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Mechanizing Logic I:

Map Logic Extended Formally

to Relational Arguments

JOHN RYBAK and JANET RYBAK*

Formal extensions: Conjunctive and disjunctive terms Our concern is to
show a new simplified approach to mechanizing logic, including the logic of
multiply quantified relational propositions.

First, the diagrammatic method of our earlier paper [11] is used to set up
four formal rules which extend the ''traditional" or ' 'Aristotelian" logic into
the field of arguments with conjunctive, disjunctive, and negative terms. Then
with one further central "axiom" (an adaptation of relational conversion) we
bring into the same system in a fairly concise and perspicuous fashion arguments
involving multiply quantified relational propositions. The limits of this system
(we presume it has limits) are not yet known.

It is this extended formal system that will be used in Part II as a base,
together with Karnaugh maps, from which to demonstrate the effective
mechanization of relational arguments by computer.

Arguments such as:

A a EC (see Appendix 1
A i D for the symbolism)

.DΊB

are frequently cited as being beyond the range of traditional logic, and it is true
that unaided syllogistic is unequal to some of them, but in the 1880s Keynes [6]

*The substance of these papers, Parts I and II, was originally presented at a Traditional
and Modern Philosophy Department seminar, Sydney University, on March 30, 1981.
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showed how to extend the traditional logic to cover such cases, and John Ander-
son [1] of Sydney University was teaching some of these methods from 1927 to
1958.

In [11] we showed a mechanized effective way of handling such arguments
by the Karnaugh map. The first move is to put the argument into Boolean form:

ΆB\/A'C = 0
A-DΦO

:.DBΦ0 .

A

ΪΠQ,
\ 0 0

0 0

c

Figure la

The premises being correctly entered on the map, the conclusion (enclosed by
a dotted line) if valid is literally to be seen on the map. If the conclusion fails
to appear, the argument is invalid.

Now, such arguments may also be examined formally by a process requir-
ing only two or four additional rules, which is in appearance like natural deduc-
tion except that it depends on the traditional doctrine of distribution (i.e., that
the subjects of universal propositions and the predicates of negative propositions
are said to be distributed, or universally quantified, while the other terms are
undistributed).

/ Dropdet The rule we require for Example 1 is that a conjunct (or deter-
minant) may be validly dropped from an undistributed term.

If *C is thus dropped from the first premise of Example 1 we have a stan-
dard valid syllogism left. We name this rule Dropdet and Dropdet separately
may be tested by map and seen to be sound.

A zBC A'BVAC = O
.A aB :.A'B = 0
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A

0 JB

\ ° o

c

Figure lb

The attempt to drop from a distributed term is, however, invalid;
A B a C .'.A a C. Figure lc shows that when the premise is entered the pro-
posed conclusion fails to appear. The rule is Dropdet.

A B_-C = 0
:.A'C = 0

A

: o'; jβ

c

Figure lc

2 Addet

A aBD
BaC

.AaC

It is valid to add a determinant (conjunct) to a distributed term. This move may
be lawfully carried out with the subjects of universal affirmatives or negatives
and with the predicates of all negative propositions whether universal or
particular.

So if we add '£>' to the subject of the second premise, again we have a stan-
dard valid syllogism. Separately, B a C.'.BD a C, BC = 0:.BDC = 0 (see
Figure 2a).

To add a determinant to an undistributed term is, however, invalid.
Figure 2b shows the proposed conclusion does not appear. A a B :.A a BC,
or in Boolean form A-B = 0:.A-BvA C = 0.



MECHANIZING LOGIC I 253

B A

T j 1 f iπΓi 1 \
o [ o } : o o :

Figure 2a Figure 2b

The rule is Addet.

3 Add SC It is valid to add a superfluous conjunct which is a term or part
of a term already present in the proposition to the other term of the proposi-
tion. So in premise 2 (below) the ' C of the predicate may be added to the sub-
ject, thus:

AaBC AzBC
B a C BCΆC

.A a C J a C

and again we have a valid syllogism. The rule Add SC (superfluous conjunct)
has the restriction that an SC may not be added to the subject of an Ό' proposi-
tion. A map confirms the restriction and the valid rule.

