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Generalized Quantifiers and the

Square of Opposition

MARK BROWN*

1 Introduction Work by Rescher and Gallagher [11], and more recently by
Geach [5], Peterson [9], Thompson [12], and Peterson and Carnes [10], provides
strong evidence that syllogistic logic and the method of Venn diagrams can be
extended to accommodate sentences of such forms as

(1.1) Almost all S are P
Most S are P
Many S are P
Few S are P.

This suggests that we should be able to modify the first-order predicate calcu-
lus to provide for renderings of such sentences, and of arguments involving such
sentences. Recently Barwise and Cooper [2] have given the formal syntax and
semantics for a family of such modifications. In this family of languages, as in
the other works cited above, ‘almost all’, ‘most’, ‘many’, and ‘few’ are treated
as quantifiers analogous in certain important respects to ‘all’ and ‘some’. But
Barwise and Cooper, unlike the other authors cited, do not treat these as mere
ad hoc additions to our stock of quantifiers. Instead they treat them as merely
a few from among an indefinitely large class of quantifiers, including ‘the’ (in
its use in definite descriptions), ‘both’, ‘at least seven’, ‘infinitely many’, ‘all but
three’, ‘with at most three exceptions’, and a host of others.

The generality of the treatment given by Barwise and Cooper suggests that
if we are to continue to explore the logical properties of generalized quantifiers
as viewed from a perspective like that of traditional logic then we should no
longer be content to do so piecemeal. There are, in fact, strong reasons for
studying generalized quantifiers from a traditional perspective, for (as we shall
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see) the syntax and semantics that generalized quantifiers seem to demand re-
sist introduction of the kind of instantiation and generalization rules that we may
take as characteristic of (natural deduction treatments of) the standard modern
predicate calculus, but do lend themselves to rules of immediate inference and
of syllogistic inference like those of traditional logic. This is not to say that
generalized quantifiers should be studied exclusively from the traditional per-
spective, of course, but only that such study may well yield some insights, par-
ticularly about the relation of logic to ordinary language, that we would not
readily discover by other means. In this paper I initiate a general study of quan-
tifiers from a traditional perspective by studying rules of immediate inference,
and associated squares of opposition, appropriate to various classes of gener-
alized quantifiers.

2 Syntax Consider the following sentence:

(2.1) All men are greedy.

For purposes of rendering this sentence in the notation of standard logic, we are
accustomed to paraphrase 2.1 as:

(2.2) Take any object x: if x is a man then x is greedy.
We then render this as:

2.3) (vx)[MxD Gx].

Now let us try to parallel this analysis with an analysis of:
(2.4) Most men are greedy.

To effect a similar analysis, we would have to find some way in which to com-
plete

(2.5) Take most objects x:. ..

so as to provide a reasonable paraphrase of 2.4; or, at the very least, we would
have to find or devise some connective to put in place of ‘?’ in

(2.6) (ux)[Mx? Gx].

But there seems to be no satisfactory way of completing 2.5, and none of the
sixteen possible truth-functional connectives gives satisfactory results when put
in place of ‘?’.

One way of describing the difficulty is to say that, in claiming that most
men are greedy, we are not talking about most objects, but only about most
men. This calls to mind the fact that we do have an alternative way of render-
ing 2.1, using relativized or restricted quantification:

2.7) (vx:Mx)[Gx].
If we adopt this, rather than 2.3, as our model, we can render 2.4 as
(2.8) (ux:Mx)[Gx]

and sidestep the need to find some connective to replace the ?° in 2.6. We know,
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of course, that in the case of the universal and existential quantifiers the use of
restricted quantification is eliminable in favor of unrestricted quantification, and
it is usual to think of unrestricted quantification as more fundamental. How-
ever, we can also eliminate unrestricted universal and existential quantification
in favor of their restricted versions, and thus it is open to us to think of
relativized quantification as more fundamental. It has been argued (for ex-
ample by McCawley [7], pp. 118-123) that in the syntax of natural language the
restricted form is fundamental. If that is so, then perhaps the availability of an
equivalent unrestricted version may be a misleadingly special feature of ‘all’ and
‘some’. Perhaps for most quantifiers, ‘most’ included, only a restricted form
is available. It is fundamental both to the syntax and to the semantics of the ap-
proach taken by Barwise and Cooper to assume that all quantification is fun-
damentally restricted quantification.

It will be useful to introduce some terminology for discussing the syntax
of such expressions as 2.8. There are several component expressions for which
we may wish to have designations:

2.9a) wu

2.9b) ux

(2.9¢) (ux:Mx)
2.9d) Mx
(2.9¢) Gx.

Of these, each of 2.9a-c might lay claim to the title ‘quantifier’, but it would
be needlessly confusing to award the title to all three. Each choice of one of the
three as rightful owner of the title has disadvantages, but on balance it seems
to me best to reserve the term ‘quantifier’ for 2.9a. (In this judgment I differ
from Barwise and Cooper.) I shall use the following terminology:

(2.10a) quantifier .

(2.10b) prefix (of the quantifier phrase)
(2.10c) quantifier phrase

(2.10d) sortal phrase

(2.10e) matrix (of the formula).

This terminology has the advantage of preserving the pattern established by ex-
isting use of the terms ‘noun’, ‘noun phrase’, ‘preposition’, ‘prepositional
phrase’, and the like. In somewhat less formal usage, I shall sometimes refer to
MXx as the subject, and to Gx as the predicate of 2.8, and refer to the subject
and predicate as the terms of a formula.

As the formal language to be studied, I take a language GQ for general-
ized quantification that contains denumerably many quantifier constants,
denumerably many one-place predicate constants, denumerably many n-place
relation constants (for each n greater than one), denumerably many individual
constants, denumerably many individual variables, the usual sentential connec-
tives, three operator constants (suffixed superscript prime and asterisk, and
prefixed superscript minus sign), and five punctuation marks (left and right
parentheses, left and right brackets, and the colon). We give a recursive defi-
nition of quantifiers:
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(2.11) If Q is any quantifier constant, then Q is a quantifier;
if Q is any quantifier, then (Q’), (Q*), and (~Q) are quantifiers.

