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Consider the following two DeMorgan monoids, in the sense of [1], for
the system R of relevant implication, with lattice operations & and v defined
according to the following Hasse diagrams, and -> tables defined by the follow-
ing matrices (with designated elements starred).*

T T

•O i;

F F
-> T t f F -> T t f F
*T T F F F *T T F F F
*t T t f F */ T F t F
f T F t F *t T t f F
F T T T T F T T T T

Since ~a is definable in every case as a -> / (and should be typographically
obvious anyway), and other DeMorgan monoid operations are definable from
the above (e.g., fusion (or cotenability) a ° b as ~(α-» ~b)), with / as monoid

*For discussions over the years on the topics of this paper, I am deeply indebted to
J. Michael Dunn. For discussions of its immediate content, as well as the buckets full of
/^-matrices that he has extracted from the electronic Beast in the Basement, giving us
both Raw Data to think about, I am particularly indebted to John Slaney. And to the
Beast itself, which bids fair to at last make of Logic an empirical science—putting the
quietus to the Kantian a priorism which has lingered too long in our subject, even after
it had been vanquished almost everywhere else—I am grateful for many Facts and Further
Facts. Finally, for help in preparing this note for publication, I am grateful to Ian Douglas.
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identity, we get a complete set of matrices for R in either case, or, saying the
same thing from another viewpoint, we have defined in each case a DeMorgan
monoid.

The matrix on the left I shall call the 4-diamond; that on the right, the
4-chain. (The 4-diamond is especially venerable; it is due to Church, who in
[4] invented relevant implication.) What strikes the eye, however, is something
else; namely, insofar as their -> tables are concerned, the 4-diamond and the
4-chain are the same. If we wrote down the tables for the other intensional
operations, such as DeMorgan negation ~, fusion °, fission +, and coimplica-
tion <-*, these would also turn out to be the same in the two structures.

Clearly, there is something going on here of almost metaphysical import.
For how can a chain be a diamond? (The converse question is easily answered,
for, as is well known, a diamond can be a chain when one has presented it to
the wrong lady.) But there are two answers to our question.

First, the 4-chain and the 4-diamond are certainly not isomorphic
DeMorgan monoids. But, for the purposes of relevant logic, they are to some
extent isomorphic—namely, they are isomorphic in what one might wish to
identify as their intensional parts. Nor is either of these monoids even a
homomorphic copy of the other, for lattice operations & and v, associated
with the corresponding connectives of R, are not preserved. But the trans-
formation h suggested by our notation is nonetheless an order homomorphism,
preserving the partial order < in the usual sense.

Second, let us forget about DeMorgan monoids and simply think about
the 4-chain and the 4-diamond as matrices, concentrating on the -> tables.
From this viewpoint, we have passed from the 4-diamond to the 4-chain in
a single move, simply taking/as a further "designated" value. My main purpose
here will be to examine the consequences of such a move, with emphasis on
the actual use of matrices and their associated algebras to give us a better
picture of systems like R+

Let us consider a practical problem: for example, finding a matrix M
to refute a given nontheorem A of R+ We should like to accomplish this
task as economically as possible. Let us understand economy in the sense
that we should like to find a matrix which is as small as possible, and with as
few undesignated values as possible, which will do the job. The two points
are connected; the more values we designate, the more often we shall, in
general, have designated both a -> b and b -> α, whence, as a general principle
for dealing with R+ matrices of an appropriate sort, we may identify a and b,
shrinking the matrix. Or we may simplify the order, as we did in passing from
the 4-diamond to the 4-chain.

In fact, for R+, every nontheorem may be maximally refuted, in the
sense that, where A is a nontheorem of R+, there is a finite matrix M, and an
interpretation of R-> in M, on which A takes a value u which is naturally under-
stood as the greatest undesignated value in M. Moreover, M is the smallest
matrix, satisfying the axioms and rules of R^ in which A is refutable. So, if
we are looking for a matrix that will do in A, we might as well look for M.
This property of maximal refutation continues to hold for the intensional
fragment R~ of R (which Dr. M. McRobbie has taught me to call Rj, as I shall
henceforth), as well as for all extensions, in the same connectives, of these sys-
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terns. It holds moreover for some well-known further systems, such as the in-
tuitionist logic / and the classical logic K. But there are other well-known sys-
tems for which, in a suitable sense, the maximal refutation property holds; for
example, the semirelevant extension RM of R. But the property cannot be as-
serted for the full system R, or for other relevant logics closely related to R.
First, it is not yet known whether R has the finite model property, which we
have built into our characterization of maximal refutability. Moreover, even if
we were to change the characterization, or prove that R does have a finite mod-
el property, there are complications induced by the &/ rule. But the intensional
part of R is itself of interest, both because it is in Rj that Church's original
insights into relevant implication take their clearest form, and also because
it is their theory of implication which forms the most distinctive and novel
aspect of the relevant logics. So we shall concentrate in this note on proving
a maximal refutation lemma for R+, extending it as applicable to further
systems.

1 We begin with some familiar terminology. By a matrix for a formal lan-
guage L, we mean a structure M = (M, O,D), where M is a nonempty set, O is
a set of operations on M similar to the connectives of L, and D is a subset of
(designated elements of) M. (We abuse language to the extent of often using
'Λf' for both the structure and its base set.) Here, we always take -> as one of
the connectives of L, as an implication connective appropriate to L; accord-
ingly, each matrix M will also have a binary implication operation -* defined
upon it. And implication, in turn, gives rise to a binary relation <, to be
identified as matrix entailment, as follows, for all a, b in M.

D< a<biffa-+beD.

Matrix entailment fathers in turn a binary relation ^ of matrix equivalence,
which is nothing but two-sided entailment.

£)~ a ^ b iff both a < b and b < a.

A matrix is reduced, for our purposes, just in case no distinct elements of M
are equivalent; i.e.,

(1) M is reduced iff, for all a,b e M,a ^ b iff a = b.

We shall prefer, where possible, reduced matrices. And we shall prefer even
more those matrices that respect modus ponens, which we shall call closed.
In the < notation, with => as metalogical //,

(2) M is closed iff, for all a,b e M, a < b =». a eD => b e Zλ

Thus the closed matrices are just those in which D is "closed up" under the
matrix entailment <.

