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On Certain Lattices of Degrees

of Interpretability

PER LINDSTROM

1 Preliminaries All theories S, T, A, B, etc., considered in what follows are
primitive recursive (Craig’s theorem). 4, B, etc., are reflexive extensions of
Peano arithmetic P. We write S = X or X 1 §, where X is a set of sentences, to
mean that S |- ¢ for every ¢ € X. Thus S - T means that S is a subtheory of T.
S is an X-subtheory of T, Sy T, if S - ¢ implies T ¢ forevery pe X. S<T
will be used to indicate that S is (relatively) interpretable in 7. S < T iff
SKTELSand SETIffSST<S X1tk={neX: n<k} ThusA4 is reflexive
iff A = Congyy, for every n. A is essentially reflexive if every extension of 4 in
the language of A is reflexive. ¢ is ¢ if i =0 and ¢ if i = 1. Terminology and
notation not explained here are standard (cf. [1]).

All proofs below of the existence of interpretations are applications,
directly or indirectly, of the following basic result established by Feferman [1]:

Lemma 1 If P T and o(x) numerates Sin T, then S < T + Con,,.

This is proved by showing that the denumerable case of the Henkin complete-
ness proof can be formalized in P.
For any formula o(x), let 6*(x) be the formula

o(x) A Condyny<x -
This definition and the following lemma are again due to Feferman [1].
Lemma 2

(i) If P T and o(x) binumerates S in T and for every n, T = Cong,, then
o*(x) binumerates Sin T.
(ii) P F Conge.
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Proof: (i) is obvious. To prove (ii) we argue in P as follows: If Con,, then
Congx. So suppose 71Con,. Then there is a z such that 1Congxyx<;. Let zo be
the least such z. Then Cony(xax<z, and 6*(x) > 0(x) A x <z, Thus Cone+ in
this case too.

The following key lemma is all but stated explicitly in the work of
Feferman [1] and Orey [6]. It was resurrected and formulated explicitly by
Hiéjek [3].

Lemma 3 S <A iff A & Congy, for every n.

Proof: Suppose first § < A. Then for every n, there is an m such that
S} n<A | m. But then, by Theorem 6.4 of [1], P - Congy,, = Congyy,, whence
A 1= Congyy, since A4 is reflexive. This proves “only if”’. To prove “if”” suppose
A | Congyy, for all n. Let o(x) be any formula binumerating S in 4. Then, by
Lemma 2(i), 0*(x) binumerates S in 4. Hence, by Lemma 1 and Lemma 2(ii),
S<A.

One immediate consequence of Lemma 3 is the following (cf. [6]):
Lemma 4 (Orey’s compactness theorem) S<Aiff Stk <A forevery k.

If P+¢ <A and ¢ is 1Y, then A  ¢. Hence, by Lemma 3, we get
(cf. [2], [3], [4D):

Lemma5  A<BiffA-y0B.

A sentence ¢ is X-conservative over T if T+ ¢ 1x T. Thus, by Lemma 5,
A + ¢ < A iff ¢ is II{-conservative over A. In the following, I' is either £, or
%, and T is the dual of I". By an obvious modification of the proof of
Theorem 1 [5] (due to Guaspari [2]), we get

Lemma 6  Suppose P T and let X be any r.e. set. Then there is a T formula
n(x, y) such that for all k and ¢,

() ifkeX, then T+ ¢ - n(k, §)
(i) if k ¢ X, then n(k, ¢) is I-conservative over T + ¢.

A set X of sentences is said to be monoconsistent with T if T + ¢ is
consistent for every ¢ € X.

Lemma 7 Suppose P~ T and X is r.e. and monoconsistent with T. Then
there is a I' sentence ¢ ¢ X which is I'-conservative over T.

Pro_of: Let n(x,y) be as in Lemma 6 and let l[/_be such that P = § <«
n(Y, 0=0). If Y € X, then, by Lemma 6(i), T (¥, 0= 0), whence T 1,
which is impossible. Thus ¢ ¢ X. But then, by Lemma 6(ii), ¢ is as desired.

2 Degrees of interpretability Throughout the rest of this paper T is a
consistent primitive recursive essentially reflexive extension of P, e.g., P or ZF,
and A, B, etc., are extensions of T in the language of T. Thus A4, B, etc., are
essentially reflexive. Clearly = (mutual interpretability) is an equivalence
relation. Its equivalence classes {B: B=A} will be called degrees (of inter-
pretability) and will be written a, b, etc. d(4) is the degree of 4. Leta < b
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mean that A < B for A € a and B € b. Finally let D7 be the partially ordered set
of degrees thus defined.
We now define the operations | and 1 on theories as follows. Let

AT =T U {Congp: n e wi,
AlB={pvy:9peA&VehBi,
AtB=4T UBT.