Normally the parentheses can be omitted from the designation of complex quan-
tifiers, as we shall see. In the recursive definition of formulas, only the last clause
is novel, compared to standard logic:

(2.12) If Pis any one-place predicate constant, and ¢ is any individual constant
or individual variable, then Pt is a formula;

if R is any n-place relation constant and ¢, .. ., , are any n individual
constants or variables (not necessarily distinct), then R¢;...¢, is a
formula;

if A and B are any formulas, then ~A4, (A & B), (AvB), (ADB),
and (A = B) are formulas;

if Q is any quantifier, x is any individual variable, and 4 and B are any
formulas, then (Qx:A)[B] is a formula.

I will wait until after the presentation of the semantics for GQ to give rules for
the system.

3 Semantics If we wish to elaborate on a sentence such as
(3.1) Most senators are males

one way in which to do so is this:

(3.2) The senators that are males constitute most of the senators.

This kind of paraphrase is the key to the formal semantics I shall offer for quan-
tifiers.! The idea it suggests, recast in a way that foreshadows the set-theoretic
language we are accustomed to use for truth-conditions, is this: there is no one
senator, or even any one group of senators, that is meant when we speak of most
senators (we don’t mean the alphabetically first fifty-one of them, for example);
rather, there are various collections of senators any one of which would count
as constituting most senators, and it happens that the group of male senators
is one of them. In our models for the formal system GQ, we must assign values
not only to the individual, predicate, and relational constants of the language,
but also to the quantifier constants. The value assigned to a quantifier whose
intended interpretation is most, for example, should do the job of telling us
which groups of senators do, and which do not, count as most of them. Simi-
larly, it must tell us which subsets of the set of prime numbers do, and which
do not, count as containing most prime numbers. In general, for each set that
might serve as the extension of a predicate the value assigned to the quantifier
should enable us to tell which of that set’s subsets would and which would not
count as containing most of the elements of that set. The sort of thing that can
do this job is a function which, given any subset of the domain as its argument,
returns as its value an appropriate collection of the subsets of that argument.
I will call such a function a quantificational function, and we can define quan-
tificational functions formally as follows:
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(3.3) Fis a quantificational function for a set D iff F:®D — ®®D and for
each E€ D, F(E) < ®FE.

Given any quantificational function F on D, we can define three other related
quantificational functions F’, F*, and ~F on D, as follows:

(3.49) foreach EcSD
F'(E)={E,SE:E—-Ey,€F(E)}
F*(E)={Ey<S E:E—-Ey& F(E)}
“F(E)={E, < E:Ey¢& F(E)}.

We can now define a model for GQ to be an ordered pair (D, V) consisting of
a nonempty domain D and a valuation V satisfying the following conditions:

(3.5a) if ¢is any individual constant or individual variable, V(¢) € D

(3.5b) if P is any one-place predicate constant, V(P) € D

(3.5¢) if R is any n-place relation constant, V(R) € D"

(3.5d) if Q is any quantifier constant, ¥(Q) is a quantificational function
onD

(3.5e) if Q is any quantifier, with F = V(Q), then V(Q’) = F’, V(Q*) = F*,
and V(~Q) = "F.

We require one auxiliary notion before we can state the truth-conditions
for formulas in GQ.

(3.6) If M =(D,V) is any model, with e € D and x an individual variable, then
by M[e/x] we mean the model (D, V[e/x]) whose domain is the same
and whose valuation agrees in value with V for every argument except
(possibly) x, for which V[e/x](x) =e.

If A is any formula of GQ and M is any model for GQ, we abbreviate the claim
that A is true in the model M by writing that M = A, and define this by the fol-
lowing truth-conditions:

(3.7a) if A is Pt, where P is any one-place predicate constant and ¢ is any
individual constant or individual variable, M = A iff V(¢) € V(P)

(3.7b) if Ais R¢t,...t,, where R is any n-place relation constant and ¢, ..., 1,
are any n individual constants or individual variables, M= A iff
V(t),..., V(tn)) € V(R)

(3.7¢) if A is ~B for some formula B, M A iff it is false that M= B

(3.7d) if A is (B& C) for some formulas B and C, M= A iff M= B and
Me=C

(3.7¢) if A is (BvC) for some formulas B and C, M= A iff M= B or
Me=C

(3.7f) if Ais (BD C) for some formulas B and C, M = A iff either it is false
that M = B or it is true that M= C

(3.7g) if A is (B=C) for some formulas B and C, M= A iff M= (BD C)
and M= (CDB)

(3.7h) if A is (Qx:B)[C] for some quantifier Q, some variable x, and some
formulas B and C, M = A iff D(B) N D(C) € F(D(B)), where D(B)
is {e€ D: M[e/x] = B} and D(C) is {e€ D: M[e/x] = C} and F is
V(Q).
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Perhaps it would be helpful to look at an example or two, in order to see
how the semantics works. Suppose S and P are one-place predicate constants
and M = (D, V) is a model in which V assigns the set of all senators in D as the
value of S, and the set of all procrastinators in D as the value of P. Then Sx will
be true in M iff the value assigned to x is a senator. D(Sx) will be just the set
of all elements of D such that if they had been the value assigned to x, Sx would
have been true in M. In short, D(Sx) will be just V(S), i.e., the set of senators.
Similarly D(Px) will be the set of values of x for which Px would be true in M,
i.e., the procrastinators, i.e., V(P). D(Sx) N D(Px) is the set of senators who
are procrastinators. Suppose Q is a quantifier, with V(Q) = F, and suppose F
is such that, for each E < D, F(E) = {E}. Then F(D(Sx)), i.e., F(V(S)), will
be just {V(S)}. So (Qx:Sx)[Px] will be true in M iff the set of senators who
are procrastinators is the set of all senators, namely V(S), i.e., iff all senators
are procrastinators. F’(V(S)) will turn out to be just {J}, so (Q'x:Sx) [Px] will
be true in M iff no senators are procrastinators. F*(V(S)) is ®V(S) — {<}, so
(Q*x:Sx)[Px] will be true in M iff some senators are procrastinators.
“F(V(S)) is ®V(S) — {V(S)}, and (~Qx:Sx)[Px] will be true in M iff some
senators are not procrastinators.