In general, let us take a subset G C M to be a matrix filter iff G is closed
up, and a matrix ideal iff G is closed down; i.e.,

(3) G is a matrix ideal iff, for all a,b e M, a < b =». b e G => a e G,

with the dual condition, generalizing (2), for filters, of which D is required



A NOTE ON R^ MATRICES 453

to be one in closed matrices. Letting, now and henceforth, U be the set M-D
of undesίgnated elements of M, trivially equivalent to (2) is the requirement
that U be an ideal. Each element x e M determines a corresponding principal
ideal and principal filter, which we shall symbolize respectively by [<x] and
[x<], so that y e [<x] iff y < x, and y e [x<] iff x < y. Where G C M, we
shall also say that a member x of G is maximal in G iff it precedes in G only
its matrix equivalents; i.e., x is maximal in G iff, x e G and, for all y e G,
x < y => x ^ j / . And a maximal element x in G is G-greatest iff, moreover,
for all j / in G, y < x. Evidently given G is an ideal, x is G-greatest iff G = [<x].
In a reduced matrix, there is clearly at most one G-greatest element for any
G C M. On the obvious duals, we may speak also of minimal and least elements
ofG.

What we wish to prove is, I trust, now shaping up: namely, that in R+
and similar systems, there is for each nontheorem A a suitable finite, closed,
reduced matrix M9 such that M is as small as possible and A is refutable at a
(7-greatest element of M. This will count as a "best refutation" of A it is the
one that we should look for if we were, say, programming a computer to
refute nontheorems of R+ (with, perhaps, another computer busy proving
theorems). But let us return, briefly, to general considerations. We may take
a theory T on a sentential language L simply as a subset of L and we take T
to be closed just in case it is closed under modus ponens, again disinteresting
ourselves in any theories that are not so closed. Then T itself may be thought
of as a closed matrix—namely, the so-called Lindenbaum matrix (L, O, T),
where L is taken as the set of all formulas, 0 as the set of connectives and
constants of the language, and T as the set of theorems. (Note that, in this
special case, we reverse our usual ambiguity, referring to a Lindenbaum matrix
by the name T ' of its set of theorems—i.e., of its designated elements, not
all its elements.) Note that only in exceptional circumstances will a Linden-
baum matrix be reduced; but there are instances; the substantial achievement
of Martin's [6] was to show precisely that the Lindenbaum matrix of the
system P-W (T+~W in [1]) is reduced, disposing affirmatively of a long nagging
open problem ([1], p. 95).

We now revert to the familiar. Let M = <M,O,D) and M' = (M',O'fD
f)

be matrices for some sentential language L. A homomorphism from M to M
is a homomorphism in the algebraic sense, preserving the operations in O. A
matrix homomorphism h is a homomorphism that preserves also Z), in the
sense that aeD =» haeD'. Note that every matrix homomorphism must
preserve matrix entailment also, since a < b iff a -> b e D, whence h(a -* b) =
ha-*hb eD\ so that ha <hb inMf if a <b inM.

Let T now be a theory, identified with its Lindenbaum matrix (L,O, T\
and let M be a matrix for L. Then M is a Γ-matrix just in case every homo-
morphism from T to M is a matrix homomorphism, or, as it is more ordinarily
put, all theorems of T are "true" (or "designated") in M on all interpretations.
Since our concern is with closed theories and closed matrices, we may assume
that the rule of modus ponens is built in on both sides.

I conclude this section with a slight digression. Relevant logics have been
equipped, through the work of Dunn and others, with an "algebraic analysis",
to which we referred at the outset. Since the relation between the "algebras"



454 ROBERT K. MEYER

of relevant logics and their "matrices" is familiar to workers in the field, as
part of the (conscious or unconscious) "folk wisdom" of the subject, it may be
useful to spell out here exactly what that relation is. Briefly, the "algebras"
in which relevant logicians have taken a special interest may themselves be
identified as special kinds of matrices for relevant theories, tied rather closely
to a specific choice of primitive vocabulary. What is special about these
matrices is that they are taken as both closed and reduced (with, when & is
present in the vocabulary, the usual further requirement that the adjunction
rule &/ also be respected, in the sense that D shall be closed under &). What
is specific about them is that the sentential constant t and the fusion opera-
tion ° play important roles "algebraically", so that, when we count the relevant
algebras as matrices for logics, we must be sure to count t and ° as among the
(primitive or defined) logical particles of the relevant logic in question.

Let us give some examples. The Church monoids of [1] (p. 376) are
just the closed reduced R+ matrices (where R'.+ is just the result of adding t
and °, with their governing principles) to R+. In the same sense, Dunn monoids
are closed, reduced R+ matrices, and DeMorgan monoids are closed, reduced
R matrices (with ° and t in the vocabulary and with D respecting the &/ rule
in both cases). Providing relevant logics in general with Dunn-style algebras
was a project long stymied, on the point that the crucial fusion connective
° is indefinable in E and other weak sisters of R. But Routley and I in [7]
found a way to overcome this problem, whence there are now E+ algebras
that are the closed, reduced E+ matrices, Γ algebras that are the closed, reduced
Γ matrices (where Γ is the "ticket entailment" system of [1]), and so forth
in general, on close analogy to the corresponding algebraic situation for R and
its fragments.

What is it that produces these close ties between relevant algebras, which
one thinks of as having smooth properties and an interesting mathematical
character, and the mere matrices for relevant theories, which one tends to
think of as simply devices, of a more or less ad hoc character? The chief clues
lie in Belnap's [3] and Dunn's [5], and they build on important connections
between the matrix entailment relation < (definable on any matrix with a
suitable ->, or, for that matter, an unsuitable ->) and the set D of matrix
"truths". For, where Γ is a logic, the "matrix truths" according to a Γ-matrix
M are of course parasitic upon the logical truths according to Γ. So, where Γ
has a decent ->•, matrix < begins to take on some familiar properties in any
Γ-matrix. For example, if p -* p is a theorem of Γ, Γ-matrix < must be
reflexive. If q -> r ->. p -> q -*. p -* r is a theorem of Γ, < must also be transitive,
in any closed Γ-matrix. And so forth.

