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Vector Spaces and Binary Quantifiers

MICHAL KRYNICKI, ALISTAIR LACHLAN
and JOUKO VAANANEN

1 Introduction Caicedo [1] and others [3] have observed that monadic
quantifiers cannot count the number of classes of an equivalence relation. This
implies the existence of a binary quantifier which is not definable by monadic
quantifiers. The purpose of this paper is to show that binary quantifiers cannot
count the dimension of a vector space. Thus we have an example of a ternary
quantifier which is not definable by binary quantifiers.

The general form of a binary quantifier is

Ox1y1 - Xy Vn®1(x1,31) « - - u(Xn, Y.
An example of such a quantifier is (in addition to all monadic quantifiers) the

similarity quantifier:

SX1Y1%2Y201(X 1, ¥ 1)92(x2,¥2) < ¢1(-,*) and ¢(:,-)
are isomorphic as binary relations.

We let Z(Q) denote the extension of first-order logic by the quantifier Q.
Recall the definition of A(Z(Q)) from [2]. It is proved in [4] that A(Z(S)) is
equivalent to second-order logic. Even monadic quantifiers can have very
powerful A-extensions. Thus, simple syntax (such as Z(Q)) is no guarantee for
simple model theory.

2 Vector spaces—the main lemma Let K be an infinite field. We shall
consider vector spaces
v =V, +,-,0;K)

over K. Here + denotes addition of vectors, - denotes multiplication of vectors
by an element of the field, and O is the zero vector. Thus ¥ should be con-
sidered as a two-sorted structure. Let L denote the language associated with ¥
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consisting of symbols +, -, O for the vector operations, a constant symbol ¢ for
each ¢ € K, and symbols for the field operations. The linear type of an n-tuple
as, . . ., a, of elements of V is the set of linear equations

cix1t ... tepx,=0

satisfied by a,, . . .,a, (cy, ..., cne K).
Main Lemma Let ¥ and ¥' be two vector spaces over K of dimensions d
and d' respectively. Let a,, . . ., a, be an n-tuple from ¥ and a}, . . ., ay an

n-tuple from ' of the same linear type. Suppose

nt+2<d,d <IKl

Then there is a bijection f: V = V' such that (x, y, ay, . . ., ay) has the same
linear type in ¥ as (fx, fv, ay, . . .,ay) in V', whatever x, y € V.
Proof: Let H be the subspace of ¥ generated by ay, . . ., a, and H' the

respective subspace of %'. Let G be a subspace of ¥ such that % = H ® G and
G' a similar subspace of 7', Note that G and G’ have dimensions of at least 2,
since d, d' 2 n + 2. Let W be a maximal subset of G with respect to the

property
x#Fy &x,yeW={x, y}free.

Then every vector in G has the representation Aw for unique A € K and w € W.
Let W' be defined similarly in G'.
From d < |K| it follows that |Vl = | K| (recall that K is infinite). Similarly
[H| = 1G| = |K|. Clearly IW| = |K|. Thus |W| = |Kl. By symmetry, |W'| = [WI.
Now we shall define the mapping f. We let f be the identity on K. Let f
map W one-one onto W'. Asd and @' have the same linear type, we have

(H a)=(H'7")
and we can let f map H isomorphically onto H' such that f(g;) =a} (i=1,...,n).
Now if v € V, then v has a unique representation

v=Aw+th,

where A € K, w e W, and & € H, and we can define

f@)=N(w)+ f(h).
This clearly makes f onto. To prove the claim concerning linear type, let

pyxyt paXyt pazyt .t Upepzy, = 0
be an equation satisfied by (b, b,, ay, . . .,a,) in V. Let
bi =Nw; t hy, i=1,2).
Thus
BN Wy T i Nowo + g by pphy  pgay .t ppega, = 0.

As G N H = {0}, we must have

By wy F pphow, = 0.
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By the very definition of W, either u;A; = uyA, = 0 or w; = w, (and p A, +
oA, = 0). We also have
Myhy+ pahy t psagt .. F Upaaan = 0.
Now in any case
X f(wy) + oo f(wy) = 0

and

Hf(hy) + uaf(hy) + uaay + ..+ faaay = 0,
whence

Hf(by) + paf(by) + paay + ...+ Hyaa@y = 0,
as desired. The converse is entirely similar.
3 Equivalence of vector spaces We show that the dimension of vector

spaces cannot be distinguished in certain logics.
Let Q be a binary quantifier, that is, a quantifier of type

(*) Ox1Y1 -+ XpYnd1(xq, ¥y, Z) ... $ulXn, Vn. 2).