We may if we wish add the ' C of premise one to the subject Ά\

A ?LBC AB\fAC = 0

:.AC^BC :.ACB = O

A

0 B

o : o

c

Figure 3a

But the case is different with the V proposition:

A oBC ABVACΦO
.ACo BC .ACBΦO

which is invalid.
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A

TrTT>
c

Figure 3b

' ^0 ' is shown by a V for one cell or a curved line for several cells. The con-
clusion if valid would require a definite 7 ' showing the nonemptiness of the cell
with the dotted circle, but in fact all we have is that at least one of the three cells
(we know not which) is nonempty—the argument is invalid—hence the restric-
tion on adding an SC to the subject of an Ό' proposition. Disregarding the
restriction could permit, e.g., 'Some cows are not brown animals' (true), .*.
4Some brown cows are not brown animals' (false).

The Add SC performed in the first example of Add SC, above, cannot ac-
tually be mapped: B a C.\ BC a C. This conclusion is 'unmappable' because
it is a tautology. It is always on the map—the move is sound. BC — 0 .'. BCC =
£•0 = 0. The rule is Add SC.

4 Drop SC

A Ce CB
.A e CB or ACe B

It is valid to drop a superfluous conjunct from one term when it is also present
as or as part of the other term, with the restriction that it is always invalid to
drop an SC from the subject of an 'a' proposition.

There is no need to map, the Boolean form is the same for all three pro-
positions above, ACB = 0.

But note the restriction:

A-CaC B ACB = 0_
.'. A a CB .*. ACM AB = 0 invalid

A

ΓO~Π'
0

C

Figure 4
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If the conclusion were valid, the three cells containing the 'dotted line' would
all hold zeros.

Disregarding the restriction could permit, e.g., 'All brown cows are brown
animals (true), .*. 'All cows are brown animals' (false). The rule is Drop SC.

Now these four rules occasionally supplemented by a Boolean law are suf-
ficient to cover a wide range of arguments involving conjunctive terms. We could
set up a parallel set of rules for disjunctive terms, but De Morgan's law will
change our disjuncts to conjuncts subject to the four rules above. One or two
examples of such a change should be sufficient.

A v £ a C _ CdiAB
.'. A a C .*. C a A valid Dropdet

i.e., by contraposition (using De Morgan's law) it can be seen that valid drop-
ping a disjunct from a distributed term is equivalent to valid dropping a deter-
minant from an undistributed term.

A o B _ Bo A
Λ C V A o B ~ .B o C'A valid Addet

Valid adding a disjunct to an undistributed term is equivalent to valid
adding a determinant to a distributed term. It will also be shown that Addet and
Dropdet can be dispensed with, i.e., the extension could be worked with only
two rules, for Addet and Dropdet can be derived from syllogisms.

Tacit use of some of the laws of Boolean algebra, i.e., De Morgan's law,
double negation, etc., has long been made in traditional logic.

The four rules Addet, Dropdet, Add SC, and Drop SC are shown in ac-
tion on moderately complicated examples using all four of them.

Example 1:

1. A e £ v C
2. ACID / .DCΊB
3. A'CΊDC (2 Add SC)
4. A ΊD C (3 Drop SC)
5. A zBC (1 Obvert)
6. D'CiBC (4, 5 Syll.)
7. D CiB (6 Drop SC)

Example 2:

1. A 2iBC
2. BQD / .A CQD

This can be solved using Addet on each premise but it may also be solved by
Add SC and Drop SC; these are often used together in one line and the justifica-
tion may be labeled, e.g., (1 Add, Drop SC). In effect, the C is moved from
the predicate to the subject or vice versa, subject to the restrictions discussed
above.

3. ACaB (1 Add, Drop SC)
4. ACtD (2, 3 Syll.)
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Example 3 (Adapted from Copi [4]):

1. MCGQD

2. MR a C
3. C DaE
4. M EaC G /.'.MRGaEandM REaG
5. M'RGdiC (2 Addet)
6. MRGaCG (5 Add SC)
7. MRGaMCG (6 Add SC)
8. M C GaZ) _ (1 Obvert)
9. MCGSLC D (8 AddSC)

10. M C G a £ (3, 9 Syll.)
11. MRG a E (7, 10 Syll.) first conclusion
12. ME a G (4 Dropdet)
13. MREaG (12 Addet) second conclusion

These rules will sometimes be needed in working relational arguments.

Complex terms and syllogism interrelated Given tautologies like 'B-C a B'
even 'Dropdet' and 'Addet' may be brought under syllogistic rules; however,
we see no way of carrying out all the Superfluous Conjunct moves without
adding to the system the special rules for adding and dropping superfluous
conjuncts.