The quantificational function F just considered corresponds to the universal
quantifier. If a quantificational function Fj is such that, for each E< D,
F\(E) = {Ey S E:|Ey| > |E — Ey|}, and if V(Q,) = F}, then (Q,x:Sx)[Px] will
be true in M iff the number of senators who are procrastinators exceeds the
number who are not, i.e., iff most senators are procrastinators. Suppose F, is
such that, for each ES D, F,(E) = {E} if |E| =1, and F,(E) = @ otherwise;
then if V(Q,) = F, we will find that (Q,x:Sx)[Px] is true in M iff there is ex-
actly one senator and he or she is a procrastinator, i.e., iff the senator is a
procrastinator.

By the definitions of F’, F*, and ~F (for given quantificational function
F) that were given in 3.4, we find that in general (F’)’ = (F*)*= ~("F) =F.
Moreover: (F)*=(F*)'="F, " (F)=(F) =F* and “(F*)=(F)*=F".
Corresponding results hold for quantifiers, by 3.5¢. For example, since
(F")*="F, we find that for every M, S, and P, M= (((Q’)*)x:S)[P] iff
MeEe ((TQ)x:S)[P]. As a consequence we can dispense with the parentheses
previously required by 2.11. Corresponding syntactic results can be shown to fol-
low from the rules presented in the next section.

In view of the close semantic and syntactic connections between a given
quantifier Q and the associated quantifiers Q’, Q*, and ~Q, I call them cognate
quantifiers, and describe each as a cognate of (itself and) the others. I refer to
Q' as the obverse of Q, to O* as the dual of Q, and to ~Q as the contradictory

of Q.

4 General quantifier rules One of the interesting problems in the theory of
generalized quantifiers is that of formulating general rules of inference applicable
to all quantifiers. At first glance it might appear that there could be none. How
could any rule, even a wildly gerrymandered one, be equally applicable to ‘all’,
‘some’, ‘most’, and ‘the’? But there are a few, impressions to the contrary not-
withstanding. One such rule (or pair of rules, depending on how you choose to
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count) arises from the fact that in clause 3.7h of the truth-conditions the truth
value of the quantified formula is made to depend only on the extensions of the
terms of the formula. As a consequence, for any quantifier Q, any variable x,
and any formulas 4, A4,, A4,, B, B;, and B, we have the following rule(s):

4.1a) +A,=A4, Rule E (extensionality)
S (Ox:A,) [B] = (Qx:A,) [B]

(4.1b) +B; =B,
S A(Ox:A)[B] = (Ox:A4)[B,].

That is, provably equivalent sortal phrases may be substituted for one another,
and so may provably equivalent matrices.

Another rule arises from the fact that the extension of the matrix affects
the truth of the quantified formula only to the extent that it intersects the ex-
tension of the sortal phrase. Thus the set-theoretic equality D(B) N D(C) =
D(B) N (D(B) N D(C)) gives rise to the following rule, for any quantifier Q,
any variable x, and any formulas B and C:

“4.2) (Ox:B)[C]::(Ox:B)[(B&(C)]. Rule A (absorption)

Here the quadruple dot (according to a notation first introduced by Kahane [6])
indicates that the expressions on either side may be substituted for one another
salve veritate in any (extensional) context. I call this the rule of absorption by
analogy with the propositional calculus rule so designated in Copi [4]. This rule
corresponds to the fact that we can paraphrase the claim that most men are
greedy as the claim that most men are greedy men, and similarly with ‘all’, ‘few’,
‘the’, etc.

A third rule arises from the fact that, barring collision of bound variables,
one bound variable may be substituted uniformly for another in any context.
Thus, for any quantifier Q, any variables x and y, and any formulas Ax and Bx,
if Ax and Bx contain no occurrences of y, and if Ay and By are the results of
substituting occurrences of y for all free occurrences of x in Ax and Bx respec-
tively, then:

(4.3) (Ox:Ax)[Bx]:: (Qy:Ay)[By]. Rule B (bound variables)

Three more rules, which could have been recast as definitions, correspond
to the three provisions of clause 3.5e in the definition of a model. For any quan-
tifier Q, any variable x, and any formulas 4 and B:

(4.4a) (Q'x:A)[B]:: (Qx:A)[~B] Rule O (obversion)
(4.4b) (Q'x:A)[~B]::(Qx:A)[B]

(4.4c) (TQOx:A)[B]:: (Q*x:A)[~B]

(4.4d) (TOx:A)[~B]:: (Q*x:A)[B]

(4.52) (Q*x:A)[B]::~(Qx:A)[~B] Rule D (duality)
(4.5b) (Q*x:A)[~B]::~(Qx:A)[B]

4.5¢) (TOx:A)[B]l::~(Q'x:A)[~B]

4.5d) (TQOx:A)[~B]::~(Q'x:A)[B]

(4.6a) (TQOx:A)[B]::~(0Ox:A)[B] Rule C (contradiction)
(4.6b) (Q*x:A)[B]::~(Q'x:A)[B].
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It would of course suffice to take one version of each of these rules; the remain-
ing versions are merely useful equivalents.

