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A Pair of Nonisomorphic s ^ Models of

Power λ for λ Singular with λω = λ

SAHARON SHELAH*

Let L^χ denote the infϊnitary logic that is formed by allowing arbitrary
conjunctions of formulas and either existential or universal quantifications
over sets of fewer than λ variables. The formulas are taken to be those having
fewer than λ free variables. It is easy to see that any structure of cardinality
less than λ is characterized up to isomorphism by a sentence of L^^. Scott [5]
showed that if M =ooJV and llMll = llΛΓll = No> then M = N, where = > o ω

denotes elementary equivalence in Looω. Chang [ 1 ] generalized this by showing
that if cf λ = ω then M =ooλ N, \\M II = IliVll = λ, still implies M = N. However,
Morley, gave an early unpublished example which showed that for any regular
λ > ω, there are structures M,N such that \\M\\ = \\N\\ = λ, M =ooχ N, but
M ψ N. His structures were trees of height λ, one with a branch of length λ and
the other without. The reader may wish to consult Dickmann [2], Nadel [3],
Nadel and Stavi [4], or Stavi [13] for more work in this direction.

The above results leave open the situation for singular λ, with cf λ > cυ.
The purpose of this paper is to show that if λω = λ, then there are structures
M,N with \\M\\ = \\N\\ = λ such that M Ξ ^ N but M ψ N. Under the GCH,
cf λ > ω, λ > ω, implies λω = λ, so, in this situation, the entire picture would
be known.

The reader may also be interested in consulting Shelah [8], [9], [11],
and [12], which deal with the question of the cardinality of \N/=:N Ξ ^ M ,
llΛίll = UNII = λi, or Shelah [6], Theorem 1, [7], Chapter XIII §1, and [10],
which are concerned with finding models of particular theories. In [12] our
main result is proved for many more λ of cofinality > N 0 (but for different
structures).
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Foundation.
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1 Recall the well-known back and forth property for L^x (cf., e.g., [2]).

Theorem 1.1 M ^^χ N iff there is a nonempty family F of partial isomor-
phisms from M to N such that

(i) (V/e F){MX C \M\)[\\X\\ < λ-» (3g e F)(fQg &XQdom g)]
(ii) (V/ e F){\fY C |N|)[| |yII < λ -* (3g e F){fQg & Y C range g)].

We say that a back and forth set as in the above theorem exemplifies

The examples to be constructed below will consist of pairs of trees of
height ω + 1. Specifically, we call a moάelM - <|Λf |, <^, Pfh<ω a n co-tree, if

(i) ( |M|, < M ) is a tree, i.e., < partially orders \M\ and for each* e |M|,
< ^ linearly orders the <-predecessors of x

(ii) for each / e ω + 1, P/^ is the set of nodes on the z t h level, and \M\ =

U P'M

(iii) there is a single minimal element called the root of the tree
(iv) if a Φ b e P% then there is some x e \M\ such that x <M a but not

x <M b, i.e., there is only one node above each branch of length ω.

First some basic definitions concerning these trees. In most cases we will
suppress the use of M as superscript or subscript except when we feel some
special emphasis is required.

Definition 1.2 Let M be an ω-tree. Then

(i) For a e \M\,M[a] = M t [b: b < a or a < b\.
(ii) Suppose a e Pχ\ then for / < /, a(j) denotes the unique predecessor of a in

Pj. We use P as shorthand for M Pn.
neω

(iii) A Ω\M\is said to be a closed subset of M if whenever a e A and M ί=
b < a, then b e A, and if whenever a e Pff and a{ί) e A for each / e ω, then
a e A.

(iv) We write N Qc M iff N is a submodel of M and \N\ is closed in M. We also
speak of A as being closed in B where A Q B £ \M\. The meaning of this
should be clear.

Given an ω-tree M and some A £ \M\ we may define the closure of A
in M9 denoted clM(A) as the smallest subset containing A and closed inM. This
is obtained by closing downward and adding all nodes a e Pω such that a(i) e A
for an unbounded set of/. The reader should convince himself of the following
two easy facts about closure.