Thus Th(4 | B) = Th(4) N Th(B), where Th(A) = {¢p: A I ¢}. The following
lemma is then an immediate consequence of Lemma 3.

Lemma 8

(i) ASBiff AT B Thus AT=A and A<Biff AT BT.
(i) A<B,CiffA<B|C
(iii) A, B<LCiffAtB<CiffAtB-C.

ForAdeaand Beb,letanNb=dA{B)and aUb =d(4 *t B). By
Lemma 8, N and U are well-defined, @ N & is the glb of @ and b, anda U b is
the lub of a and b. Thus we have proved part of the following (cf. [4]):

Theorem 1 D is a distributive lattice.
To prove distributivity it suffices, by Lemma 8, to verify that
ATy BrO)yAFEUTLBD) 1Al L ch.
But this follows at once from the next lemma whose proof is obvious.

Lemma 9
(i) For every k, there is an m such that

P = Cona,gytm = Congrr v Conpy .
(ii) For every m, there is a k such that

P = Cong v Congi > Conga, gytm -

In [8] §vejdar introduced the lattice V7 consisting of all degrees of the
form d(T + ¢). By Theorem 11 of [5] or Theorem 3 of [4], V= Dr.

Clearly Dr has a minimal element 0 = d(7) and a maximal element 1, the
common degree of all inconsistent theories. Suppose T is Z%sound and
a, b<1.Then 4 1 B, where A € a and B € b, is consistent and so a U b < 1.
However, if T is not £%sound, this is not necessarily true. In fact we have the
following (cf. [4]):

Theorem 2 T is not TV-sound iff there are degrees a; < I such that
agYa,=1(and agNa,=0).

To prove this we first prove the following simple but sometimes useful lemma
(ctf. [4]):

Lemma 10 If X is r.e. and monoconsistent with Q, then there is a true I1¢
sentence Y such that ¢, 1y ¢ X.
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Proof: Let R(k, m) be a primitive recursive relation such that X =
{k: 3mR(k, m)} and let p(x, y) be a PR binumeration of R(k, m). Let Y be such
that

0 Fy—Vz(o(§,2) > Fu<zp(1y, u).

It is then easily verified that y is as desired.

Lemma 11 Suppose X is r.e. and monoconsistent with P and let 0 be any
true 119 sentence. There are then 119 sentences 0; such that

(i) PF6,v 0,
(i) PF0,00,~6
(i) 6/ ¢ X, /=0, 1

Proof: We may assume that if ¢ € X and P ¢ = {, then ¥ € X. By Lemma 10,
there is a true I1{ sentence ¢ ¢ X. Thus, if necessary replacing 8 by ¥ A 0, we
may assume that 6 ¢ X. Let 0 be Vy y(»), where y(») is PR. Next let §,(x) and
61(x) be the formulas

Vz(y(z) = Ju < zPrfp(x, u)),
Vz(Prfo(x, z) = 3u <z 1y(u)).

Then

(1) P 8y0x)v 8,(x),
(2) Pl 8gx)nd,(x)—0.

Let X; = {¢: §; ((b’) € X}. Suppose Q I-1¢. Then, since P = Cong, P = 8,(¢) ~ 6,

whence 84(¢) ¢ X, whence ¢ ¢ X,,. Moreover, 0 being true, P =18 ,(74), whence
¢ ¢ X,. Thus Xy U X, is monoconsistent with Q. But then, by Lemma 10, there
is a sentence ¥ such that ' ¢ Xo U X, i = 0,1. Let 6; be §;(7¥). Then 6; ¢ X
and (i) and (ii) follow at once from (1) and (2). Finally, by (i), 16; ¢ X.

Proof of Theorem 2: Suppose T is not £9-sound and let 6 be a true I19 sentence
such that 7 F 0. Let 6; be as in Lemma 11 with X = Th(T) and let a; =
d(T + 0;). Then ¢; <1 and gy N a; = 0. By Lemma 5 and Lemma 11(ii),
(T+60,)* (T+6,) 0. Since T "0, it follows that ag U a, = 1.

By Theorem 2, if T is ¢-sound, then no degree, except trivially 0 and 1,
has a complement, whereas if 7 is not Z{-sound, some do. The existence of
pseudocomplements will be discussed later (Theorem 7).

It is easily seen that no a < 1 is meet-irreducible. For suppose 4 € a and
let X ={¢: Q + ¢ < A}. Then X is r.e., since Q is finite, and monoconsistent
with Q. Thus, by Lemma 10, there is a ¢ such that ¢/ ¢ X. Let a; = d(4 + ¥').
Then a < a; and a4 N a, = a. The question arises if there are join-irreducible
degrees a ¢ {0, 1}. That the answer is negative follows from Theorem 3 (cf. [4]):

Theorem 3 Suppose b < 1 and ax £ a < b &£ by for k < n. Then there
are degrees c; such that a <c; <b and ay £ ¢; £ by fori=0,1and k <n,
coNcy=a,and coUcy =b.