We have been viewing < as deriving its Γ-matrix properties from the ->• of
Γ, and, thereby, through the elements of M that are required to be designated.
For, matrixwise, D determines <. But the converse point of view is also pos-
sible, and it is in fact characteristic of the "algebraic" approach, which starts
out with a nice relation < on M (e.g., a partial order) and which, in effect,
cooks up D from <. And it is here, in fact, that the (Ackermann) sentential
constant t has been most helpful. For the properties of t (in R, say) suffice
precisely to make it ZMeast in any closed R matrix, whence D becomes the
principal filter [t<]. If, accordingly, we begin with / and <, we may simply
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define D as [/<], which, in effect, is what Dunn does in [5]. And the crucial
link between these two ways of thinking is secured by the principle t<a-^ b
iff a < b, which, when one reflects on it, is exactly right, on the intuition that
it is true that a implies b iff, in fact, a implies b. (This intuition is central, and,
though worked out in the form now being considered in [5], is more appro-
priately to be credited to [3].)

There is one more vital point, which Dunn has stressed in conversation.
It lies in the fact that relevant algebras are to be taken as reduced matrices;
i.e., if a ^ b in a matrix that counts also as an algebra, a and b shall be the
same element. (Put otherwise, the matrix entailment < shall be antisymmetric,
which, on the minimal conditions already noted that make it reflexive and
transitive, assure that < will be a partial order in relevant algebras.) But reduc-
tion, unlike the other properties that decent logics require of their closed
matrices, does not happen automatically. To be sure, we can cause it to
happen, on the following familiar plan. If < is reflexive and transitive, ^ is an
equivalence relation, partitioning the members of M into distinct equivalence
classes. By identifying the members of the classes, we may pass to a "quotient
matrix" Λf/̂ , which will be reduced.

Well, we may be able to play this trick. First, let us look at its logical
significance, on the principle that, however dimly, the properties that our
favored matrices come to enjoy will be parasitic on their parent logics. The
logical principle underlying the reduction step just traced is "replacement
of equivalents". And the idea, perhaps, is that if A -> B and B -> A are both
true, relative to some interpretation, then, from the point of view of that
interpretation, A and B are also indistinguishable they express, it might be
said, the same proposition, on the interpretation. And this thought does call
for reduction, for if we think of matrices, or algebras, as offering propositional
models of our logics (as [3] might be held to suggest), it is an offense against
Ockham to have, in the model, distinct entities with the same propositional
content.

Let us, however, return to the logical point, since the place of the replace-
ment principle in relevant logics is itself subtle. Perhaps the most straight-
forward form of this principle is just

(4) (A++B)^.C(A)++C(B),

where C(B) results from C(A) by one or more replacements of occurrences
of A with B. But (4) holds in R and other relevant logics only in ίntensional
contexts-that is, where C(A) is built up from A and propositional variables
using only intensional connectives, and not using, in particular, the truth-
functional connectives & and v. But weaker forms of (4) hold quite generally;
for example,

(5) (A ++ B) &t ->. C(A) <-> C(B),

is a theorem scheme of R, licensing in particular the usual replacement rules
for this system and its extensions.

It might be argued that, in view of (5), relevant logics have the "usual"
replacement properties. But, strictly speaking, this is not correct, a matter
affecting the principal result of this note. For what, mathematically, allows
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us to "collapse" an abstract algebra "modulo" some equivalence ^? Central
is the requirement that the equivalence in question shall be a congruence with
respect to all relevant operations: i.e., where ° is any n-ary operation of the
algebra, the requirement is

(6) * ! ~ & ! & . . . &α« ~ &„ s>°(flu . . ., an) **<>&» . . ., bn\

for all elements al9 . . ., an, bu . . ., bn of the algebra in question.
Next let us note that, if (4) is a theorem scheme of a logic Γ, we may

reasonably expect that the "congruence principle" (6) will hold for all closed
Γ-matrices (after a little further manipulation relating conditionals and bi-
conditionals, on plausible assumptions). But we cannot so easily come to this
conclusion if replacement only holds in the form (5). For consider the par-
ticular case of a closed i?-matrix in which b ^ c, and let us ask ourselves, as
an application of (6), whether a ° b ^ a ° c. The answer is, "Yes". For, by
definition, b -> c and c -• b are both designated. In R,p-*q->. q ^> p->. p *-> q
is a theorem, whence b «-> c is also designated, by the -+E principle (2) for
closed matrices. But, since ° is an intentional connective, the appropriate
instance p <-> q ->. r ° p «-•. r ° q of (4) is an R-theorem, whence, appealing
again to (2), a° b «-• a° c must be designated also, after which, appealing still
to nothing but /^-theorems and (2), it readily follows that a° b ^ a° c. Other
cases are similar, for all intensional connectives of R (i.e., the connectives
of Rj). So, ^ is a congruence on any closed ^/-matrix. Accordingly, given a
closed ^/-matrix, we may straightforwardly reduce it, identifying congruent
elements and getting a quotient matrix M/^ = <M/~, 0/~, D/—) defining the
operations in 0/^ by "representatives", and noting in particular that no
confusion resulted in the definition of D/^, since, again applying (2), if a ^ b
in a closed matrix then a e D iff b e D.

Let us now ask the same question where the matrix operation in question
is truth-functional &, assuming b ^ c in a closed Λ-matrix, and wondering
whether a & b ^ a & c. The above argument breaks down on the point that
the appropriate instance of (4), namely p «-* q -*. r &p <-*. r 8c q, cannot be an
R-theorem, since & is truth-functional. And what this means, really, is that
understanding the closure of an R-matrix with reference to modus ponens
alone is insufficient to assure the congruence properties necessary for reduc-
tion.

There is a remedy for this breakdown of reduction, actually pursued in
[5], and which readers of [1] might take to be the natural one. For R and
other relevant logics are formulated not with one rule but with two, adding
&/ to the customary -+E rule. And we have already seen that the "algebras" of
relevant logics respect &/ as much as they respect ->/?; the appropriate con-
dition to add on matrices is, of course, just

(7) aeD and b eD=*a&b eD.