Lemma 1.3 Suppose N QCM are ω-trees and A Q\N\. Then

(i) clN(A) = clM(A)
(ii) //\A ΠPM\<\ then \clM(A) ΠPM\ < λ.

Definition 1.4 Let 21 be a family of ω-trees. An ω-tree M is said to be
(λ,U)-full iff for every N e 21, a e |Λί|, b e \N\ on the same level, there are
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closed submodels Mt of M[a] for / < λ, such that for i <j < λ, |Λf, | Π |Λί/| =
{c:c<α!,.andΛf, = Λf[&].

Definition 1.5 Let 21 be a family of ω-trees. An co-tree Λί is a (X, 21)-model
iff for every 4̂ £ |Λ/| with \A\ < λ, there is some N Qc M, with A Q |N\ and Λ/"
isomorphic to a member of 2ί.

Roughly speaking (λ,2ί)-fullness tells you that above any point there are
many disjoint copies of corresponding parts of trees in 21, while being a (λ,2l)-
model guarantees that any subset can be expanded to a copy of something in
21 which sits nicely in M.

The above notions are important to us here because of the following

result.

Theorem 1.6 Let % be a family of co-trees. Suppose M and N are both
ω-trees which are (λ,2I)-/w// and {\,%)-models. Then M ^ ^ N.

Proof: Let G - \g:g is a partial isomorphism from M to N with dom(g) a
closed subset of M, ra(g) a closed subset of TV, and idom(g) Π PM\ < λ|. We
claim that G exemplifies M ^^χ N.

Clearly G is nonempty since it contains the function taking the root of
M to the root of N. Suppose g e G and A Q \M\, \A\ < λ. We show how to
extend g to h e G with A Q άom(h). The case for A Q \N\ is similar.

Let us assume for convenience that A is disjoint from dom(g). Consider
some a e A. Since dom(g) is closed in M, there must be some a' e dom(g)
which is the highest point in άom(g) below a. Clearly a1 is on some finite level.
Let Aa> = \x e A:xr = a'\. Since \Aa>\ < λ and M is an (2ί,λ)-model, there is
some closed submodel X(a') of M with^V Q \X(a')\ and X{a) is isomorphic to
some member of 21.

Now, since iV is (2ί,λ)-full, there are Λf, , / < λ, closed submodels of N[g^)]
such that for / Φ /, Nj Π Nj = \b:b < g(a)\ and each Ni is isomorphic to
X(a')[a') Since ra(g) ΠPNhas cardinality <λ, and theTV/ are closed downward,
there is some / < λ such that Nf Π ra(g) = {b:b <g(α')\. Denote some suchΛ^,
by Nα>. We wish to extend g to clM(Aα>) = clX(β^(Aα>). To do this simply use
the restriction to clM(Aα>) of some isomorphism from X(α')[α'] ontoiVfl'. Since
all nodes in Aα> are related only to those nodes in dom(g) below α' and since
their images are related only to those nodes in ra(g) below g(α') this mapping,
which we call gα>, will be a partial isomorphism. It is also easy to see that both
dom(gα') and ra(gα>) are closed in their respective co-trees.

Now, for α, b e A either gα> = gb' (if α = b') or dom(g f l0 Π dom(g^) =
dom(g), ra(gβ0 Π ra(g^0 = ra(g). In fact if we let h = | J gα> then h is seen to

αeA

be a partial isomorphism with dom(/z) closed in M and ra(/z) closed in N. This
last part follows since whenever αx < α2 <. . . are in dom(/z) then for some α,
αuα2, . . . are all in dom(g f l0 or αiy α2, . . . are already all in dom(g).

It only remains to show that |dom(/z) Π P M | < λ. However this follows
from Lemma 1.3(ii) since dom(Λ) Π PM Q d M ((dom(g) Π P M ) U i ) n ? M

(actually they are equal) and |(dom(g) Π P M ) U X| < λ by assumption.
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2 In this section we obtain an approximation to the main result of the paper
by using an extra hypothesis. The argument here is much less involved and
much of it can be applied again with the more intricate construction of the
next section.

Theorem 2.1 Suppose λ is a strong limit cardinal such that λω = λ. Then
there are ω-trees M and N of power λ such that M Ξ ^ N but M ¥N.