Proof: Let apey = b, byey=a, A €a, B e b, Ay € ax, and By € bg. By Orey’s
compactness theorem, there are sentences Y such that A F Y and Y £ A4.



ON CERTAIN LATTICES 131

Moreover, by Lemma 3, there is an m such that By I Cong,,,. Let B(x) be a PR
binumeration of B and set

X={¢p: ypy <A+ 1¢pforsomek<n+ 1} U
{¢: By = ¢ v Cong,,, forsome k <n+ 1} .

Then X is r.e. and monoconsistent with P. Hence, by Lemma 11, there are IT{
sentences 0; such that

() PEO,vE,,
(2) PlE6,n6,~ Cong,
(3 6/éX ij=0,1

Let d; = d(A + 0;). Then a < d; and a; £ d;, since 10; ¢ X. Also, by (1),
doNdy=a.By(2)and Lemmas | and 5,d,Ud; = b. Now set ¢; =d; Nb. Then
a<c; <b. Also a; ¥ ¢; and so, in particular, ¢; < b. Suppose ¢; < bi. Then
Bl (A +0;) < Bg. But 8; v Congyy, is I19 and provable in B | (4 + ;). Hence,
by Lemma 5, By |- 6; v Cong,,, contradicting (3). Thus ¢; € by, whence a < ¢;.
Clearly ¢4 N ¢, = a. Finally, by distributivity, coUc;=b N (daUd,)=b.

Let

COMPL, j ={c: thereisad such thatc Nd=agand c Ud =5} .

As is well-known, since Dr is distributive, to each ¢ € COMPL, , there is a
unique c* € COMPL, , such that c N¢c* =g and ¢ U c* = b. In fact

BAgp =(COMPL, p, N, U, *)
is a Boolean algebra.

Corollary 1 If a <b <1, then BA,  is a denumerable atomless Boolean
algebra. Thus if ¢ <d <1, then BA, p and BA, 4 are isomorphic.

Proof: We need only show that BA, p is atomless. Suppose ¢ e COMPL, 5 and
a <c. Then, by Theorem 3, there is a d € COMPL, p such that ¢ £d & c*. Let
e=cNd. . Thenee COMPL, , anda<e<c.

Let [a,b] ={c:a<c<b}, [a, b) ={c:a<c<b}, and let (g, b] and (a, b)
be defined in the obvious way. It is now natural to ask if COMPL, p = [a, D]
provided that a <b < 1. We are going to show that the answer is negative. We
define the relations <<; and <<, as follows: a <<; b iff a <b and for every c,
ifaUc>b, then ¢ 2 b; a <<, b iff a < b and for every c, if b N ¢ <aq, then
c<a.

Theorem 4

() If 0<a<Xag, k <n, then there is a b such that 0 <b <<; a and b £ ay for
k<n.
(i) If ax La <1, k<n, then there is a b such that a <<, b < 1 and ax ¥ b for
k<n.

Part (ii) of the theorem is proved in [4].

Proof of (i): Let A e a and Ay € ag. By Lemma 5, there is a I19 sentence 6 such
that A 0 and A 0. Let X = U {Th(Ag +116): k <n}. Then X is r.e. and
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monoconsistent with 7+ —10. Hence, by Lemma 7, there is a II? sentence ¢ ¢ X
such that ¢ is £%conservative over T+ 110. Let B=T+ Yy v § and b = d(B).
Then 0 < b ¥ a; and b < a. Suppose b U c =a. Let Ce c. Then, by Lemma 53,
there is an m such that T + ¢ + Concyy, b 60, whence T+ 10 +  F1Concim,
whence, by the choice of ¢, T + 710 F 1Concyy,, whence C = 6. Thusc = b
andsoc=cUb >a.

From Lemmas 3 and 9 we get at once the following:

Lemma 12 AV B<Ciff forevery n, A < C+1Congy,.
Our next lemma is an immediate consequence of Lemma 5.
Lemma 13 IfA<Band ois 29 then A+0<B+o.

If ¢ is 29, let a[o] be the degree of 4 + o, where A € a. By Lemma 13,
alo] is well-defined. Let a[Z9] = U {alo]: 0 is Z9.

Lemma 14 The following conditions are equivalent:

(i) Forevery c,if b Nc<a, thenc <a.
(ii) a[Z9 N [b, I)=¢

Proof: Suppose (i) holds. Let o be a £9 sentence such that b <a[c]. Let A ea
and B e b. Then B | (4 +10) < A. But then, by (i), 4 + 16 < A. But 10 is I1%.
Hence A 0 and so a[o] = 1.