Let us call a matrix which satisfies both (2) and (7) strongly closed, since
such a matrix would ordinarily be considered a strong matrix for the relevant
logics. Attending to strongly closed matrices overcomes our congruence prob-
lems, since it enables us to use (5) (or an approximation thereof, even in the
case where t is not an explicit primitive) where (4) was used before, whence,
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e.g., the matrix ^ is readily shown to be a congruence, with respect to all
operations, whenever M is a strongly closed R matrix (or R+ matrix, E matrix,
etc.). Under such circumstances we can pass to quotients; we may also express
our previous observation more exactly as "The DeMorgan monoids are exactly
the reduced, strongly closed i?-matrices, where R is formulated with t explicit",
an observation to be extended mutatis mutandis to other algebras and systems.

Note, incidentally, the great advantages that are conferred by sticking to
reducible matrices, and then reducing them. In the first place, an unreduced
reducible matrix (i.e., one on which ^ is a nontrivial congruence) is in impor-
tant ways superfluous; for any purpose for which we are likely to want a
matrix—e.g., to reject nontheorems efficiently—is better served by a reduced
matrix than by an unreduced one of which it is the quotient. For, as one sees
immediately, any interpretation in the unreduced matrix is directly mirrored
in its quotient, refuting and validating the same formulas. So if we had, for
example, a computer program to churn out useful strongly closed i?-matrices,
we should want it to avoid the unreduced such matrices completely, lest the
product be mainly a lot of waste paper. Moreover, a really important property
of the matrices that have turned out to be "relevant algebras" is that they are
so readily visualizable, via partial orders and Hasse diagrams (such as strew the
pages of [1]), enabling one to take in at a glance the important structural
features of a given model of a relevant logic.

However, all these advantages notwithstanding, there is something disturb-
ing about the effects in R of the &/ rule. It is, after all, a mere truth-functional
rule, not supported by any more convincing thesis of the system R itself than
A & B -•. A & B. (See [2] for discussion of this point.) More to the immediate
point, mixing the rules &/, -+E in the deduction of theorems means that we
lose some control of the deductive process; this is true even though, on a slight
reformulation of R, all applications of the &/ rule may precede any applica-
tions of -+E (a point which I owe in part to Belnap). This complicates, for
example, the decision problem. And even more to the immediate point, it
apparently complicates also the problem of finding an efficient refutation of
a given nontheorem, on which topic we are presently dwelling. So there may
yet be a future, in metalogical investigations into relevant logics, for matrices
that are closed but not strongly closed, despite the partial loss of congruence
properties. For Rj and its fragments and subsystems, the question does not
arise, since here we have only ->£ to worry about anyway, while, as noted,
reduction via matrix equivalence is always possible.

2 Having disposed of the preliminaries and accompanying observations, we
can now get on with the main business of this note: efficient refutation of
nontheorems of R+ and its kin. The method is that suggested by the passage
from the 4-diamond to the 4-chain. The key is contained in the following
lemma, which we state and prove first for R+, noting thereafter the R+
properties on which it depends, that we may draw the appropriate generaliza-
tions.

Finite matrix shrinking lemma for R+ Let M = (M, O,D) be a closed, finite
R+ matrix. Set U = M - D, and let a e U. Then there is a closed, finite reduced
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R+ matrix M' = (M',Of,Df), with the following properties: (i) M' is a matrix-
homomorphic image of M, in the sense that there exists a matrix homomor-
phism h from M onto M' (ii) Setting U' = Mf ~ D\ ha e U' more than that,
Ur is the principal ideal [<ha] in M\ so that, since M' is reduced, ha is the
unique greatest undesignated element of M' (Hi) M' can be shrunk no further
without designating a; i.e.y where h1 is a matrix homomorphism (but not
an isomorphism) onto a finite closed R+ matrix M" = (M"9O",D"\ then
h'(ha)eD".

Proof: We shall construct M' from M. Our construction splits into two stages.
First, we construct a finite sequence of matrices M = Mo, . . .,Mn, keeping
the same base set M and simply adding more designated elements, to form the
increasing sequence D = Do Q . . . C Dn, taking care not to put in any D\ the
element a which we wish to keep undesignated. When this stage is completed,
we then simply reduce Mn modulo its matrix equivalence ^ , forming M'. We
then must show that M' has the properties that we have claimed for it.

In the first place, it is trivial, for any Γ-matrix whatsoever, that it remains
a Γ-matrix on designating more elements. For if all the theorems of T are
confined on interpretation to some subset D of M, of course they are also
confined to any superset Df of D. So our construction can only be interesting
if it shows the proper respect for modus ponens by taking us from one closed
matrix to another. And it is interesting that R+ seems to have just about the
right supply of theorems for the purpose, as we shall see.

Suppose then that we have arrived at stage / of the suggested construction,
at which we have a closed R+ matrix Λίz = (M,O9Di>, where M, 0, are as in
our original matrix Mo, our original D Q D, , while the particular element a
that we are keeping undesignated fails to belong to D, . The matrix equivalence
^ is defined on Λf, , partitioning M into equivalence classes. We keep track
of these classes by using ' 5 ' for the class which contains a particular element
b of M, etc.; in particular, A is \c: c ^ a in Λf/I, for our permanent "bad guy" a.

It may be that a is already a greatest undesignated element of Λf,-; in that
case, go on to stage 2. Otherwise, I assert, there is some maximally undesig-
nated element b of M, such that b ή. A. For, since M is finite, and since {/,- =
M - Di is nonempty (containing at least a), and since < is transitive (R+ prop-
erty) and reflexive (ditto), there exist, evidently, maximal elements of £//.
Indeed, for each c in t/, , there is some {//-maximal b such that c < b. And if
all the (//-maximal b belong to A, a is already {//-greatest.