Dropdet syllogistically:

1. A zBC Syllogistic proof: 1. A aBC
.'.A <ιB 2. (B CzB) (Tautology)

:.AaB (1,2 Syll.)

Addet syllogistically:

1. A a £
2. (A C ?LA) (Tautology)

.ACdiB (1,2 Syll.)

We offer these two demonstrations as an indication of the consistency of syllogistic and
complex term rules. We propose, however, to avail ourselves of the special rules
Άddet' and 'Dropdet' and 'Add SC and 'Drop SC [2], [10].

Darapti Darapti and comparable arguments may be handled as in the
following example.1

1. Whales a mammals
2. Whales a sea-creatures
3. (Whales i whales) (Premise supplied since whales

are admittedly existent)
4. Whales i sea-creatures (2, 3 Syll.)
5. Sea-creatures i mammals. (1, 4 Syll.)

The argument with its three premises also maps without difficulty [3].
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Earlier forms of diagrams The treatment by diagram of arguments having
conjunctive and disjunctive terms was included by John Venn in his Symbolic
Logic a hundred years ago, but little attention has been paid to this, probably
because Venn's system could not be usefully extended beyond four variables.
Moreover, Venn's diagrams were not fully iconic in that they suggest that the
area representing the conjunction of the complements of all variables is not on
the same footing as the other compartments of the diagram. The Karnaugh map
remedies this defect. In concentrating on circles and ellipses Venn may have been
too influenced by Euler.

Lewis Carroll was drawn to rectangular figures, but he unfortunately
employed too many principles of geometrical division to cover increases in the
number of variables. His fancy embraced overlapping rectangles within a rec-
tangle, diagonals, and crosses,2 producing cells of varied shapes as against the
mechanized uniformity of Karnaugh map growth where cells are symmetrically
divided alternately by horizontal lines followed by vertical lines and back to
horizontal lines, ad infinitum.

Marquand, a contemporary of Venn, may be said to have partly anticipated
the Karnaugh map but, like Veitch, huddled all his variable labels together on
only two sides of the rectangular figure with resultant loss of perspicuity.
Furthermore, his custom of alternating labels for a term and its complement
along the whole of a side of the figure instead of keeping them together
whenever possible, as Karnaugh does, adds to the difficulty of 'reading' his
diagrams. On the eight-variable Karnaugh map only two variables appear on
each side of the figure. It would appear that Karnaugh's achievement was far
from obvious.

Relational arguments —Extending the system There is no well-known way
of symbolizing a second, third,.. .or nth quantifier in traditional logic. We now
have to present a well-tested, working method for achieving this which will be
shown to be easy to handle in deductive arguments. The distinction between:

Every student fears every examination

and

Every student fears some examination (or other)

can be symbolized simply and effectively (using initial letters of the key words
in the examples) as

S a F-Ed

and

S a F-Eu

These are seen as universal affirmative propositions with complicated relational
predicates.

In 'F—' the hyphen serves to mark the fact that 'F' is a relation and the
following '£" is its relatum. The subscript 'd stands for 'distributed' and marks
the quantity of the relatum. In this context, the 'every' points to the universal
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quantification of the relatum E, and the V (undistributed) here records the par-
ticular quantification of the E in the second example.

This notation can be extended into more and more complicated cases in-
volving quantifiers within quantifiers; e.g., 'Some beetle attacks are reported by
every orchardist growing some fruits' appears as:

B\R-(O G-Fu)d

where brackets are needed to show the scope of the final subscript quantifier.
Apart from these small notational additions, which result in forms that are

concise and fairly perspicuous and close to normal English, we shall require one
new axiom or Immediate Inference for stating relational propositions in
equivalent forms interchanging subjects and relata. We have found this simple
extension to be of wide application and surprising utlity and it will culminate
in relational arguments being diagrammed and computerized for both valid and
invalid arguments.

Relational Conversion [9] (henceforth RC) appears in the literature at least
as early as Aristotle. One of his examples is, in effect, if 'A is 3 times B' then
'B is -y- of A\ Moderns favor examples like 'A is a parent of B Ξ B is the
child of A\ We have extended this key idea to multiply quantified propositions
like Έvery student fears every exam', 5 a F—Ed = Έvery exam is feared by
every student', E a F'—Sd. This approach to RC renders accessible to extended
traditional logic a large range of arguments from which, without RC, it was cut
off.