Our first task is to describe an appropriate collection 21 of ω-trees.

Definition 2.2 An ω-tree M is said to be canonical if \M\ is a set of
sequences of length < ω , v <M V iff v is an initial subsequence of η, and the kth

level P^ consists of sequences of length k.

For the purposes of this section we will take 21^ to be the family of all

submodels of the canonical model with universe ω+1a. and let 2ί = (J 2l« It is

clear that 21 contains an isomorphic copy of every ω-tree of power less than λ.
Since λ is a strong limit, if M e 21, then llΛf II < λ, and 1211 = λ.

Lemma 2.3 For every ω-tree M of power <ίλ there is an ω-tree M1 of
power < λ such that M Cc M' and M' is (λ, %)-full

Proof: First, for each node v of M add λ disjoint copies of each TV e 21 directly
above it to form a new co-tree M\. (Because 21 is so rich, this works in place of
the condition demanded in the definition of (λ, 2l)-full.) It is easy to see that
M Cc Mλ and \\MX\\ = λ. Iterating this procedure ω times will give the desired M'.

Lemma 2.4 Let M be an ω-tree. Then M is a (λ, %)-model

Proof: Suppose ACM, \A I < λ. The closure of A in M can have power at most
U l ω < (2 L 4 1 ) ω < λ. Let N be the ω-tree formed from the closure of A in M.
Then clearly N is isomorphic to some ω-tree in 21.

Theorem 2.1 will follow easily from the next lemma which works for any
collection 21 and requires only that λ ω = λ.

Lemma 2.5 Let M be an ω-tree of power λ. There is an ω-tree N of power
λ such that N is not isomorphic to a closed submodel ofM.

Proof of Theorem 2.1: By Lemma 2.3 there is a (λ,2l)-full ω-tree M of power
λ. By Lemma 2.5 there is an ω-tree N of power λ not isomorphic to a closed
submodel of M. By Lemma 2.3 there is N' of power λ such that N Cc Nf and
Λf' is (2l,λ)-full. Then, by Lemma 2.4 and Theorem 1.6, M ^ i V ' . However,
clearly M Ψ- Nr since otherwise M would have a closed submodel isomorphic
to TV.

Proof of Lemma 2.5: This follows from Shelah [6], VIII, 2.5, p. 440, but we
repeat it here.

The model N will be obtained from M by removing the points in M on the
ω t h level and adding new points on the ω t h level above branches of M that did
not have limit points. We also add a new root below the rooted M. Specifically,
let TV be the canonical model with universe ί( >} U $<<z0, . . ., an)\ n < ω, αz e Pf1,
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a n d a, <M^i f o r / <i<n}U {(aθ9 ...,an.. > π < ω : fl, e Pf1, aj <M^Ϊ f o r / < / < ω ,
and there is no a e P^ such that at <M a for / < ω\. Since λ ω = λ, llΛfll = λ.

Now suppose that / is an isomorphic embedding of TV into a closed sub-
model of M. It is obvious that ifxePf then/O) e Pf.

We define by induction on / < ω, β, e Pf such that for/ < / αz <Maj-
For aQ we take the root of M. Notice that (a0) e P^. For ax we take/«αo))

Then a1 e Pf1. In general, we let <zz + 1 =f((a0, . . . #/».
It follows inductively that a\ e Pf and that for / < ί, cίj <M di-
We now consider the branch {αz : / e ω}. We obtain the desired contradic-

tion by asking if there is some a e M above all the αz .
If there is no such a e M, then by definition (#/)/< ω e N. But then

/««/>/<ω) 6 ^ 5 a n d f((ai)i<ω) >Mf«aθ9 . . ., fl/» = ai+1 for each / e ω, a con-
tradiction.

If on the other hand there is some a e P^ such that at < a for all i < ω,
then, by definition, (α/>/<u, ^ N. But then a $ ra(/) and so ra(/) is not a closed
subset of M, again a contradiction.