So, on the assumption that we still have work to do, choose any b that
is (//-maximal but not equivalent to a, and form D/+ 1 by adding b and all its
^/-equivalents to D/; i.e., Di+ι = D, U B. Mi+1 = (M,0,Di+ί). On our trivial
observation, M/+1 remains a n i ? ^ matrix, and we need only show that it is
closed; i.e., that Di+1 remains a filter in Λ//+1. So let us assume that c and c-+d
both belong to A+i We must show d e Di+1. There are four cases.

Case L c e £)/ and c -+ d e D, . In this case, since Mi is closed on assumption,

deDtQDi+i.
Case 2. c ^ b and c -> d e Di, where ^ is Mi equivalence. This implies b < c
and c < d in M/, whence, since < is transitive in the closed R+ matrix M, , b < c/
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in Mj. But we chose b as (//-maximal, whence either d e Di or d ^ b. In either

case, d e A+i
Case 3. c e Di and b ^ c -> d in 7kf;. We observe that, in virtue of the /?_>
theorem p ->. p^q^q,c-^d^deDj (since D, is a filter), whence, in Λί, ,
we have both b < c -> d and c -> d < d, whence, again by transitivity of Λ/, <
and C/z-maximality of b,d e Dj+1 for the same reason as in the previous case.
Case 4. c z* b and b ^ c -^ d. This is, apparently, the interesting case, but
the most interesting thing about it is that it cannot arise, on account of the
R+ contraction principle. For, again by definition of ^ and transitivity of <,
we have c < c -> d in Λf/ i.e., c ->. c -> d e Dj. We observe that, in virtue of the
R+ theorem (p ->. p -> g) ->-. p -* g, and the fact that D, is a filter, c -* d e D, ;
i.e., c < d in Mz . But since c -+ d e Di and c -* d < 6, the latter by the hypoth-
esis of the case, b e Dj, since Z)z is still a filter. But we chose b as an undesig-
nated element of Mi, whence, indeed, the case does not arise.

This exhausts the cases, and assures that we can continue enlarging our
original D until we reach an Mn = {M,O,Dn) in which a is a greatest undesig-
nated element. (Evidently we reach Mn in a finite number of steps, since M
was finite to begin with, whence we shall eventually run out of further
undesignated elements to add.) We now observe, for reasons noted in Section 1,
that the ^ of Mn is a congruence (with respect to the only operation of R+,
namely -*), whence we may pass to the quotient matrix Mn/^ = M' =
{M',O\D'), also for reasons noted. We must now verify the various statements
of our lemma concerning M'.

First, let h be the natural homomorphism from Mn onto M1. Since Mn is
closed, evidently M' is also closed; equally evidently, it is finite and reduced.
Since, moreover, h is a matrix homomorphism from Mn to M\ it is also a
matrix homomorphism from our original matrix M to M' (since, if h preserves
Dn, it preserves its subset D). This establishes (i) of the conclusion of our
lemma.

To show (ii), we recall that a was (/^-greatest, whence ha will be U'
greatest (and hence unique, since M' is reduced).

Finally, we consider (iii). We need to show that any proper homomorphic
image M" of M\ where M" is a closed JR_> matrix and h' is a matrix homo-
morphism carrying M' onto M", contains h'(ha) as a designated element. Let
D* = h'-\D")\ i.e., for all b e M\ b e D* iff h'b ef l" . Since matrix homomor-
phisms preserve designated elements, Df Q D*. First, suppose/)' = D*. Then, I
assert, M" is an isomorphic copy of M\ To do this, it suffices to show that if
h'b - h'c inΛΓ', b = c mM' (for then h' will be a bijection fromΛΓ toM", pre-
serving operations in 0 and, by supposition, preserving bothD' and its comple-
ment). For suppose h'b - h'c. Then, in view of the R theorem p -> p, h'b -+
h'c = h'(b -> c) e D"9 whence b -» c e D*, which is D' by supposition. So b < c
in M\ and, by parity of reasoning, c < b; i.e., b =* c in M' and, since Λf; is
reduced, b = c. So, in this case, Λί" is not a proper homomorphic image of M',
but an isomorphic copy. For the other case, suppose that D' is a proper subset
of D*. First, we show that D* is a filter in M'. For suppose b e D* and b <c.
Then /z'Z? < h ' c in Af"(as we observed in Section 1), whence, sinceM" is closed,
h'c e D" and so c e D*. So D* is a filter, which, as a proper superset of D',
contains some undesignated element b of M'. But Λα is the greatest undesig-
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nated element of M', whence b < ha, whence, by filterhood of D*, ha e D * ,
whence, by definition, h\ha) e D", completing the proof of the finite matrix
shrinking lemma for R->.

The idea of our shrinking lemma is that, given any refutation of a non-
theorem A of R+ at an undesignated element a of a closed R+ matrix M, we may
always shrink M so that a becomes the greatest undesignated element of the
shrunken matrix, in effect. Note that every application of the shrinking lemma
either increases the number of designated elements, or identifies previously
distinct elements; the passage from the 4-diamond to the 4-chain, taking the
former as the M of the lemma and the latter as M ', with F the element to be
kept undesignated, is an application of the first kind. Such applications always
change the matrix partial order <, in the "flattening" way observed in the
passage from the 4-diamond to the 4-chain. For observe that, in a closed R+
matrix, b ->• b < b holds iff b is designated, whence increasing the number of
designated elements also makes the relation < hold more often.

The proof of the shrinking lemma raises a number of related questions.
Those to which I know the answers turn out negative, which may furnish a
clue to the remainder. Our sample case, after all, terminated with a chain.
Could it be, accordingly, that, given any closed R+ matrix, there is some way
to keep adding new designated elements, reducing as we go, until the result
is a chain? No, it could not be. For consider the matrix Mo of [1], taken
simply as an R+ matrix. Mo has a least element - 3 , which will remain undesig-
nated in all closed homomorphic images of Mo but the trivial one. Moreover,
we have for the distinct elements +1, +2 of Mo> +1 -> +2 = +2 -• +1 = - 3 . So,
shrink as we will to closed nontrivial R+ matrices, +1 and +2 will remain incom-
parable under matrix <, whence Mo cannot be shrunk to a chain.