If it were argued that such a relational pair consists only of two verbal
forms for the one proposition, then one could argue similarly, for example, for
contraposition (All A are B = All B are A). We think it reasonable to treat
these as distinct though equivalent propositions with formal differences of im-
portance, as should emerge from our illustrations of their use.

Similarly we treat Έvery student fears some exam or other' (S a F-Eu)
as formally distinct from though equivalent to 'Some exam or other is feared
by every student' (E i F'-Sd), which is not to be confused with the singu-
lar proposition 'Some one unspecified exam is feared by every student'
(UE a F' —Sd). The latter implies the former but is not implied by them:

1. UEaF'-Sd

2. (UE aE) (Tautology assumed)
3. E i F'-Sd U> 2 syllogism) (Given 'UE i UE)
4. S a F-Eu. (3 RC)

In 1 and 2 the ' U* is a term indicating an unspecified but in principle specifiable
object.

RC apparently resembles quantifier order-change, but has important dif-
ferences. This emerges when we see, e.g., that 'D-Cu a D-C» (All drawing
some circles are drawing some circles) is an unmappable tautology, whereas its
RC, 'C i D'-(D-Cu)d (Some circles are drawn by all beings drawing some
circles) does not have the formal properties of tautology and is mappable or
diagrammable and hence mechanizable. Our rules permit the last two proposi-
tions to be distinct and equivalent. This is an independent system with its own
criteria [10]. Notice we make formal use of correlates.
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RC is the interchange of subject and main relatum together with moving
from relation to its correlate in an equivalent proposition.

In what we are calling RC, e.g.,

(1) S a F-Eu (2) E i F'-Sd ,

notice:

(a) S and E change places: E is formally a relatum (a fragment of a term)
in (1), but an independent nonrelational subject-term in (2). Note that
the 'some or other' of E in (1) carries over unchanged to E in (2).

(b) The relation-particle, Ψ—\ becomes \F'—', its correlate.
(c) The T copula of (2) is determined by the V subscript ('some') of (1).
(d) The universal 'a' copula of (1) determines the subscript of S in (2)

('every').
(e) 'Quality' is unchanged: affirmative propositions stay affirmative;

negative negative.

Modern uses of Relational Conversion are to be found in Sommers [12] and
earlier in De Morgan's work [5]. Our own background knowledge of the notion
comes mainly from Stebbing [13]. But none of these logicians views RC quite
the way we conceive it.

The system at work First, two very familiar examples:

A. Inference by Complex Conception (CC). The name 'Inference by Complex
Conception' was bestowed on this type of argument by an older generation of
traditional logicians who, however, regarded it as an immediate inference.3 It
is also exemplified by the well-known 'Horse's Head' argument. Our example
is taken from Quine [8]:

All circles are figures.
.'. All who draw circles draw figures.

D— = (beings) drawing; D'— = (things) drawn by.

1. CaF
2. (D—Cu a D—Cu) (assumed, based on subject

of the conclusion)
/ .\D-CuzD-Fu

3 . C'\ D'-(D-Cu)d (2 RC) (Some circles are drawn by
all drawing some circles)

4. F\D'-{D-Cu)d (3, 1 Syllogism)
5. D-CuaD-Fu (4 RC) valid

B. Demonstration of A Fortiori:

All As are greater than any Bs. All Bs are greater than any Cs. Therefore
all As are greater than any Cs.

G = greater than; G' — less than, smaller than, etc.

As usual, the argument is regarded as an enthymeme. The assumption of the
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transitivity of 'greater than' is premise 3: 'All things greater than some things
greater than any Cs are greater than any Cs', based on the predicate of the
conclusion.

1. A a G-Bd

2. B a G-Cd

3. (G-(G-Cd)u a G-Cd) (Assumption of transitivity) / .A a G-Cd

4. B a G'-Άd (1 RC)
5. G-Cd i G'-Λrf (4, 2 Syll.) (Given 5 i B)
6. Λi a G - ( G - C r f ) H (5 RC)
Ί. Άa G-Cd (3, 6 Syll.) valid

The general pattern of the transitivity premise is 6R-(R-Xd)u a R—Xd\
where R is a relation and A' its relatum and 'R-Xd is the predicate of the con-
clusion (as in 3 above). Intransitivity is the same pattern with an 'e' copula.
Asymmetry is indicated by "R—Xd e R'—Xd\ Naturally in applying these
forms to particular instances we must here have the restriction that applies to
all enthymemes; that the supplied premise should be true.