Other rules can be derived from the rules given so far. For example,
using Rules E and A, we can easily show that:

@4.7) (Ox:A)[B]::(Qx:A)[A = B] since (A &B)= (A& (A=B))

4.8) (Ox:~A)[B]::(Qx:~A)[~(A =B)] since H(~A=B) =
~(A=B)
4.9 (Ox:A)[B]::(Qx:A)[A D B] since (A & B) = (A & (A D B))
(4.10) (Ox:A)[A]:: (QOx:A)[A Vv B] since A= (A& (AVB))
4.11) (Ox:A)[A]:: (Ox:A)[A v ~A] (corollary to 4.10)
4.12) (QOx:A)[A]:: (Qx:A)[Bv ~B] (corollary to 4.11)
(4.13) (Ox:A& ~A)[B]:: (Qx:A& ~A)[C] since H((A & ~A) & B) =
(A& ~A)&CO)
4.14) +~(ADB)

(Qx:A)[B]

S (Ox:A)[A] since if (A D B),then (A& B)=A

It is an open question? whether there are any rules independent of 4.1-4.6
and sound under the semantics for GQ. The semantics for GQ could be augmen-
ted by special restrictions on the quantificational functions to be associated with
particular quantifier constants. If that were done some of the quantifier con-
stants could be treated as logical constants, and would have special rules as-
sociated with them. This would be a reasonable treatment for ‘all’, ‘the’, ‘both’,
‘the n’, ‘at least n’, ‘at most n’, ‘exactly n’, and even ‘most’, to name only a
few. But for many quantifier expressions in natural language, such as ‘many’,
‘several’, and ‘almost all’, this would be an unreasonable treatment. We should
no more expect to be able to give precise semantics for ‘several’ than we expect
to give semantics for ‘red’ that will distinguish its logical role from that of all
other color words. In GQ all quantifier constants are treated as nonlogical con-
stants, and none have special semantic restrictions or special rules of inference
associated with them. This enables us to use GQ to study the general proper-
ties of quantifiers.

5 Relations among categorical schemata Given any quantifier Q, we may
distinguish thirty-two cognate categorical schemata whose logical relationships
to one another are of interest, especially in connection with the study of squares
of opposition. These are exhibited in Table 1. For the sake of brevity, the vari-
able of quantification, and the colon, are omitted from the specification of the
schemata. The variable of quantification can be assumed to be the same
throughout.

Table 1: Cognate

(@X)1Y] (2X)[~7] (Q~x)1Y] (Q~X)I~Y]
(Q'X)[Y] (Q'X)[~Y] (@'~ X)[Y] (@'~ X)[~Y]
(Q*X)1Y] (Q*X)[~Y] (Q*~X)Y] (Q"~X)[~Y]
(CoxX)IY] (CoX)[~Y] CQo~Xx)Y] CQ~X)[~Y]
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Each of the forms in the second row is equivalent to one of the forms in
the first row by obversion. For example, (Q'X)[Y] is equivalent to
(QX)[~Y]. Each of the forms in the third row is equivalent to the negation of
the form immediately above it in the second row, and therefore to the negation
of one of the forms in the first row. Each of the forms in the bottom row is
equivalent to the negation of the form directly above it in the top row. Thus all
further logical relations among the thirty-two cognate categorical schemata may
be reduced to relations among the eight schemata in the top row and, indeed,
to relations between (QX)[Y] and its cognate schemata (including itself) in the
top row.

If A and B are any two of the cognate categorical schemata from Table 1
(not necessarily distinct, and not necessarily from the top row) then it is of in-
terest to examine, for any given quantifier Q, which of fifteen possible relations
may obtain between them. The fifteen relations of interest are given in Table 2.

These relations among schemata are not independent of one another, as is
indicated in Figure 1 in which arrows between relations indicate that having the
relation at the base of the arrow entails having the relation at its tip.

Some of the nominally possible relations between cognate categorical sche-
mata 4 and B are in fact not possible for certain choices of A and B. For ex-
ample, by Rule C it is impossible to have (QX)[Y] = (TQX)[Y], or to have
(Q’X)[Y] = (Q*X)[Y]. But in addition to cases of this sort, we find it is im-
possible to have (QX)[Y]+ (QX)[~Y]. For suppose otherwise: then by
appropriate instantiation in the definition we can get both

(95)[P] & ~(QS)[~P]

and also

(9S)[~P) & ~(QS)[~~P].

But this is a contradiction. By similar reasoning we find that for no two sche-
mata A and B chosen from the same row in Table 1 do we ever have either
AP Bor A« B.

Moreover, some of the nominally distinct relations between cognate sche-
mata turn out to be equivalent for certain choices of schemata A and B. Thus,
for example:

vXY[(QX)[Y] D (QX)[~Y]]
iff vXY[(QX)[~Y] D (QX)[~~Y]]
iff vXY[(QX)[~Y]D (Q@X)[Y]] (by Rule E)
iff vXY[(QX)[Y] = (QX)[~Y]].

Categorical Schemata

(QY)[X] (QY)[~X] (Q~Y)[X] (@~ Y)[~X]

(Q'Y)[X] (Q'Y)[~X] (Q"~Y)lX] (Q ~Y)[~X]
(Q*Y)[X] (Q*Y)[~X] (@~ Y)[X] (@~ Y)[~X]
CoY)[X] (CQY)[~X] @~ TY)X] CQ~Y)[~X]
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Table 2. Possible Logical Relations Between Cognate Categorical Schemata

MARK BROWN

Possible
Combinations
At t f f
Symbol Name Definition B:t f t f
ALB loose relationship VXY[Av ~A] X X X X
ASB subcontrariety VXY[A v B] X X X
A< B superalternation VXY[BD A] X X X
AT, B pre-truth VXY[A] X X
A-B subalternation VXY[A D B] X X X
AT,B post-truth VXY|[B] X X
A<B equivalence VXY[A = B] X X
ATB co-truth VXY[A & B] X
ACB contrariety VXY[~A v ~B] X X X
A—-B contradictoriness VXY[A = ~B] X X
AF,B post-falsity vXY[~B] X X
A+ B anti-subalternation VXY[A & ~B] X
AF,B pre-falsity VXY[~A] X X
A<+B anti-superalternation VXY[~A & B] X
AFB co-falsity VXY[~A & ~B] X

Figure 1. Connections among relations.
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It follows that

(@X)[Y] - (QX)[~7Y]
iff (QX)[Y] < (QX)[~Y]
iff (QX)[Y]~(QX)[~Y].