Next, suppose (ii) holds. Let ¢ be such that b N ¢ <a. Let 4 € a, etc.
Then, by Lemma 12, B < A + 1Concyy,. But 1Concyy, is 9. Hence, by (ii),
A | Concyp,. But this holds for every m and so ¢ <a.

Proof of Theorem 4(ii): Let A € a and Ay € ai. By Orey’s compactness theorem,
there are sentences Yy such that Ay Feyr KA. Let X = {¢: ¢y < A + ¢ for
some k < n}. Then X is r.e. and monoconsistent with 4. But then, by Lemma 7,
there is a X9 sentence o ¢ X such that ¢ is I1%-conservative over A. Let
B=A+10 and b =d(B). Then a; b < 1. Suppose now ¢ is Z?and b <a[s].
Then 4 + ¢ F 110, whence 4 + 0 F 1¢, whence 4 |9, ie., al¢] = 1. Now
apply Lemma 14,

We write a <<* b to mean that there is a I1? sentence 6 such that B -6
and A + 10 < A, where A € a and B € b. The above proof of Theorem 4(ii)
yields a degree b such that ¢ <<* b. It is also easily shown that ¢ <<* b implies
a <<, b. This leads to the question of whether or not the converse is true. This
is answered negatively in the following:

Corollary 2 For every a < 1, there is a b such that a <<, b but not a <<* b,

Proof: LetA ea X =1{¢: a <, d(4 + ¢)}, and Y = {¢: a <<* d(4 + ¢)}. By
Lemma 3, {¢: A + ¢ < B} is 9. Hence, by Lemma 14, X is IIJ. But, by
Corollary 3 of [5], Y is a complete =9 set and so is not I13. Finally, as mentioned
above, Y C X. It followsthat X € Y. Let y ¢ X — Y and let b =d(A4 + ). Then
b is as desired.

It is of some interest to note that if A is consistent and o(x) is a PR
binumeration of A4, then d(4) <<* d(P + Con,). This follows from Lemma 1
and the fact, proved by Feferman [1], that A + 7Con, < 4.

Theorem 4 can be relativized as follows.
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Corollary 3

(i) If a < b, then there is a ¢ such that a < ¢ < b and for every d 2 a, if
cUd=b, thend=b
(i) If a < b, then there is a ¢ such that a < ¢ < b and for every d < b, if
cNd<a, thend <a.

Proof: (i) By Theorem 4(i), there is an e £ a such that e <<; b. Letc =e Ua.
Ifd=2aandd Uc=b,thene UaUd=b, whence e Ud = b, whence d = b.
The proof of (ii) is similar.

Corollary 3 can be applied to obtain information on COMPL, j as follows.

Corollary 4 Suppose a < c <d < b. Then there are cy, dysuch that ¢ <cy<
do<dand COMPL, » N ((c, col U [dg, d)) = ¢.

Proof: First note that
(1) COMPL,p N[c,d] € COMPL, 4.

By Corollary 3(i), there is a ¢, such that c <c¢;<d andifc<eandc, Ue=d,
then e =2 d. By Corollary 3(ii), there is a d; such that ¢ < d, < dandife<d
and e Nd; <c, thene <c. Let ¢y =c;Nd;anddy=c; Ud;. Then, by (1), ¢y
and d are as desired.

Let G be a set of degrees. Then c is isolated from G in (a, b) if ¢ € (a, b)
and to any a,, by such that a <ay<c <by < b, there are a,;, b, such that
ay<Sa;<c<b;<bgand GN [a,, b;] =¢

Corollary 5 If ¢ € [a,b] — COMPL, p, then c is isolated from COMPL,
in (a, b).

Proof: Let ¢ be as assumed and suppose a < ay, < ¢ < by <b. By Corollary 4,
there is an a; such that ¢y <a; <c and COMPL, ;, N [a;, c] = $. By Theorem 3,
there are ¢;, i = 0, 1, such that ¢ < ¢; < by and ¢y, N ¢y = c. It suffices to show
that COMPL, , N [a,, c;] = ¢ fori=0ori=1. Suppose not and letd;, i =0, 1,
be counterexamples. Then dy N dy, € COMPL,, N0 [a,,c], contrary to the
choice of a;.

Theorem 4(i) suggests the problem if to any a < 1, there is a b such that
a <<;j b < 1. The dual of this is obviously false. We show that the answer is
negative.

Theorem 5 There is a degree a < 1 such that if a < b < 1, then thereisa
¢ <b such thataUc =b.