At this point, some empirical evidence intrudes. John Slaney has been
writing programs that find R matrices by the bucketful. And he reports that,
even among rather large matrices, the number of chains is somewhat staggering;
e.g., about a third of the 10 X 10 matrices are chains, by far the largest con-
tribution to the supply of DeMorgan monoids from underlying DeMorgan
lattices. We might interpret this phenomenon to mean that, even if the shrink-
ing process does not invariably produce chains, it very often does. And some
of the most interesting and useful matrices are chains—e.g., the Sugihara
matrices of [1], which we shall discuss further below. And, while specialization
to chains is not generally attractive for R, since & and v must also be catered
for, one might wonder whether, in R+ itself, every nontheorem is refutable
in some chain. Many nontheorems are; all 1-variable nontheorems of i?_>, for
example, are refutable in the 4-chain. To get a counterexample to the hypoth-
esis that every nontheorem of R-> is chain-refutable, consider the Church
disjunction A ® B =# A -* B -•. B -* A -> A, introduced in [4]. Note that
(p -• q) θ (q -» p) is valid in every closed R+ matrix for which matrix < is a
total order. For one of p -• q, q -> p must be designated in such a matrix,
whence, since Church disjunctions are relevantly implied by their disjuncts, the
displayed disjunction must be chain-valid. But it is refutable inM 0 on assigning
+1 t o p and +2 to q.

Our lemma shows that every nontheorem of R+ is, in a certain sense,
maximally refutable. A related question is, "Is every nontheorem minimally
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refutable!", in the sense that every nontheorem can be refuted at the least
value in some closed R+ matrix. An equivalent question is, "Can every non-
theorem be rejected in a closed R+ matrix with a lone undesignated element?"
For what it is worth, Slaney's evidence shows that such matrices are uncom-
monly common, while, again, all 1-variable nontheorems have this property.
While, maybe, one expects that the answer is negative, the question is interest-
ing. Consider the case of Peirce's law, p -> q -+ p -> p. This isn't valid, either,
in the intuitionist logic /, which is a supersystem of JR_>, so that we can try
looking at a / refutation. Here's one, in the familiar matrix / 3 .

T Γ

IF

-> is defined familiarly o n / 3 by a-^b = TΊia<kb,T~+b~b always, and,
otherwise, a -> b = F. T is the only designated value. As a /_> matrix, / 3 is a
fortiori a closed, reduced R+ matrix.

Peirce's law is refutable in / 3 , but on only one assignment. For 7V-> F->
N ->• N = N, yielding a maximal (and maximally efficient) refutation in terms
of our shrinking lemma. Question: can we manipulate /3 further so as to refute
Peirce's law at FΊ Answer: No, because any further manipulation, of the
above sort, must designate N also, given the argument for (iii) of our lemma,
whence there will be no refutation whatsoever. Moreover, in no reduced closed
/ matrix M whatsoever is Peirce's law refutable, if there is only one undesig-
nated element; for the only such M is truth-tables, and Peirce's law is a truth-
table tautology.

However, this does not settle the matter for R+. In fact, there are lots of
R+ matrices which are not / matrices. The most justly famous of them all,
the 3-point Sobociήski (or Sugihara) matrix 53, has a Hasse diagram just like
/ 3 , but so defines -> that N -• N = N, but, otherwise, a -+ b = T if a < b and
a-> b = F if a> b, designating both T and JV. This time, N~+F-+N-+N = F,
whence Peirce's law is i?-refutable at a lone F after all. In fact, since S3 is
characteristic for the intensional part RM{ of RM, as Parks and I (indepen-
dently) showed, those nontheorems of R+ that fail also in RM+ are certainly
refutable at F, including, naturally, all classical nontautologies. So it would be
interesting to know whether this can always be done, sharpening for R-> the
main result here.

Mention of /_> matrices prompts the following observation:

Fact: A closed reduced R+ matrix is a J+ matrix iff it has exactly one desig-
nated value. The same holds, mutatis mutandis, for /?+ matrices.

Reason: Suppose that M is a closed reduced R+ matrix with but one desig-
nated value d. It will suffice to validate the paradox A ->. B -+ B, since, added
to R+, this produces J+. For this it suffices that, for each a in M, a < d. In
fact, a < (a ->. a -> a) -*. a ->- a = d, by the identity, permutation, and con-
traction principles of R and the fact that d is the only undesignated element.
Conversely, the noisome paradox B ->. A -> B assures, as is well-known, that
closed, reduced /_> matrices will have but one designated value, which, a for-
tiori, makes them R+ matrices with this property.
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Further Fact: A closed reduced Rj matrix with exactly one designated value
is a Boolean algebra, validating exactly the classical tautologies. The same
holds, mutatis mutandis, for R matrices.

Further Reason: For the same reason as above, the noisome paradox A ->.
B -» A is valid in any /?,- matrix with exactly one designated value, after which
all classical tautologies in the Λ, vocabulary must be valid (in view of the
standard properties of the DeMorgan negation of R). But -+,~ is a sufficient
basis for classical logic, whose closed, reduced matrices are exactly the Boolean
algebras. Enough said.

Dunn has suggested in conversation that the above fact and further fact
may be known (mentioning Pahi in particular as an author who has thought
about these things). I wouldn't be surprised. But it is at least interesting that,
for a closed reduced matrix to be properly relevant, it is both sufficient and
necessary that more than one proposition should be considered true. For the
root of both the elegance and the absurdity of the conventional logical wisdom
may well be located in the assumption that all Truths are One. And it is inter-
esting to find technical reflection of this assumption in the fact that positive R
matrices suffer intuitionist breakdown, and full R matrices suffer classical
breakdown, when it is made. (In the mutatis mutandis clauses of our fact
and further fact, incidentally, one should take, I suppose, the R+ and R
matrices in question to be strongly closed, in which case, if there is only
one designated value and the matrix is reduced, & and ° will coincide, so that
the extensional case reduces to the intensional one.)