By similar argument it is easily shown that, for any schemata A4 and B from the
same row of Table 1, A - B iff A< B iff A~ B; and AT, B iff AT,B iff
ATB; and AF, B iff AF,B iff AFB.

Table 3 shows which relations are possible between cognate schemata with
the same quantifier, i.e., between schemata from the same row of Table 1. For
this purpose it suffices to show which relations are possible between the schema
(QX)[Y] and its cognates from the top row of Table 1. An entry in the table
other than ‘0’ or ‘|’ designates a particular quantifier (the semantics for which
is given following the table) such that if Q is interpreted as that quantifier the
pair of schemata at the head of the entry’s column will bear the relation cor-
responding to the entry’s row in Table 3, and no stronger relation. The relations
are listed in monotonically decreasing order of strength, as shown in Figure 1.
A ‘0’ indicates that the pair of schemata in question cannot bear the given re-
lation to one another, and ‘|’ indicates that the pair of schemata in question can
only bear the given relation when they bear some stronger relation given above.
Rows (for + and <) which would only contain ‘0’s, and rows (for —, «, Ty,
T,, F;, and F,) which would only contain ‘{’s have been omitted. For the sake
of brevity, punctuation has been omitted from the representations of the sche-
mata at the head of columns. (The ‘0’s in columns 2 and 6-8, and only those,
depend on the use of Rule A.)

The various quantifiers designated in Table 3 as illustrations of the possi-
bility of the relations exhibited can be defined semantically by the conditions
that, in any model M = (D, V):

V(Qr) = {{E,&): ES D}
V(Qr) = {(E,®PE): EC D}

Table 3. Distinct Possible Logical Relations Between Cognate
Categorical Schemata with the Same Quantifier

1 2 3 4 5 6 7 8
A QXY QXY QXY QXY QXY QXY QXY QXY
B QXY QX~Y Q~XY Q~X~Y QYX QY~X O~YX Q~Y~X

AFB | QF Or Or Or Or Or OF Or
ATB | QOr Or Or Or Oor Or Or Or

A<B| Qy Q. Qs O 0; Q7 o, Ov
A—B 0 0 0, 0, 0 0 0 0

A S B " Qe* Qot Qoz Q& Qé Q<S Qé
ACB | | Q. O o 05 o)y o o)y

ALB | | v Ov Ov Ov v Ov Qs
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V(Qv) = {(E,{E}): EC D}

V(Q;) = {(E,®PE - {O}): EC D}

V(Q.) = {{E,®PE): EC D} U {(D,2)}

V(Qg) = {(E,Q): I CECD}U {(@,00),({D,®D)}

V(Q,) ={(E,PE): ECD&|D|>2}U {{E,Q): ECD&|D| <2}

V(Qs) = {(E,®E): EC D}U {(D,{D})}

V(Q) ={(E,{E}): ECD&|E|=1}U {(E,@): ECD&|E| +1}

V(Q,) ={{E,PE): V(a) e EC D} U {(E,D): V(a) ¢ EC D},
where a is some individual constant of the language.

It is easily verified that each of these is, as defined, a quantifier. In par-
ticular, Qy and Q; are the ordinary universal and existential quantifiers and Q,
is the quantifier corresponding to Russellian definite descriptions. Qr and Q
are the degenerate quantifiers that produce only false and true formulas, respec-
tively. The remaining quantifiers are more exotic and bear only uninterestingly
complex relations to expressions common in ordinary discourse. It is also sim-
ple to verify that each of these quantifiers induces relations among schemata as
indicated in the table, and induces no stronger relation between the same sche-
mata. For example, as is indicated in column 5, row 5, (Q;X)[Y] and
(QsY)[X] are subcontraries, because: it is possible for (Q;X)[Y] to be false;
but that can occur only when the extension of X is the whole of the domain D
but the extension of Y is not, and in such circumstances (Q;Y)[X] is true;
moreover it is possible for both to be true, e.g., when neither X nor Y has the
whole domain D as its extension. By Rule C, (Qs;X)[Y] = ~(QsX)[Y] and
(O:Y)[X]=~(T0sY)[X], so from the fact that (Q;X)[Y] and (QsY)[X]
are subcontraries we can immediately infer that (TQsX)[Y] and (TQ;Y)[X]
are contraries. The proofs for other quantifiers are similar.

To show the impossibility of those relations indicated as such by a ‘0’ in
Table 3, it is convenient to let F (as distinguished from F, which designates a
relation between categorical schemata) be any logically false formula, say
(Px & ~Px), and then let T be ~F. To show that for no quantifier Q can
(QX)[Y] and (QX)[~ Y] be contradictories, assume otherwise. Then for some
Q we must have VXY[(QX)[Y] = ~(QX)[~Y]]. In particular, then,
(OF)[T] = ~(QF)[~T]. But by Rule A (QF)[T] =(QF)[F&T], and by
Rule E (QF)[F& T] = (QF)[F]. On the other hand ~(QF)[~T] = ~(QF)|[F].
So (QF)[F] = ~(QF)[F], which is a contradiction. The other impossibility
proofs are similar.

It should be noted that Q7 and Qf are not merely examples of quantifiers
that induce the relations of co-truth and co-falsity, respectively. They are essen-
tially the only such quantifiers. For if Q is such that (QX)[Y] is co-true with
some other schema, then it is such that (QX){ Y] is true for all X and Y, and
is therefore equivalent to (Q7X)[Y]; similarly for Q.