Proof: 1If T is not Z9-sound, this is obvious, by Theorem 2. So suppose T is
>%sound. Let 7(x) be a PR binumeration of T and let a = d(T + Con,). Then
a < 1. Suppose now a < b < 1. Let B(x) be a PR binumeration of a theory of
degree b. Next let ¢ be such that

P = ¢ <= Vz(Prf,(¢, z) ~> Ju < zPrf(10= 0, u)) .
Finally let ¢ be the sentence
Vz(Prfe(10=0,z) > du < ZPrf(p, u)) .
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Then, by standard arguments,

(1) THe,
(2) PFovg,
(3) PE¢nrg—>Cong.

Clearly P = 1¢ = Pr,(¢). Since 11¢ is T9, it follows, by Corollary 5.5 of [1],
that P ¢ = Pr.(1¢). Thus

(4) PtECon,~¢.

Let d = d(T + $). Then, since ¢ and Con, are II9, it follows from (3), (4), and
Lemma 1 that a U d = b. Suppose a < d. Then T + ¢ = Con,. Hence, by (2)
and (4), T I ¢, contradicting (1). Thus a £ d. Now let c =d N'b. Then ¢ < b.
FinallyaUc=(a Ud)N(aVUb)=5s.

Let G\l 1G), where G is a set of degrees, be the supremum (infimum)
of G, if it exists. Somewhat surprisingly the following infinitary distributive
laws hold.

Theorem 6

G If UGexzsts then UGﬁb U{aﬂb aeGl.
(ii) IfnGexzsts then nGUb n faUb:ae Gl

To prove (ii) we need the following:

Lemma 15 A Y B = C iff for every (X9) sentence 6 and every m, if
AT +Concyn 159 T + 6, then B =10.

Proof: Suppose first 4 + B > C Let 6 and m be such that A7 + 1Concyp =159
T+ 6. There is a k such that AT + Congy b Concyy. It follows that T+ 6 l—
“Conpgy,, whence B F 6. This proves “only if”. To prove “if” suppose
A 1 B # C. Then there is an m such that for every k, AT + Congy I+ Concim
But then, by Theorem 5 of [5], there is a X9 sentence 6 such that AT +
Con ey, —120 T+0and T+ 0 Y 1Congy for every k. Since 110 is 119, it follows
that B I+ 16 and so the proof is complete.

Proof of Theorem 6: (i) Let ¢ = U G. It suffices to show that for every d, if
aNb<dforeveryae G,thencNb<d.LetBeb,etc. If 4| B<D for every
A with d(A) € G, then, by Lemma 12, 4 <D + 1Cong;, for every such A and
every n. But then for every n, C < D + 1Congy;,. Hence, again by Lemma 12,
Cl{B<D.
(ii) Letc= ﬂ G. It suffices to show that if d <a U b forae G, thend <c U b.
Again let B e b, etc. Suppose D <A 1 B for every A such that d(4) € G. Then,
by Lemma 15, for all such A, every m, and every =9 sentence 6, if BT +
‘ICon Dt 1 0 T + 0, then A 6. But then for every m and every Z° sentence
6, 1f BT + -|Conmm =50 T + 6, then C I~ 116. Hence, again by Lemma 15,
<C?"B
The following corollaries are immediate.

Corollary 6

G) ird=Ulb: b na<c, thend na<c
Gi) Ifd=(tb:bUa>cl, thend Ua>c.
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Corollary 7

() Ifakc, then thereisad < I such thatifa N b <c, then b <d.
(ii) If c K a, then thereisad > 0 such that ifaU b =c, then b =2 d.

By (i) of our next result, to every ¢ < 1, there is an ¢ > ¢ which has no
pseudocomplement relative to c.

Theorem 7

(i) If ¢ <1, then there is an a > c such that {b: b N a < c} has no supremum.
(ii) If 0 <c <1 and there is a 119 sentence 6 such that ¢ = d(T + 0), then there
is a degree a < c such that {b: b U a = ¢} has no infimum.

The proof of Theorem 7 is deferred to the end of the paper. All examples,
known so far, of degrees a;, ¢; such that U fb:bNag<coland | Itb: b U
a, = ¢y} exist can be obtained in a straightforward manner from Lemma 14 and
the proof of Theorem 4(i).

Let A[X] ={d(4 + ¢): ¢ € X} and a[X] = U{A[X]: Aea}. (ForX=2¢
this definition of a[X] is equivalent to the one given earlier.) By the proof of
Theorem 11 of [5], A[Z9] = A[I13] = {d(B): B - A} and so a[Z9] = a[1?] =
[a, 1]. Moreover, by Lemma 13, a[Z9] = A[Z?] for 4 € a and, by Theorem 11
of [5],A[Z9] ={d(4 U X): X r.e. and CZ9}.

