), (8), and (3). So 3y y E b&dE fc(.y), from which rfGp follows. Thus
in either case TR(ρ) is shown.

The direction <-. Ctoe α E 6. By (6), a E fc(&).
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Case for some y, yEb&aG tc(y). By (7), tc(y) <Ξ tc{b). From aE tc(y),
aEtc(b) results.

(10) E(a) is for Vx,j>(x -y&xEa->yEa). [a is extensional.] 2?(0).
a^b&E(a)-^E(b).

(11) M(a) is for E(a) & Vx(x E tc(a) -*> E(x)). [a is in our inner model con-
sisting of hereditarily extensional classes.]

(12) M ( 0 ) . Use (10), (11), and (6). So, 3xM(x). a ̂  b& M(a) - M(b).
Use (7), (10), and (11).

(13) M(a)~E(a)& vx(x Ga-+ M(x)).

Proof: By (9) and (11), M(a) is equivalent to E(a) & Vx[x E tf v 3y(y Ga&xG
tc(y))->E(x)}\ which is equivalent, by logic, to E(a) & VX(JCE a->E(x)) &
Vx>y(y Ga&xE: tc(y) -> £"(x)). The last conjunct is equivalent to VΛ:[Λ: E a ->
vy(7 E /c(x) -• E(y))] after switching x and y. So the whole formula is equiva-
lent to E(a)&Vx{xGa-+ [E(x) &Vy(y Gtc(x)-+E(y))]}, hence to E(a) &
VjφrEtf->M(jt)) by (11).

So far, we considered formal definitions and theorems in B". Now we
start considering meta-theorems and so forth as well.

(14) Meta-Definition For formulas and terms, we define their relativizations
to M( ) inductively as follows: Vxφ(x) is replaced by VxM(x) -^ΦM( ̂ )» 3xΦW
by 3xM(x)&φM(x), and {x/φ(x)} by {x/M(x) &φM(x)}. (Since two relativi-
zations will be involved later, we put M as a subscript and y as a superscript as
in (Rf) ) When a,..., b is a list of free variables in φ, φ* is, by definition,
M{a) &.. .&M(b) -> φM. We usually denote this antecedent simply by H.

(15) Requirement (b), mentioned right after the list of axioms, is satisfied.

(16) M(a) &M(b) -+[a^b~(a^ b)M]. Assume H, that is M(a) &M(b).
When a — b, obviously (a — b)M, for this is VxM(x) -+ (xGa<-*xE: b). Note
that (a-b)M is also equivalent to Vx(M(x) &xG a^M(x) &xG b). But
under //, M(x) &xE#<->xE#by virtue of (13); similarly for b in place of a.
So, //-> [(α ̂ 6)M->(tf ^ 6 ) ] , also.

(17) SM(a)~S(a)&M(a).

Proof: Since SM{a) is 3zM(z) & # E z , the direction -> follows from (13). So,
assume M{a)&S{a), and let α be {x/x^a}. By (Cp), bea~S(b)&b^
a...(*). Thus tf E α . We use (13) to show that M(α), or £(α) & VΛ:(A:E α->
M(x)). By (*), M(α), and (12), the second conjunct is obvious. Assume that
b^c&bEa. Then S(c) by (2); and c ̂  a, as - is transitive. So c E a by (*).
Thus E(a) holds also.

(18) M(tf) ->M(σ(α)). This is obvious from (CF) and (13), if # ψ 0 ; and
from (Em) & (12), ifa = 0.

(19) Meta-Theorem B H (EX)* & (CF)* & (Cp)* & (Eq)* & (Em)*.

Proof: By (16), we can use a — b and (a — b)M interchangeably under H. In
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(Ex)*, M(c) is assumed, hence E(c) by (11). And so, (10) finishes the task of
showing (Ex)*. Since (CF)* is M(a) &M(c) -> (CF), this obviously follows from
(CF) in B" . (Cp)* is H^ [ce {x/φ(x)}M~SM(c) &φM(c)]. But {x/φ(x)}Mis,
by definition, {x/M(x) &φM(x)}. So, cG {x/φ(x)}Mis equivalent, by (Cp) of
B~, to S(c) &M(c)&φM(c). SO, use (17) to accomplish the task. (Eq)* follows
from (Eq) and (16). Finally, (Em)* follows from (Em), because if M(a) then
M(σ(a)) by (18), whence M(x) &xGa++xGa and M(x) &xGσ(a) ^xGσ(a)
by (13).