Remark 2.6 From two models Mλ andM 2 as constructed above we can generate
2 λ nonisomorphic but Ξ ^ co-trees of power λ. The basic idea is as follows:
suppose A Cω> λ closed under initial segments but with no infinite increasing
sequences. If/: A -MO, 1} we define, N*A - A \J\r[^v : η e A, f(η) = /, v e \Mj\}.
It is easy to see that for any / G : A -> {0, 1!, Nf

A Ξ ^ Ng

G.
By choosing A carefully we could also arrange that for / Φ g, N^A Ψ Ng

A.
Rather than go into the necessary details here, we give a simpler construction in
the next section where we construct λ+ nonisomorphic models to begin with.

3 We now remove the assumption that λ is a strong limit cardinal and assume
only that λω = λ. If λ happens not to be a strong limit cardinal then the
construction of the previous section will produce an co-tree of cardinality
greater than λ. A new, more subtle construction is needed which will not force
up cardinalities. We will simultaneously construct the desired models along
with the collection 21, rather than specifying 21 in advance as we did previously.
In particular we will define by induction on a < λ+ canonical co-trees Ma as
follows:

IM0I={<0, . . ., 0> : ieω) .

i times

Mo is just a single branch. Next, having defined Mβ for each β < a we define Ma

by building it up from closed submodels. First we define for β < a.

\M%\ = {<>} U {«0, α, ft a0), . . ., <0, α, ft an)) : at e pfβ and

aι < aι+ι) U {«0, α, ft αo>, . . ., <0, α, ft an) . . .>:

aι e Pi β, ai < aι+1 and such that there i s n o f l e P ω ^

such that a\ < a for all / < co.)

The purpose of this step is to ensure nonisomorphism. We then let

Λία°=U MS9β .
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In the previous step and in what follows, the use of the 0, α, ft etc., is to
create distinct copies and make the models essentially disjoint.

Next, we define

\Mi+1\ = M £ u { τ P « / + l , α , f t τ ? , v \ k ) . . M + 1, α , ft η , v \ m > > :
ηeMl, β<a,l(η) = k- l,l(v)> k sndv e Mβ\

m = l(y) + 1 < ω or m = /(V) = ω) .

The purpose of this is to ensure (λ, 2ί)-fullness. Finally, we let

Ma=\J Mι

a
Kω

and
% = iMa:a<\\ .

Note that Mι

a is closed in Ma for each / < ω and M^β is closed in M%.

Lemma 3.1 For each a < λ+, \\Mj < (| a\ + Ko)*°. Hence, for a such that
λ < a < λ+, HΛίJI = λ, and for a < λ, lUlίJI < λ.

Proof: The first assertion is easily checked by induction on the stages of the
construction. The exponent results from the first step of the construction. The
second assertion follows since λω = λ and \\Mj\ is obviously at least led.

Remark 3.2 For M an ω-tree let M' denote the ω-tree formed by restricting
to PM, i.e., removing any nodes on the ω t h level. It is then easy to check that
M'u is a Σι definable function of a, or even that M'a is a primitive recursive set
function of a. The point is that the relation T = M'a is absolute for standard
models of a very weak part of ZF. Of course, this is not true of Ma since the
nodes on the ω t h level depend upon the set of all branches.

Theorem3.3 For λ<β<a<λ\ WM^^WMβ^λ^M^^^MβandM^^Mβ.

The above is an immediate consequence of Lemma 3.1, Theorem 1.6, and the
three lemmas to follow.

Lemma 3.4 For β < a < λ+, Ma Ψ Mβ.

Proof: We can show that Ma cannot even be embedded as a closed submodel of
Mβ just as in the proof of Lemma 2.5, where we now use the model M^β which
is built into Ma in the first inductive step.

Lemma 3.5 For a>\,Ma is (λ, %)-full

Proof: Let N e 2ί. Then N = Mβ for some β < λ < a. Let η e Pf* and v e P?. By
the construction of Λfα, we have η e \MιJ for some I e ω. Now, our construction
of M1*1 already embeds N[v] in M^1 and hence inM^ as a closed submodel. To
see that there are actually λ such closed submodels with pairwise intersection
ί V f 7 :7 ^ *! w e note that we actually put in a distinct copy of N[v]\{v t j : / < /!
for each y such that β < y < a.

The next lemma has the least obvious proof, since our construction did
not seem to explicitly arrange that the Λ/α's would be (λ, 2l)-models. However,
the construction has taken care of this indirectly.