If A is Z%-sound and b < 1, then thereisac e A[I19] such that b <c < 1
(cf. also Corollary 14 below). By contrast we have the following:

Corollary 8 To every b > a, there is a c € a[Z9] — {1} such that a[Z9] N
[bUc 1)=¢.

Proof: Let A € a and B € b. There is a II? sentence 0 such that B - 0 and
A0 Let C=A+ 0 and ¢ = d(C). Now let d be any degree such that
(bUc)Nd<a Then b Nd < c. Hence, by Lemma 12, d <c and so d =
(b Uc)Nd<a. Nowapply Lemma 14.

Corollary 9 If a < b, then there is a ¢ such that a < ¢ < b and for every
d<aandevery eed[ZY], ifc<e, thenb <e.

Proof: Let ¢ be as in Corollary 3(ii). Suppose d < a and ¢ <d[c], where ¢ is
20 Let f=5b NdD + —10), where D e d. Then f < b and f Nc <d[o] N
dlD+0)<d<a.Hence f<a<cand sof=fNc<d. Thus, by Lemma 12,
D + 10 < D + 1Congy,, whence, 116 being I1$, D + ¢ |~ Cong,,. But this holds
for every n and so b <d[o].

Corollary 10 Ifc e (a, b) —alZ9], then c is isolated from a[Z9] in (a, b).

The proof of this is the same as that of Corollary 5 except that Corollary 4
is replaced by Corollary 9.

Corollary 9 suggests the question if to any @ < 1, there is a » > a such that
a[Z91 N (a, b] = . The following result answers this in the negative.

Theorem 8 If Aea <b £ by for k <n, then there is a degree c € A[I19] N
A[Z9] N (a, b] such that ¢ K by for k <n.

Proof: We may assume that a < by. Let B € b, By € by, and B,,; = A. Next let
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X = U {ThBy): k <n + 1}. By Lemma 6, there is a PR formula n(x, z) such
that

(1) if¢eX, then AT +¢ F3zn(4, 2),
(2) if ¢ ¢ X, then 3zn(9, z) is I1{-conservative over AT + ¢.

There is a PR formula () such that B = Vud(«) and By I Vub(u). Let 6 be
such that

Pt @ <= Yu(dw)~> 3z <un(@, z)) .
Finally let x be the sentence
Az(n(0, 2) A Yu < z8(u)) .
Then

(3) PhFx<«—3zn,2)10,
4 P+0+13zn(6,z) F Yudw).

We now show that
(5) 6¢X

Suppose 6 € X and let k be such that By = 6. Then, by (1), AT+ 0 F3z1(9, 2).
But then, by (4) and since A7 - By, By b Yud(u), contrary to hypothesis.

Since 0 is 19, (5) implies that A < A + 60 £ Bx. By (3),A+60 1 A4+ x.
Since x is 9, we have 4 + x < AT + x. By (5) and (2), 3zn(8, z) is 1%-conserva-
tive over AT + 0. Hence, by (3), AT + x < AT + 6. Since AT +6 4 A + 6 and
AT+ 6 4 B, it now follows that A + x =A4 + 0 <B. Letc =d(4 + x) = d(4 +0).
Then ¢ is as desired.

By the proof of Theorem 4(ii), to every a < 1, there is a » <1 such that
alZ91 N [b, 1) = ¢. Nevertheless we have the following

Corollary 11 If a < b, then there are a, € alZ9] such that for every n,
a, < ay+y, and U {a,: newt=>b.

Proof: Let c,, ne w, be all degrees Zb. Let ay = a. Now suppose a, has been
defined and a, <b. Since b ¥L ¢,, there is a degree d £ ¢, such thata, <d <b.
By Theorem 8, there is an a,4, € a,[Z?] such that a, <a,+, <d and a,+; £ ¢p.
It follows that a,4; € a[Z9] and a,+; < b. Finally it is clear that U {a,:
newi=b.

Consider a{Z9] as a substructure of Dr. It is a distributive lattice with
meet N and join U. Clearly ap N a,; =ayNa,. To find aq U a4, note that if ¢ and
o; are 29and A + 0; <A + 9, i=0,1, then A + 05 Ao, <A + 0. Thus if
a; =d(A + 0;), then ay U a; = d(A + 0 A 0,). But then it is easily verified that
b e a[Z9] has a complement in a[ Z?] iff b € a[I19]. Thus, from Theorem 8, we
get the following corollary showing that the isomorphism type of D7 = a[Z{] N
a[119] is independent of a and T provided that a < 1.

Corollary 12 Ifa<l, then D”T is a denumerable atomless Boolean algebra
and for every b >a, b = U fc<b:c eD”T}.