3 In this section, we generalize our principal lemma of the last section and
draw appropriate conclusions. For the proof of this lemma is quite general,
and depends only in a few places on particular properties of R+, whence it
may also be asserted of any supersystems of R+ that retain these properties,
with or without additional connectives, or constants. The theorems of R+
to which we appealed were the following:

B axiom q-+r-*.p-+q-*.p->r
CI axiom p->. p-> q-> q
W axiom (p -•. p -> q)-+. p -> q
I axiom P~* P-

In addition, we appealed implicitly to the fact that the set of theorems of
R+ is closed under substitution for sentential variables (since this is built in,
more or less, to the matrix approach) and under modus ponens (since this
is what gives us a preference for closed matrices). These were the only assump-
tions used in the part of our proof in which, given an undesignated element
a of a closed matrix (M,O,D), with M finite, we were able to go on adding
new designated elements until a was a greatest undesignated element, in the
closed matrix (M,O9Dn). Since, in fact, the axioms to which we appealed
are exactly sufficient for /?_>, that part of the proof will go through for any
supersystem of R+ whatsoever, with whatever connectives one pleases (in
addition to -•). So
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Corollary 1 Let S be any system among whose theorems are the B, CI,
W, and I axioms above. Let M = (M,O,D) be a closed, finite S matrix. Set
M - D = U, and let a e U. Then there is a closed S matrix Mn = (M, O,Dn) such
thatD^Dnand Un = M-Dn= [<a].

In the interesting cases, S will be, as noted, an extension of R+9 closed
under modus ponens and substitution. Among such extensions are Ri9 R, R+
(and the Boolean extensions CR*, CR thereof), RM+, RM, J+, J, D, K, and the
various extensions of these systems. But the utility of Corollary 1 is consider-
ably less than that of the lemma, since, although we get in general a closed
S matrix Mn, in which a is maximally undesignated, we may not be permitted
to reduce Mn to get, usually, something simple. So let us examine the par-
ticular features of R+ that permit also the reduction step of the proof of our
lemma. From the discussion of Section 1, we already know, pretty well,
what they are. The key point is that the matrix equivalence ^ , when we
arrive at it, must be a congruence on Mn. A sufficient (and, in the usual cases,
necessary) condition for this is that replacement of equivalents in the form (4)
of Section 1 shall be guaranteed by a theorem scheme of the system S in
question. Let us restate this condition to avoid its apparent dependence on a
<-> connective, calling it the congruence condition for the system S.

(8) p -> q -*. q -> p -*. A(p) -* A(q) is a theorem of S, for each formula A(p)
in the vocabulary of S in which p occurs, and for each result A(q) of
substituting q for exactly one occurrence of p in A(p).

Congruence Fact: Let S be any system satisfying, without restriction, the
congruence condition (8), and let M be any closed 5-matrix. Let moreover
the Transitivity Axiom B and the Reflexivity Axiom I above be theorems
of S. Then the matrix equivalence ^ is a congruence on M, whence M may
be reduced modulo this congruence to get an equivalent closed S-matrix M/^.

Reason: That ^ is a congruence means that (6) of Section 1 holds, for each
operation ° of M, and that ^ itself is an equivalence relation. For the latter,
we have already noted that Axioms B and / suffice, in closed matrices. And
we merely illustrate the former, choosing v as a binary operation and showing
that, in the presence of the congruence condition, a ^ c and b ^ d suffice for
a v b ^ c v d, in the closed S-matrix M. In fact, p -> q ->. q -> p -*. (p v r) -*
(q v r) is an instance of (8), choosing A{p) as p v r, whence a ->- c ->. c -> a ->.
(a v b) -> (c v b)e D, since M is an ^-matrix. Since the two antecedents belong
to D, on assumption, and since M is closed, (ay b) < (c v b). Similarly,
(c v b) < (a v b). Since p -> q -». q -> p ->. (r v p) -> (r v q) is likewise an instance
of (8), we can also show c v b ^ c v d, whence, by transitivity of ^ , a v b ^
c v d, as claimed. So the situation is familiar enough, and any further verifica-
tion is left to the reader.

Corollary 2 Let S be any extension ofR+, with perhaps additional connec-
tives, for which the congruence condition (8) holds. Then the finite matrix
shrinking lemma holds for S.

Proof of Corollary 2 is hardly needed, since, given Corollary 1 and the
Congruence Fact, proof is exactly as of the lemma, just putting '5 ' wherever
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'R+ appears in the statement or proof of that lemma. Thus nontheorems are
maximally refutable, in a finite reduced, closed matrix, in many famous and
infamous systems; among them are R+, /?,-, RMiy and our old friends D, /, and
K. For the old friends, the "finitude" part is established by well-known results;
for R+ and Λ, , it is established by little known results, namely:

Finitude Fact for R+ and Rji R-> and i?, have the finite matrix property; i.e.,
every nontheorem of these systems is refutable in a closed, finite matrix for
the system.

Proof of the finitude fact is rather intricate, being established in the
draft manuscript [8] by adaptation of the Kripke proof-theoretic argument
for the decidability of R->. So I state it here merely as a fact. But note that,
given the finitude fact, we can find a maximally efficient finite refutation
of a given nontheorem, simply by applying our lemma. And the result will
always be that a nontheorem is refuted at a greatest undesignated element
in a closed, reduced matrix, since, if it isn't, we can simply cut the matrix
down still further. And, of course, some refutation will also be maximally
efficient, since there will be a closed, reduced matrix of smallest finite size
in which the maximal refutation takes place. Really efficient decision proce-
dures, of course, may be another story; even for /, the extant decision proce-
dures (of which I know, anyway) quickly become quite cumbersome; and the
situation for /?,-, say, is at writing even worse. But any improvements can
themselves be improved by the method sketched here.

4 In this section, I turn to the limits of these methods. An immediate one
lies in the method by which we proved our shrinking lemma. To get a best
refutation, we added new designated elements in no particular order, save
that we always chose maximally undesignated ones to add. We can, of course,
try out all orders. But, as a practical matter, it would be good to have some
criterion on which we can make a "best choice", if our methods are to be
at all efficient.

A second limitation is that the above reasoning only applies to reasonably
strong systems, and that it depends on both the CI principle (which fails
in E) and on the W principle (which fails in many systems, including, not
surprisingly, R-W). These principles were needed to get us through the "cases"
3 and 4 respectively in the proof of the key lemma. Accordingly, it would
be particularly interesting to know what form, if any, our lemma takes in
weaker relevant logics (or irrelevant ones, for that matter).