6 Relations between cognate quantifiers If R is any of the fifteen relations
defined in Table 2, and if Q, and Q, are any cognate quantifiers, then let
0, R Q, abbreviate the claim that (Q;X)[Y]R (Q,X)[Y]. We can then think
of this either as expressing a relation between certain cognate schemata or as ex-
pressing a relation directly between the two cognate quantifiers. The Six possi-
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ble relations between Q and Q° are, in the light of Rule O, given in column 2
of Table 3. Using Rules O, D, and C we can verify that the relation between Q
and Q’, or rather the strongest relation that holds between them, determines the
strongest relations that hold between Q and Q*, between Q' and ~Q, between
Q* and ~Q, between Q and ~Q, and between Q' and Q*, as recorded in the
following results:

(6.1) QFQ'iff Qe Q*iff Q'+ ~Q iff Q*T ~Qiff Q« ~Q iff Q' «+ Q*
(6.2) QTQ'iff Q+ Q*iff Q'+ ~Qiff Q*F ~Qiff 0+ ~Qiff Q'+ Q*
(6.3) Q-Q'iff Q- Q*iff '~ ~Qiff 0*=~Q

(6.4) QSQ’iff Q—Q*iff Q' ~Qiff 0*C~Q

(6.5 QCQ'iff Q—Q*iff '~ ~Qiff 0*S—Q

(6.6) QLQ’iff QLQ* iff Q'L ~Q iff 0*L~Q

(6.7 if QLQ’, QCQ’, 0SQ’, or Q< Q' then O — ~Q and Q' ~ O*.

7 Squares of opposition By a square of opposition I mean a display of the
strongest logical relations among cognate quantifiers Q, Q’, Q*, and ~Q in
which the quantifiers are placed at the vertices of a square and their relation-
ships are shown along the edges and diagonals, and in which quantifiers that are
obverses of one another appear in the same row and quantifiers that are duals
of one another are placed in the same column. I count two squares of opposi-
tion as being of the same type if they have the same logical relations along cor-
responding edges and diagonals, or if one can be rotated 180° about a vertical
or horizontal axis, or about an axis orthogonal to the page, in a way that brings
this about. Thus, for example, the squares of opposition in Figure 2 are all of
the same type.

0, C O 08 "

<[ <] X

Figure 2. Some squares of opposition of the same type.

Using these definitions, and the results given in 6.1-6.7, it follows that there
are exactly four types of square of opposition, as shown in Figure 3. I follow
tradition by omitting explicit representation of the trivial relation L.

The standard universal quantifier fits the Boolean square of opposition. If
we hold to a strict terminology, according to which no modifications of the defi-
nitions of the logical relations are to be entertained, then we will not be able to
say (as is often, and correctly, said in a less strict terminology) that, in the
presence of the assumption that the terms involved are nonempty, the universal
quantifier and its cognates form a classical square of opposition. To say that
involves amending the definition of contrariety, for example, so that the sche-
mata (QX)[Y] and (Q'X)[Y] are contraries iff for all nonempty X and
Y, ~(QX)[Y]v ~(Q'X)[Y]. If we disallow such redefinitions, it may at first
seem intuitively unlikely that there will be any quantifiers that fit a classical
square. However, as we can determine from Table 3, there are: the quantifier
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Q., corresponding to Russellian definite descriptions, i.e., the quantifier ‘the’,
is one! The quantifier ‘most’, construed in accordance with the semantics offered
for it at the end of Section 3 above, is another. From Table 3 we can also see
that Q, fits a semi-degenerate square of opposition. In addition, the quantifier
‘some, but not all’ fits such a square. Finally the quantifier Qr and its dual Q7
fit a degenerate square of opposition, and are the only quantifiers that do.

Type I: Boolean Q o’

’

Type II: Classical

Xo X

’

Type III: Semi-degenerate

- [X]

’

Q Q
T T
Q" S 0
1]
Q - Q
Q Q

Type IV: Degenerate ><

Figure 3. The four types of square of opposition.

8 Properties of quantifiers We noted in Section 6 that relations between
cognate categorical schemata could be reconstrued as relations between cognate
quantifiers. But since cognate quantifiers are interdefinable, it follows that these
relations can also be reconstrued as properties of quantifiers. In Table 4 the en-
tries (other than ‘0’ and ‘})’, which retain the sense given time in Table 3) are
designations for the properties Q has by virtue of the fact that the schemata cited
above the entry have the relation cited to its left.

The properties E2-E8 can be given more or less familiar names, following
the terminology in Bird ([3], p. 55). E2 is the property of obvertibility, E3 partial
invertibility, E4 invertibility, E5 convertibility, E6 obverted convertibility, E7
partial contraposability, and E8 contraposability. The properties A3 and A4 are
not normally discussed, let alone named, but might be called partial anti-
invertibility and anti-invertibility, respectively, to maintain parallelism with
established vocabulary. Similarly, the properties S2-S8 arre not commonly dis-
cussed, but might be given parallel names by calling S2 obverse subcontrariety,
S3 partial inverse subcontrariety, S4 inverse subcontrariety, S5 converse subcon-
trariety, S6 obverted converse subcontrariety, S7 partial contrapositive subcon-
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Table 4. Logical Properties of Quantifiers

1 2 3 4 5 6 7 8
A QXY QXY QXY QXY OXY QXY QXY QXY
B OXY OX~Y QO~XY QO~X~Y QYX QY~X Q~YX O~Y~X
AFB | F F F F F F F F
ATB| T T T T T T T T
A< B| El E2 E3 E4 ES E6 E7 E8
A—B| 0 0 A3 Ad 0 0 0 0
ASB | } S2 S3 S4 S5 S6 S7 S8
ACB | 1 C2 Cc3 Cc4 Cs C6 Cc7 C8
ALB | 1 L2 L3 L4 L5 L6 L7 L8

trariety, and S8 contrapositive subcontrariety. By replacing ‘subcontrariety’ by
‘contrariety’, we have names for the properties C2-C8. I will not attempt to pro-
vide appropriate names for the vacuous properties L2-L8.