From (ii) of the following result, an improvement of Theorem 14 of [4]



ON CERTAIN LATTICES 137

and Corollary 4 of [5], it follows that if @ < 1, then D% is a proper subset of
alZ9].

Theorem 9

@) If d(A) < b < ¢, then there is a degree which is isolated from A[IIS]
in (b, ©).
(ii) If a < b, then there is a degree c € a[X?] which is isolated from a[Il]
in (a, b).

To prove this we need the following rather straightforward strengthening
of Lemma 10 (cf. [4]).

Lemma 16 If X is r.e. and monoconsistent with Q, then there is a 119
formula n(x) such that for every n and every fe "2, V n(k)®: k<n}é¢X

Proof of Theorem 9: We prove (ii). The proof of (i) is similar but simpler. Let
A eaand B e b. By Theorem 8, there is a £ sentence x such that 4 < A +
x < B. By Orey’s compactness theorem, there is a p such that Q 4 A4 | p and
Abtp+x¥£A By Lemma 16 applied totheset{¢g: A tp+xv o <A+ xv i,
there is a 9 formula §(x) such that:

() Atp+xvdmLAUixv () n<mb

Let C=A4 Uixv 8(n): ne w}andc=d(C). Then c € (a, b) and, by Theorem 11
of [5],cealZ9].

To show that ¢ is isolated from a[I19] in (g, b), suppose a < ¢y < ¢ <
¢(<b). Let C; € ¢; and let g be such that C t ¢ £ Cyand C; t ¢ £ C. Let y,,, be

the sentence /\ {x v 8(n): n <m} and set

X=1{p:Ctg<(C{(T+19)1Cy,
Y={¢: (C; 1) L (Q+¢)< T,
Z={¢: Im((A tp+xvE(m) I (Q+9)<A+ Yy +9)

By (1), X U Y U Z is r.e. and monoconsistent with Q. Thus, by Lemma 10,
there is a X9 sentence Y such that Y, 1y ¢ X U YU Z. Letdy=(c Nd(T +
AY)) U cg and dy = ¢y Nd(C + ¢). Clearly ¢qg < dg < ¢ < d,; < ¢y. Moreover
cLdgy, since Y ¢ X,and d, K¢, since Y ¢ Y. Thus dy <c <d,.

It remains to show that a[I19] N [d,, d,]1 = $. It suffices to prove that:

(2) ifd'ea,0isIf,andA’'+0<C+ y,thenC | (T+1y) K4 +6.

Suppose (2) is false. Then there is an m such that 4 + ,, + ¥ 6. Since
A'=A4 and Y, and ¢ are T9, it follows that 4"+ Y, + Y =A + Y, + ¥ and so
A+ Y, + Y0 Hence A +0 <A+ Y, +y,whence C{ (T+1W)<4+
Um t+ Y. But this is impossible, since 71y ¢ Z. This proves (2) and so concludes
the proof.

Combining Corollary 9 and Theorem 9 we get

Corollary 13 If a < b, then there are ¢, d such that a <c <d < b and
@M1 Va2 N [c,d] =¢.

Proof: By Theorem 9(ii), there are a', ' such that a < ¢ <b' < b and
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alll91 N [a',b'] = ¢. By Corollary 9, there is a ¢ such that ' <c¢ <5’ and
alZ9 N ¢, b") = . Now let d be such that ¢ < d < b'. Then c and d are as
desired.

Next we show that Theorem 9(i) cannot be improved by replacing A [119]
by a[I19].

Corollary 14 If a < b < 1, then there is a ¢ such that b < ¢ < I and
[c, 1] CalMg].

Proof: Let Aea and B eb. Then AT 4 B. By Lemma 7, there is a 9 sentence
g such that ¢ is I1%-conservative over AT and B WF 0. Let ¢ = d(B + —10). Then
b<c<1.Suppose nowd=c and let Ded. Let A’ = AT U{~0 > ¢: ¢ € D}.
Then A’ € a. Moreover A’ + 16 1 AT + 76 U D 4 D. Hence d = d(4' + 10)
and so d € a[I1?].

Let us say that the infimum nG is trivial if there is a finite set H C G
such that n G= ﬂ H

Theorem 10 Suppose A is consistent.

(i) There is a primitive recursive set X of 9 sentences such that d(A) is the
nontrivial infimum of A[X].

(ii) There is a primitive recursive set Y of Z9sentences such that A[Y] has no
infimum.

Proof: (i) By Corollary 2, there is a B such that d(4) <<, d(B) but not
d(A) <<* d(B). Let X = {n1Conpg,: n € w}. Suppose C < A + —1Cong,;, for

every n. Then C{ B< A4 and so C< A. Thusd(4) = nA[X]. This infimum is
nontrivial, since otherwise there would exist an m such that 4 + 1Congy, < A4,
contradicting the fact that not d(4) <<* d(B).