Representative samples of arguments involving relations The operations per-
formed at discretion in the following three examples will later be shown to be
performed by the Karnaugh map which carries out analogues of these operations
without the need for discretion to intercede. The examples differ in complexi-
ty and will bring out between them the various features of our systems at work
as well as examples of symbolizing varieties of English expression.

Example 1 (Brief and introductory):

Argument: Some botanists are eccentric women.
Some botanists do not like any eccentric person.
Therefore, some botanists are not liked by all botanists. [7]

1. BΊE'W
2. Bo L-Ed / .B o L'-Bu

3. EeL'-Bu (2 RC)
4. B i E (1 Dropdet)
5. Bo L'-Bu (3, 4 Syll.) valid

Example 2 (Relations in both subject and predicate and shows usefulness of SC):

Argument: Everyone reading some good biology books is interested in every
good biology book.
All zoologists read some good biology books.
All Darwin's main works are good biology books.
All good biology books interesting every zoologist contain some
firmly established doctrines.
All firmly established doctrines are seminal.

.'. All Darwin's main works contain something seminal.

1. R-Buzl-Bd

2. Z a R-Bu
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3. DzB
4. B{Γ-Zd)zC-Fu

5. FaS /:.DaC-SM

6. Zzl-Bd (1, 2 Syll.)
7. £ a / '-Z^ (6 RC)
8. BaB>(Γ-Zd) (7 Add SC)
9. B a C - F w (4, 8 Syll.)l ίA Q * Q , Λ

lO.DaC-ί (3, 9 Syll.)] ° r ( 4 ' 8 ' 3 S θ Π t e S )

11. Fi C'-A, (10 RC)
12. Si C'-A/ (11, 5 Syll.)
13. DZLC-SU (12 RC) valid

Example 3 (Shows relation with conjunctive relatum and a particular
conclusion):

Argument: All contributions to this publication are reports of original research
work. Anyone who produces a report of original research work is
hard-working or nonconformist. Some very obscure persons pro-
duced some of the material which is a contribution to this publica-
tion. Therefore, (a) some very obscure persons are hard-working or
nonconformist, and (b) some reports of original research work are
produced by some very obscure persons. ([4], p. 150, no. 7)

1. CaR
2. P-Rua {Hv N)
3. OiP-(MC)u /:. O\ (HVN) and i? \P'-OU

4. M CiPf-Ou (3 RC)
5. C\P'-OU (4Dropdet)
6. R i P'-Ou (5, 1 Syll.) valid (conclusion (b))
7. O i P-Ru (6 RC)
8. O i (// V N) (7, 2 Syll.) valid (conclusion (a))

We have tested the formal system over a decade on a wide range of
arguments with multiply quantified relational propositions taken mainly from
[4] and [8]. We believe that the reader will find it stands comparison with other
systems for perspicuity and conciseness.

We have discovered, moreover, that relational arguments can also be tested
by Karnaugh map and may be incorporated as a natural extension in the same
effective system for syllogisms and sorites with complex terms that we
demonstrated in [11].

The map system is based on the same fundamental principles as the for-
mal system. In addition to demonstrating the three valid conclusions just shown,
the system will be shown rejecting certain invalid conclusions for the same
arguments.

Appendix 1 Main symbols or abbreviations The main symbols and abbre-

viations are shown in Table 1.
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Appendix 2 Singular propositions We follow the usual traditional approach
in treating singular terms as if they were for formal purposes class terms.

Although this procedure runs counter to linguistic habits in English (but
not in Chinese) it should be clear that class arguments remain valid (or invalid)
if appropriate singular terms are substituted for class terms.

In ordinary language singulars are almost always indeterminate proposi-
tions like 'men are winged' where we have to use our discretion to decide the
quantity.

We are, however, tempted by the view in an interesting article by
Sommers [12] that singular propositions are indifferently universal or par-
ticular.

NOTES

1. We have to acknowledge the advice of the referee on this topic.

2. Diagonals are introduced by Carroll when he expands his diagram to fit five
variables, and crosses are brought in for the sixth.

3. It introduces a relation-functor into the subject and the predicate of categorical prop-
ositions. Care has to be taken, of course, to avoid ambiguity in the two occurrences
of the relation-functor.
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