(20) Let φ(a) be a formula and a (a) a term. Then the following are all
provable in B~:

(I) H^M([a(a)]M)
(II) [a^b^a(a)^a(b)]*

(III) [a~b-+(φ(a)~φ(b))\\

Proof by simultaneous induction on the formation of φ(a) and a(a): When
a(a) is a, (I) and (II) are obvious. When it is σ(a), (I) is given by (18), and (II)
is (Eq)*. Assume a(a) is {x/ψ(x,a)}. Then, [ot(a)]M is {x/M(x) &ψM(x9a)}.
Thus b G [a(a)]M->M(b) is obvious. That E([a(a)]M) follows from the IH
(= induction hypothesis) (III) on ψ(x,a) and (Cp). So by (13), (I) is shown. (II)
can be shown again by the IH on ψ(x,a), (Cp), and (12). To show (III), it
suffices to consider an atomic formula β(a) E y(a), because connectives can be
handled by a routine induction. By the IH, H&a-b-+ [βM(a) - PMΦ)] &
[ΎM(^) ~ ΊMΦ)] by (II); and H-+M(βM(a)), etc. So, assume H, a^b, and
$M(U) £ΎM(G)' Then βM(a) Ξ TM(^) But yM(b) is extensional, hence
βϊviΦ) Ξ ΊMΦ). The converse implication can be shown similarly.

(21) Let φ be a formula. Then; B~ \- φ*9 if φ is a logical axiom, or the con-
sequence of θ (and x) such that B~ h- θ* (and B ~ h χ * ) .

Proof: Case φ is tautologous. Then φ* is also tautologous.

Case φ is Vxψ(x) ->^(α) where a is a term. Then φ* is //-> [Vx(M(x) ->
^Af(^)) -> ̂ Af(«Λ/) 1 Note that vx(M(x) -> ψ M (^)) -> (M(α M ) ^ Ψ M ( « M ) ) is a
logical axiom. But H-+M(aM) by (20), (I). Thus B " \- </>*.

Cί75e φ is Vxψ(x) and is obtained from ψ(a) by the universalization. Let
b,..., c be a list of free variables in φ (hence a does not appear in it), and let
HbeM(b)&...&M(c). Then [ψ(a)]Mis M(a) &H^>ψM(a), and is provable
in B~ by the ///. So, by the predicate calculus, we have B~ h- H-> Vx(M(x) -•
i M * ) ) , i .e. ,B-Hφ*.

Cα^ φ is obtained from ψ-+φ and ψ by modus ponens. To simplify the nota-
tion, assume that b is the sole free variable that occurs in both φ and ψ, and that
a and c occur only in φ and ψ9 respectively. So, (ψ->φ)* is M(a) &M(b) &
M(c) -* (T^M^ ΦM)> and ψ* is M(6) &M(c) -> ̂ M . So by the predicate calculus,
M(a) &M(b) &M(c) -> φ M . But c does not occur in φ M . So B~ \- 3xM(x) &
Af(α) &M(b)->φM. But by (12), B~ \- 3xM(x). Hence, B" h- φ*.

(22) We are still to show that B" h- (Rf)*, that is, B" μ- // -• [φ M ->
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lyM(y)&STM(y)&SM(y)&(φy)M]. Assume H&φM. By (Rf) of B , we
have a ̂  such that ST(y) &S(y) & (φM)y. Now let μ be {x/x G y & M(x)}.

(22.1) Af(μ). To show this, we use (13). That aGμ-^M(a) is clear.
Assume a — b and a G μ. So by (Cp), # E j & M ( # ) . As SΓ(j), and a — b hence
6 <Ξ α, we have Z? Ej> from α G j . Also, by (12), M(b). So M(μ).

(22.2) 77?(μ). Assume aGbGμ. Thus bGy&M(b). As S7ty) hence
77? Q>), tfEj\ Also M(α) follows from aG b and M(6) by (13). Thus 77?(μ).

(22.3) STM{μ). Assume M(a) &M(b) &bG μ&(a<^bv a G b). If a Gb,

then that a E μ has already been shown. So assume a c Z?. But 6 E 7, and 5Γ(^)

by assumptions. So a Gy. M{a) is given in the assumption. Thus a E μ, hence

S^M(μ).

(22.4) 5(μ). This follows from S(^) by (2) and (Cp).

(22.5) SM(μ): by (22.1), (22.4), and (17).

(22.6) (Φμ)M The proof of this requires several steps and, indeed, follows
from more general results. So we change the numbering system; (23) through
(27) constitute the proof of facts from which (22.6) follows. But first note that,
once this is shown, (22) is proved by (22.1), (22.3), (22.5), and (22.6).

(23) TR(y)&a<^y->{[(a<^b)}'~(a^b)]8c[E(a)~Ey{a)] & [TR(a)++
TRy(a)]}. This can be shown by routine checking.

(24) TR(a) & TR(b) -> TR(a Π b).

(25) TR(y)&a^y-*[tc(a)]y~tc(a).