To prove Theorem 10(ii) we need:

Lemma 17 If Z is an r.e. set of 11§ sentences, then A[Z] does not have a
nontrivial infimum.

Proof: We may assume that
(1) thereisno k such that4 +y VZ I k for every Y € Z,

since otherwise A[Z] would have a trivial infimum. To obtain the desired
conclusion it is sufficient (and necessary) to show that X ={p e [1: A+ ¢y F ¢
for every ¢ € Z} is not r.e. We may assume that Z is primitive recursive. Let
¢(x) be a PR binumeration of Z. Next let p(x, ) be a PR binumeration of a
relation R(k, m) such that Y = {k: VmR(k, m)} is not r.e. Finally let n(x) be the
formula

Vz(p(x, z) = Ju < z({(u) A Mtrue(w)) ,
where IT{-true(x) is a partial truth definition for I1? sentences. If k € Y, then

clearly n(l—c) € X. Suppose k ¢ Y. Let m be such that not R(k, m). Then

A+ k) F VZ } m, whence, by (1), n(k) ¢ X. Thus Y = {k: n(k) € X}and so
Xisnotr.e.
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Proof of Theorem 10(ii): By the proof of Theorem 8, there are primitive
recursive functions g(n) and h(n) such that if ¢ is [19and 4 < A + ¢, then g(¢)
is 29, h(¢) is 1%, and 4 < A + g(¢) = A + h(¢p) <A + ¢. We now define o, and
Yy, as follows. Let ¢ be any II{ sentence such that 4 <A + Y, Next suppose
¥, has been defined and 4 < A + y,. Let 6 be a 19 Rosser sentence for
A+ W, Then A <A+ yY,v0 <A+ Y, Leto, =gy, v 0)and Y, =
h(ypv 0). ThenA+ Yy, >A+0,=2A+ Y > A. Now let Y ={0,: ne wl.
Then, by Lemma 17, Y is as desired.

In connection with this proof it may be remarked that if A is consistent,
then there is no partial recursive function g(n) such that if o is Z¢ and
A < A + g, then g(o) is a I1{ sentence such that 4 < A4 + g(6) < A + ¢. For
assuming the contrary we would have for every £ sentence 0: 4 + 0 < 4 iff
if g(0) is a I19 sentence and A + ¢ I g(0), then A - g(o). But this is impossible,
since, by Theorem 12 of [5], 29N {¢: 4 + ¢ < 4} is not Z9.

Finally we are ready to give the

Proof of Theorem 7: (i) Let C € ¢. By Theorem 10(ii), there is a primitive
recursive set ¥ = {0,: n € w} of T? sentences such that C[Y] has no infimum.
Let A=CUf{n0,: ne w)anda=d(A). ThenB | A< Ciff B<C+ g, for
every n. But then, by Corollary 6(i), a supremum of {6: b Na <X c} would be an
infimum of C[Y].

(ii) Let B =T+ 0. Then B is consistent but not Z%-sound. We now effectively
define I19 sentences y/,, such that

(1) Bg =B U {y,,: m <k} is consistent,
(2)  Bi+ 7‘12‘1’ By.

Suppose Y, has been defined for m < k. Let f¢(x) be a PR binumeration of By.
Let 8(x, y) be the formula S (x) A Vz < x71Prfg (, z). Finally let Y be such
that P |y < Consx, 7yy)- Then, by a standard argument, (1) holds with k&
replaced by k+ 1 and 8(x, 1Y) is a PR binumeration of Bj. Since By is not
%sound, it follows, by a result of Smoryfiski [7] (Application 5, p. 197) that
Yy is not Z%-conservative over By and so (2) holds.

Now let X = {Y,,: me w} and a = d(T' U X) N ¢. To show that a is as
desired we first observe that if {b: b Ua = ¢} has an infimum, then so does
{d(T+y): Y isII§and T U X + ¢y I 6}. But the latter set has no infimum: If
TUX+ y 0, then for some k, B U X I k - ¢y. Now, by (2), there is a =9
sentence o such that BU X -0 and B U X 1 k # ¢. It follows that T U X +
70 6 and T+ 10 I+ . Now apply Lemma 17. Thus a is as claimed and the
proof is complete.

Theorem 7(ii) is a partial dual of Theorem 7(i). The problem of whether
or not the full dual is true remains unsolved.

One major open problem, which will certainly have occurred to the reader,
is this: If S is Z%sound but T is not, then, by Theorem 2, Dg and Dt are not
isomorphic. But supposing that S and T are both Z%sound (true), does it
follow that Dg and Dt are isomorphic?
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