For each of these properties, Table 3 provides a quantifier which exempli-
fies that property and exemplifies no stronger property from the same column.
The type of square of opposition that a quantifier fits is determined solely by
its properties from column 2, but other properties, such as contraposability, are
normally taken to be significant in connection with the square of opposition,
and yet are independent of the properties in column 2. For example, Q, and QO
both have the property L2, and neither has any stronger property from column
2. It follows that both generate squares of opposition of Type I. But Q; also
has the property S5 (converse subcontrariety) while Q5 has no stronger property
from column S than L5. Thus we may think of these two quantifiers as gener-
ating squares of opposition of different subtypes within the same type. It there-
fore becomes of interest to determine into what subtypes squares of opposition
may fall, based on the other properties quantifiers may possess.

The question what subtypes there are can be answered by answering two
other questions: What combinations of properties may a quantifier have? and
How are the properties of a given quantifier related to those of its cognates? This
latter question arises because the collection of properties that Q has may deter-
mine the collection Q’ has, and if in some cases these are different collections,
then since Q and Q’ fall within the same square of opposition we will want to
say that the two collections of properties determine the same subtype. Three ob-
servations simplify the process of answering this second question. First, every
quantifier has the property E1 trivially. The only question is whether it has one
of the two stronger properties T or F. So we may neglect E1.

Second, we can show directly from the definitions of the properties in-
volved that Q has a given property P6 from the sixth column iff it has the cor-
responding property P7 from the seventh (i.e., Q has E6 iff it has E7, has S6
iff it has S7, etc.). Hence one of these two columns may be considered redun-
dant, and may be ignored. I choose to ignore column 7. Third, we can show that
Q has a given property P3 from the third column iff it has the corresponding
property P4 from the fourth. This is so because, by 4.7 and 4.8, all and only
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those combinations of truth values which can be given to (QS)[P] and
(Q ~ S)[P] can be given to (QA)[B] and (Q ~ A)[~B], where A is S and B
is S = P. Hence we may ignore one of these columns, and I choose to ignore
column 3. Elementary use of Rules E, O, D, and C now suffices to give the
results in Table 5.

Table 5. Connections Among Properties of Cognate Quantifiers

Q1990”0 Q |90 9 Q |9 Q" 0
F|FTT E4 (E4 E4 E4 S5 | S8 C8 C5 L6 |L6 L6 L6
T |T F F A4 | Ad A4 A4 C5|C8 S8 S5 E8 | E5 E5 E8
E2 | E2 E2 E2 S4 | S4 C4 C4 L5 |L8 L8 L5 S8 |S5 C5 C8
S2 [S2 C2 C2 C4 | C4 54 S4 E6 | E6 E6 E6 C8|C5 S5 S8
L2 |L2 L2 L2 E5 [ E8 E8 E5 C6 | C6 S6 S6

Thus, for example, if S5(Q), i.e., if Q has the property S5, then S8(Q’),
C8(Q7*), and C5(~ Q). Note too that if (as is the case with the existential quan-
tifier) Q is convertible, then ~Q will be too, while Q" and Q* will be contra-
posable. That is, it would be impossible to produce a quantifier which was
convertible but whose dual was not contraposable.

The process of sorting out the various possible subtypes of squares of
opposition is simplified by establishing some elementary results concerning the
consequences of having one or more of the properties E2-E8, A4. There are
several such results which can be proven using only our six rules. In reporting
these results below I use (for example) ‘E5’ to abbreviate ‘E5(Q)’, so that in
each of these results I am reporting connections among the properties of a single
quantifier. I abbreviate further by letting, for example, ‘P2 iff P4’ abbreviate
‘L2 iff L4, and S2 iff S4, and C2 iff C4, and E2 iff E4, and A2 iff A4’.

(8.1) If E2: PS5 iff P6 iff P8.

(8.2) If E4: E2; and
A4 and CS are impossible.

(8.3) If E5: P2 iff P4 iff P6 iff P§;
and A4 is impossible.

(8.4) If E6: E2, E4, E5, and ES.

(8.5) If E8: P2 iff P4 iff PS iff P6; and
Ad is impossible.

(8.6) If Ad4: E2, L5, L6, and LS.

To these results we may add, for ease of reference, three results reported previ-
ously in connection with Table S.

(8.7) If not T and not F, then E1.
(8.8) P6 iff P7.
(8.9) P3iff P4.

One result reported above (in 8.2) is less trivial than the rest to prove,
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namely that if E4(Q) (and nothing stronger) then not C5(Q). Suppose E4(Q)
and C5(Q), and suppose (QS)[P], for some S and P. By Rule A, (QS)[S& P],
so because E4(Q) (Q ~ S)[~(S & P)]. By Rule A again, (Q~ S)[~S &
~(S&P)]. By Rule E, (Q ~ S)[~S]. Since E4(Q), it follows that (QS)[S].
Since C5(Q) we get ~(QS)[S], which is a contradiction. So for any S and P,
~(QS)[P]. Thus F(Q), contradicting the stipulation that Q have no property
stronger than E4.

One other collection of elementary results is available to simplify further
the process of sorting out the various subtypes of square of opposition. These
results are all of the following form: if Q has one form of subcontrariety and
another form of contrariety, then it has one or more forms of equivalence prop-
erties. These results are all recorded in Table 6, in which the antecedents appear
as coordinates, and the consequents as the entries, of the array.