Proof: b E [tc(a) ] y is equivalent to Vz z £ y & (a g z)y & 77?-^) -* 6 E z. By
(23), (βf g z)y^a c z, and TRy(z) ~ 77?(z) as z c j . So the whole formula is
equivalent to Vz zQy&a c ^& TR(z) -*b Gz. Thus, in comparison with
& E fc(tf), this formula has an extra condition z ̂  y. So, /c(α) c [/c(β)] ^ fol-
lows from Γ / ? ( j ) & α c j . To show the converse inclusion, assume that
aQzScTR(z). Since a^y&TR(y) is assumed, wehave aQyC\z&TR(yΓ)z)
by (24). So, bG[tc(a)]y implies bGyΠz, hence frEz. Thus betc(a).

(26) We use now ̂  and μ of (22). So, ST(y) and 77?(μ). Under these
assumptions,

a^μ&M(a)++a^y&My(a).

Proof: My(a) is Ey(a) &Vx[xQy& (x(Ξtc(a))y-+Ey(x)]. So the RHS is
equivalent toa^yβcE(a) & V x [ x C J & ^ G ίc(tf) ->£(x)] by (23) and (25). But
a^y& TR(y)-+tc(a) Qy. So xG tc(a) - > χ c y . Thus, RHS is equivalent to
^ g ^ & M ( α ) . Assume b G a. Then RHS implies bGy&M(b) by (13). Thus
b G μ by the definition of μ. That is, a^μ. This finishes the proof.

A proof of (22.6) is given by the following general theorem:

(27) Let y and μ be as in (22), and let a and φ be a term and a formula,
respectively, in which y does not occur. Further, let H be M(α) &.. .&M(b)
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where a,..., b is a list of free variables in a or </>. (Hence M(y) is not in //.)
Then, B- H//->[a] M((α") M ), [b] ( α " ) M - ( % ) y , and [c] ( < n M ~ ( 0 M ) ' .

Proof by induction: Note that [a] follows from (20), (I), even though j> occurs
in μ and M(j>) is not assumed. For, certainly H&M(m) -+M((am)M) is a case
of (20), (I), where m is a new variable. Then, [a] is obtained by substituting μ
for m and noting M(μ) by (22.1).

Case a is a. So, (aμ)M^ (# Πμ) M or {x/M(x) &xGa&xGμ} as μ M - μ; and
(αΛ/KistfΠj. So ftGαΠj' implies M(b) by//and (13). Also, M(ό) &/?Gj
implies b G μ. Thus, [b] is shown by (Cp).

Case a is σ(a). A similar proof shows [b] by virtue of (18).

Case a is {x/ψ(x)}. So, (α") M is {x/xe μM&M(x) & (ψμ)M}- But μ M ^ μ So
by the IH on ψ, this class is «{x/x G μ &M(*) & {ψM)y}. Since 77?O>) and
TR(μ), this class is ^ j x / x G ^ & M ^ ) & (ΨMK} by (26) and the definition of
μ. This last is (aM)y. Thus [b] holds.

To show [c], we check two cases when φ is atomic and is Vx ψ(x).

Case φ is β G γ. A proof can be given that is similar to that of (20),(III) by using
the IH on β and γ, and [a] and [b].

Case φ is Vx ψ(x). Then, (φ*)M is Vx {(xQ μ)M&M(x) ^ l(φ(x))μ]M}. But
M(x) & (x<^ μ)M++ M(x) &xQ μ. So, this is equivalent to Vx {My(x)&x^
y-+ KΦM)MV} by the ///and (26). This last is (φMy.

In (22), (φMy was given. So by (27)[c], (φμ)M holds, that is, (22.6) is
proved. So by (21), (19), and (22), we have: B" h- φ*. And so, our whole task
is finished.

Comments

(1) Our "top down" approach does not work for Gόdel-Bernays theory,
because here the comprehension scheme is weaker, and the class {x/φ(x)} ex-
ists only if all quantifiers in φ(x) are bound to 5. Thus the definition of the
transitive closure tc(a), (5), is not legitimate here. One can redefine tc(a) as
{ΛΓ/VZ S(Z) &a^z&TR(z)-+xE:z},ίor instance. But then, when a is a proper
class, tc(a) is V. Then the crucial formula (9) does not hold for b = Od. For,
if ye Od then tc( y) = y. So the LHS is a G K, while the RHS is a G Od. Thus
Gandy's "bottom up" approach is really necessary here.

(2) In Kelley-Morse theory, our approach works. The axioms consist of
(Cp) as above and some axioms of set existence like replacement (cf. [2], for in-
stance). (CP)* can be shown as above; and (replacement)* etc. can be shown as
in [3], for what Gandy needed was formula (13) (which is based on (9)) and not
the way tc(a) was defined.

(3) What happens in Quine's theories NF and ML? (Cf., e.g., [5].) Indeed,
this question was the motivation of the present work. If we succeed in "eliminat-
ing" the extensionality in NF, this theory is shown to be consistent in connec-
tion with [4]. Unfortunately, TR(a) is not a stratified formula. Hence ΦM1$ not
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stratified either, as Mis ultimately based on TR. So, (Cp)* does not follow from
(Cp) in NΓ. In ML, the "set-hood" axioms are the stumbling block for the same
reason.
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