A PAIR OF NONISOMORPHIC MODELS 103

Lemma 3.6 For a < λ+, Ma is a (λ, %)-model

Note that if Vμ < λ(μ*° < λ). Then the proof is easy. The proof of
Lemma 3.6 will be divided into several parts.

Proof of Lemma 3.6 (beginning): Let a < λ+, A C \Ma\, \A I < λ. We begin by
fixing some sufficiently small but nice universe which will help us find the
required closed submodel TV = Mβ, β<a with A C\N\. Specifically, let U be an
elementary submodel of (i/((2λ)+), e) with A U \A\ U {a\ C U and \\U\\ < λ.
Let / be the Mostowski collapsing isomorphism restricted to U and let U*
denote the transitive set (collapse) isomorphic to U. Using Remark 3.2 it is not
hard to see that for any β e \U\,f(Mβ) = Mf(β) and all the related properties are
preserved. In the following sublemma we concentrate on the ω t h level.

Sublemma 3.7 Suppose that for all / < ω, η [ i e Ma Π U. Let 77* =
(f(η r 0 : i < ω>. Then,

ηeP™« iff η*eP™fW .

Proof: Notice first that 77* is always a "branch" in Mf(ay The only question is
whether 77* is actually in Mf^y Of course, 77 need not be in U. The proof
proceeds by induction on a (i.e., we prove it for all ordinals < λ + which belong
to U).

First, for each i e ω let /z be the smallest / such that η { i e \MιJ. We
already know that 77 I" / e Mι

a iff 77* lie Mf^ so // applies as well to 77*. Notice
that // is nondecreasing in /. We consider three cases:

Case 1. {// : / e ω ! is unbounded in ω. Then by the construction 77 έ IΛ/J and
τ?*^lΛf/(α)l.

Case 2. ί// : / e ω ! has least upper bound / > 0. Then, for sufficiently large /,

ηtie \Mι

a

+1\ - \MιJ. Thus, η e \Ma\ iff for some unique η0 e Mι

a, β < α, v e P™β,

and suitable /,

r? = T70̂ <</+ ha,β,ηo,vli),(l+ 1, α, jS, η0, v \ i + 1) . . .) .

Now, by our induction hypothesis the above is true iff the analogous situation
holds for 77*, /(τ70), f(β), <f(U [ m), m e ω> and z, which is again equivalent by
the definition of Λ//(α) to 77* e Mf^y

Case 3. /z = 0 for all ί e ω. Then there is a unique β < a such that for all i e ω,
η ti e M% and 77 has the form «0, α, β, a0), <0, a, β, aλ), . . .>, where ax e pfβ

and aι < fl/+1. By our construction, 77 eMa iff in Mβ there is no x above all the #/.
Clearly f(at) e P?fV\ f(aι) < /(α / + 1), and r?* = « 0 , /(α), /(0), /(αo)>, <0, /(α),
/03), f(fl\ϊ> . . .) and 77* β Mf(a) iff in Mf(β) there is no 7 above all the /(α7). Now,
applying the induction hypothesis to the branch formed by thea\ mMβ finishes
the argument.

Proof of Lemma 3.6 (conclusion): Trivially A C \Ma\ Π U which is in turn a
subset of the closure oϊM'a Γ)UmMa (in the sense of the real world). Now, by
the sublemma, this last ω-tree is isomorphic to the closure of Mf(a) Π U* in
Mf(ay which is just the closure of Mf(a) in Mf(0ίy which isΛf/(α). Thus, we have
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A as a subset of a closed subset of Ma, viz. clMa(M^ Π £/), which is isomorphic
to a member of 21, viz., Mf(ay This concludes the proof.

Remark 3.8 Now, having produced λ+ pairwise =«,>, but nonisomorphic
ω-trees we indicate how to get 2 λ . Actually we only need to use λ from among
the λ+, say Λ//, / < λ. For each nonempty S C λ we define an ω-tree T$ which
consists of a root and above that root λ copies of each Nj for i e S. It is easy to
see that for nonempty S1 Φ S2 C λ, TSl =ooλ Ts2 but clearly TSχ Ψ TSr
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