Table 6. Implications of Some Pairs of Properties

C2 C4 CSs Cé6 C8
S2 | ... E4 E6 ES & E8 E6
S4 | E4 E6 & E8 E5 & E6 & E8 ES & E6
S5 [ E6 E6 & E8 e E2 & E4 E4
S6 | ES&ES8 ES& E6 & E8 E2 & E4 E2 & E4
S8 [ E6 E5 & E6 E4 E2 & E4

Let us use expressions like ‘SLLSE’ to designate combinations of properties
of a single quantifier —in this case, the combination S2, L4, L5, S6, and E8. In
the light of 8.7-8.9 we need not give separate mention to the associated prop-
erties from columns 1, 3, and 7. Thousands of combinations of properties are
lexicographically possible, but fewer than 100 such combinations are consistent
with all the results in 8.1-8.9 and Table 6. Of these, some can be associated with
one another, using the results in Table 5, as generating the same subtype of
square of opposition. For example, if Q has the combination SLSSL, then Q’
will have the combination SLLSS, Q* will have the combination CLLCC, and
~Q will have the combination CLCCL. We could therefore choose any one of
these four combinations to represent the subtype of square of opposition which
Q, Q’, Q*, and ~Q fit. It is convenient to stipulate the “alphabetic” order L,
C,S,E, A, F, T for the letters involved, and let this generate a lexicographic
order among the combinations. Then when a set of combinations are associated
with one another by the results in Table 5, as belonging to the same subtype of
square, the lexicographically earliest such combination can be taken as repre-
sentative of the rest of the set. This procedure puts the subtypes in order by type,
and chooses as the representative quantifier, in a set of cognate quantifiers, one
which can fit in the upper left corner of the square (the A-position, by traditional
labeling) in the standard arrangement of the square given in Figure 3.

When we associate with one another the combinations of properties which
correspond to cognate quantifiers, using Table 5, and apply all the constraints



320 MARK BROWN

given in 8.1-8.9 and Table 6, we find that there are only 34 possible subtypes
of square of opposition. Examples of quantifiers of each of these subtypes can
be constructed, so there are exactly 34 subtypes. They are given in Table 7.

Table 7. The Subtypes of Square of Opposition

Type I Type 11 Type II1 Type IV
LLLLL CLLLL ELLLL FFFFF
LLLLC CLLLC ELCCC

LLLLE CLLCL ECLLL

LLLCL CLLCC ECCCC

LLLCC CLCLC EELLL

LLCLC CLCCC EEEEE

LLCCC CCLLL EALLL

LCLLL CCLLC

LCLLC CCLCL

LCLCL CCLCC

LCLCC CCCLC

LCCLC CcCccc

LCCCC CCCCE

9 Rules of immediate inference By a classical rule of immediate inference

I mean any rule of the form A/.". B or the form A :: B, where A and B are cog-
nate categorical schemata. Every possible classical rule of immediate inference
corresponds to one or another of the properties of quantifiers introduced in
Section 8 and, with the exception of the trivial properties E1 and L2-L8, each
of the properties of quantifiers corresponds to a rule of immediate inference.
Some of these correspondences are evident from our choice of names for the
properties. Thus, for example, any quantifier with the property E8 will permit
a rule of contraposition. Other correspondences are less obvious. For example,
any quantifier Q with the property C6é permits a rule of “conversion by limita-
tion” (although the term “limitation” may not be as apt here as it was in the
traditional analysis of categorical propositions), i.e., a rule of the form
QXY/..Q*YX. Some of the rules of immediate inference that correspond to
properties of quantifiers are entirely unfamiliar. Thus, for example, if Q has the
property A3 then it permits the rule QXY :: “Q ~ XY.

Once we have determined the collection of properties a quantifier has, and
therefore have determined what properties its cognates have, we will not only
have determined what subtype of square of opposition they fall into, but will
also have determined the classical rules of immediate inference they support.
Indeed, in determining which subtypes of square of opposition are possible, we
have in effect determined what combinations of classical rules of immediate
inference are possible. For each distinct subtype, there is a distinct set of rules
of immediate inference that characterize it. The infinitely many quantifiers of
the forms ‘all but »’, ‘with fewer than n exceptions’, ‘with at most n exceptions’,
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‘with at least n exceptions’, and ‘with more than n exceptions’ each has the same
collection of properties as ‘all’. We therefore know that each generates a square
of opposition of the same subtype (namely LLLLE) as ‘all’ and that each is sub-
ject to exactly the same classical rules of immediate inference. Similarly, their
duals ‘exactly »n’, ‘at least n’, ‘more than »’, ‘fewer than »’, and ‘at most »’,
respectively, all have the same properties, and therefore support the same clas-
sical rules of immediate inference, as ‘some’. Thus in a few strokes we obtain
complete information about the classical rules of immediate inference associated
with an infinite collection of quantifiers available in natural discourse.

NOTES

1. The formal semantics I will offer is equivalent to the semantics given by Barwise and
Cooper [2], if we interpret them as intending it to be a defining feature of quanti-
fiers (in my sense of ‘quantifiers’) that they denote quantificational functions (as I
define them in 3.3 below) rather than arbitrary functions from subsets of the domain
to families of subsets of the domain. The Barwise and Cooper semantics is a
descendent of that given by Montague [8].

2. I am indebted to the referee for the observation that if we are willing to introduce
distinguished quantifier constants for universal and existential quantification, and to
add any standard set of rules and axioms for first-order logic, we get a system for
which the completeness proof has essentially been given in Barwise [1]. The referee
evidently refers to Barwise’s sketch of a proof of completeness for indexical quan-
tifiers. By dropping from the proof all references to indices, and by modifying the
construction of quantificational functions in the canonical model so as to conform
to the fact that all our quantifiers are relativized, it is indeed possible to adapt
Barwise’s proof to show the completeness of GQ extended by (or treated as an
extension of) first-order logic. A technical problem arises from the fact that, in the
canonical model, we must define the value of a quantificational function even for
arguments which do not happen to be the extensions of any formulas with one free
variable. It suffices, however, to let each quantificational function take the empty set
as value for each such argument. I second the referee’s conjecture that, even without
distinguished quantifiers for universal and existential quantification, GQ (understood
to incorporate any appropriate formulation of the propositional calculus) is complete.
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