Let Z oo, dengte the infinitary language over the language L defined in
Section 2. If ¢(z) is a formula of type (*), where each ¢;(x;, y;, Z) is a quantifier-
free formula of Z ,, and T a linear type of m-tuples, let

1x(6(2), T)

be the true propositional symbol, if the statement (**) below holds, and the
falsity symbol otherwise:

(**) There is a vector space % over K of dimensiond, m+ 2 <d<IK|l Z=
(24, . - ., Zm)) Which satisfies ¢(a) for some m-tuple @ of linear type T.

Let Z oo, (Bin) be the extension of £, by all binary generalized
quantifiers.

Elimination Lemma Suppose ¢(x) is in 2., (Bin) and o is a cardinal
exceeding the number of free variables in any subformula of ¢(x). Then there is
a quantifier free ¢*(x) in Z o, such that

Vi(p(x) <= ¢*(x))
holds in any vector space over K of dimension d, a+ 1 <d < |Kl.

Proof: The proof proceeds by induction on the length of ¢(x). To prove the
quantifier step, consider a formula ¢(x) of type (*) above. Let &~ be the set of
all linear types of m-tuples. If T € &, let Pp(z) be the conjunction of all
equations

(+) cyzyt+...tepzy=0
which belong to T as well as of all

cizit .. . tepzn#0
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such that (+) is not in 7. Finally, let
0*@r= V_(Pr@) amk9G), T,
€

To prove the claimed equivalence of #(z) and ¢*(z), let 7' be a vector space
over K of dimension >a. For a start, suppose %' satisfies ¢(a’) where @' is an
m-tuple from ¥"'. As it turns out in a while, we may assume the @’ are all from
V (and not from K). Let T € J be the linear type of @'. Thus %' satisfies
Pr@"). By definition, mx(¢(2), T) is true (take 7 = 7" in (**)). Therefore ¢*(@')
holds in %’. For the converse, suppose 7' satisfies ¢*(@'). There are a T e J ,
and an m-tuple @ as in (**). Now ¥ satisfies ¢(a) and @ and @' have the same
linear type T. Let f2 % = %' be as in the Main Lemma. If there happened to be
elements of K in a’, f would be fixed on them, so they would cause no trouble.

By the conclusion of the Main Lemma, the sequences (x, y, @) and
(fx, fv, @') have the same linear type whatever x, y € V. This implies

Y E¢x, y, @)= V' E¢(fx, fr.a)

foralli=1,...,mand x, y € V. By the closure of Q under isomorphisms, we
get

7 E¢@) < 7' Eo@).

We have already observed that ¢(z) holds in %. Therefore %' F ¢@') as
desired.

Corollary 1 Let ¢ be a sentence in £ oo, (Bin) and let o be a cardinal greater
than the number of free variables in any subformula of ¢. Then either ¢ is true
in all vector spaces over K of dimension d, o« + 1 <d < K|, or true in none.

This result shows that 7 .(Bin) cannot distinguish two infinite-
dimensional vector spaces over R, and Z .,,(Bin) cannot distinguish finite-
dimensional vector spaces over, say, Q from the infinite dimensional one.

Proposition Suppose V and V' are two vector spaces over an uncountable
field K of different infinite dimensions. Suppose % and %' are PC(Z(Q,))-
classes such that v € % and V' € %'. Then % N %' + .

Proof: By compactness there are vector spaces # ¢ & and #' e X' over a
field K' such that % and %' have uncountable dimension. This depends on the
fact that in any vector space over an uncountable field of dimension =n there
are uncountably many vectors, no n of which are linearly dependent (n = 2).
(Consider vectors with coordinates (x, x2 x3, . . ., x) where x belongs to the
field. No n of these vectors are linearly dependent because

X1 Xp. .. Xp
x? x%.. . x2

= n xi(xi —X])?EO

1<i<j<n

xt x5, xy
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if x,, . . ., X, are nonzero and different.) We may assume | #| = [%#"'| = |K'l =
8,. Thus dim(#) = dim(#") = ¥, whence % = #'. This implies & N %' # ¢.

This proposition shows that we cannot hope to separate the vector spaces,
which were proved to be inseparable by binary quantifiers, by PC-classes of
Z(Q,). Other examples have to be used if one wants to show the undefinability
of A(Z(Q;)) by binary quantifiers. The same applies to such extensions of
Z(Q,) as 2% and Z (aa). Thus we have:

Corollary 2 We can replace Z o, (Bin) in Corollary 1 by A(Z(Q,)), A(ZLF*)
and A(Z(aa)).

4 Logics which can separate vector spaces The most straightforward
example of a logic capable of distinguishing infinite dimensional vector spaces
from finite dimensional ones is £, ., consider the sentence

A 3x, . xa VS fae K(fixy o+ fxn =0« f,= ... =f,=0).

n<w

This sentence is in fact in the fragment .7 yyp where HYP is the smallest
admissible language containing w. Thus we have!:

Proposition A(Z(Q0) £ £ ,u(Bin).

By considering the sentences

0,xB(x) A 4\ Vxy...Xn€BYS, .. foeK
n<w

( A x,-4=x,-—>(f1xl+...+f,,xn=0<——>fl=,..=f,,=0)>

1<i<j<n
1Q.xB(x) A Vx y Ax,...x,€B3fy ... fre Kx=fixi+...+fuxn),
n<w

and bearing in mind that Z gyp < A(Z(Q,, Q1)), One gets:
Proposition A(Z(Qo, Q1)) % L cow(Bin).
Corollary 3 Z wy(@1) £ ZLoow(Bin).

We shall now introduce a ternary quantifier Q which is not definable in
Zoow(Bin). For a ternary predicate D(x, y, z), constants cg, ¢;, and a unary
predicate B(x) consider the formulas:

Oolx, ¥, U, V) SO XFUNXFVAYFUANY FUA
(x=yru=v)v(x#yru#tva13zD(x,y, z) AD(u,v, 2))
A3z((D(x,v,2) A D(u,y,2)) v (D(x,u,z) A D(p, v, 2)))))

&,10x, v, u, v) <= (Po(x, ¥, u, V) A (Fz(D(x, u, z) AD(y,v,2)) > x =)
O4(x, ¥, 2) <= Juv(dy(co, x, u, V) A d1(u, v, ¥, 2))
F(x) <= D(x, cq, ¢1)

o, y,z2)«>x=z=cov(x=ciAz=p)Vv(F(x) AXx Fco AX F ¢4
A Juv(dolcy, u, x, v) A do(u, ¥, v,2) AD, v, o) AD(y, z, cp))
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PLO,x) > N=cov x =
AL, N Xy X)) < Tuow(d (A, Xq, 1)

A ¢.()\23x25 U) A ¢+(u’ v, W) A ¢:1-_l(cls 7\35 s ey )\n, w, X3, LR xn))

Free™(xy, ..., xp) <> VA1 .. . N(FQA)D AL o AF(N)
AT, .. SN X e e X)) TN S L =N, =)

Fr(B) «— /<\ Vxq. .. x, eB< /\ x,~#x,-—>Free”(x,,..‘xn)).
n<w

1<i<j<n

Definition OxyzD(x, y, z) <> there is an uncountable set B such that
Fr(B) holds for some choice of ¢y # ¢;.

Suppose now that V' is a vector space over a field K. Define

Dy(x,y,z)<=> INe K(x=Ay + (1 —N)z2)
(“x, ¥y and z are on the same line”).

Then for this interpretation of D and any choice of ¢y # ¢;, Fr(B) holds if and
only if B is a free set of vectors. This shows that one can separate dimensions of
vector spaces using Q.

Proposition The class of countable dimensional vector spaces is definable

in 2(Q).

Corollary 4 2(Q) £ 2L o, (Bin), that is, there is a ternary quantifier which
is not definable using binary quantifiers.

Problems: Is there an (n + 1)-ary quantifier not definable using n-ary quan-
tifiers for n > 2?7 Is A(Z(Q,)) definable using binary quantifiers?

NOTE

1. Recall that A(Z(Qo)) = 2 yp.
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