A more important limitation is the dependence on finitude, in the
matrices from which we start. In fact, we can state our lemma so that it avoids
such dependence. Here is the idea. Instead of designating new matrix elements,
one at a time, we may pick any matrix filter F, and designate F U D a t one fell
swoop, provided that the filter in question is directed down; i.e., provided
that any two elements of F have a lower bound in F, on the matrix entailment
ordering relation <. On the same R+ principles as before, this process takes us
from closed matrices to closed matrices. So here is a plan to turn an arbitrary
R+ matrix M into one in which a given undesignated element a is maximally
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undesignated, reminiscent of how completeness proofs go. D being fixed and
set equal to Do, well-order the elements of M. Let a be set aside to be kept
undesignated. Suppose that a matrix Λf, has been defined, on the same base
set M, with matrix entailment </. Pick any element b such that b ^ a, and let
Dj+i = Dt U [b<]. This time, the reader may verify that the process takes us
from closed matrices to closed matrices, letting Di+ί serve as the new set of
designated elements, where we had an R+ matrix to start with. Since we are not
assuming finitude any more, every so often this process will lead us to a limit
ordinal, and we will have to sum up, taking D[ at the limit as the union of all
its predecessors. For familiar reasons, such Dj will still be closed, and will still
lack a. At some point, we must run out of further undesignated elements to
add, so that, at this last gasp, all undesignated elements will be <α, providing
a maximal, but not necessarily finite, refutation of any nontheorem of R+
refutable at a. And this situation also can be generalized in the spirit of
Corollaries 1 and 2, with the reducibility of our last Mi governed by the uni-
versal theoremhood of the formulas (8).

We can, in particular, go through the process just sketched with respect
to the Lindenbaum matrix of whatever extension S of R-> we are considering.
This time, however, the process of choosing the b whose principal filters are
to be added becomes a real headache. For we should like to make, at each
stage, a finitizing choice, if we can; that is, we should like to arrive at a £)/
such that, if we reduced Mj modulo a suitable congruence (which can be matrix
equivalence when S satisfies the congruence condition), the result would be a
closed, finite matrix for S. It is not immediately apparent, however, how we
can make such a choice, except through some other argument, if there is one,
that S has the finite matrix property. Somewhere, there must be a better result
than this, making use of exactly the R+ properties, and applied to some class
of extensions of R+ But I shall not pursue it any further here (though [8],
perhaps, is the source of some clues).

Finally, I turn to the problem of applying these results to the system R
itself. Here, the first problem is that, in contrast to the systems / and K,
there is no useful formulation of R, for our purposes, with ->E as sole rule.
And the second problem, already noted, is that the congruence property (8)
fails for R. The final problem, also already noted, is that no finite matrix
theorem has been proved for R; indeed, the system may be undecidable, in
which case there is no such (useful) theorem. So, even if we bring the finite
matrices for R under control, it is yet uncertain how much we have accom-
plished.

The central problem, if we try to prove our theorem for R and not just
for R+ or Ri9 lies in caring for the adjunction rule. This is not a problem for
RM, for the following reason:

RM Observation: Every nontheorem A of RM is maximally refutable. In
fact, if A is a nontheorem of RM, there is, in the sense of [ 1 ], a finite Sugihara
matrix Sn (where n is the number of matrix elements) such that: (a) A takes
the value -1 on some interpretation in Sn, and (b) for all m < n, A is valid in
Sm. (Since all the Sn are finite, reduced, strongly closed RM matrices, the
refutation in question is in an evident sense a best refutation.)
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Verification: If 4̂ is a nontheorem of RM, it is refutable in some finite
Sugihara matrix Sp, at some value -q. Applying the proof technique of our
principal lemma, show that all the matrix elements >~g may be added as new
designated values. (The important point for immediate purposes is that our new
D will be closed under &/ also, since Sp is a chain.) The matrix equivalence
induced by the new D is a congruence, whence we may pass to the quotient Sn.
And it is easy to see that Sn is also a Sugihara matrix, which has resulted from
Sp simply by identifying all elements b in Sp such that -q <b <q. Accordingly,
on the natural matrix homomorphism h from Sp to Sn, all the elements between
-q and q have been taken into 0, whence q becomes the new +1, under h,
and -q becomes the new - 1 . So, if 4̂ is refutable in any Sugihara matrix Sp

at a value <~1, there is always a better (i.e., smaller) matrix in which A is
refutable at - 1 . So the smallest Sn in which A is refutable at all will refute
A at - 1 , completing the verification of our observation.

The proof technique underlying the above observation has its amusing
aspects. First, as noted, the intensional part RMi of RM also has a dual minimal
refutability property; every nontheorem is refutable at the least element of
some Sugihara matrix Sp. Combining this with the above observation, we get
the result that Parks reported in [12]: i.e., every nontheorem of RMi, being
both minimally and maximally refutable, is already refutable in the 3-ρoint
Sugihara matrix S3. There is also a connection with the work on extensions
of RM that Dunn sets out in [ 1 ]. For pick the smallest n such that A is refut-
able (at -1) in Sn, and consider the result RM + A of adding A as a new axiom
scheme. Sn, of course, cannot be a matrix for RM + A. But Sn-γ is, naturally,
an RM + A matrix, and, as Dunn shows by an elegant argument, it is in fact
a (finite) characteristic matrix for RM + A.

We may, in fact, recast Dunn's argument in the following form, trading
in some of its algebraic features for syntactical ones. Let B be a nontheorem
of RM + A, where A is a nontheorem of RM. Let a be the set of all instances
of A in the vocabulary of B (i.e., only sentential variables that occur in B
occur in any member of α). We note first that there is some finite conjunction
&α of members of a such that, for every A' in a, &α -> A' is a theorem of RM.
For, given the results that I reported in [ 1 ], it is evident (as Dunn has also
observed) that there are only finitely many nonequivalent formulas of RM,
in all, built out of the same sentential variables as B (since S2m is characteristic
for the m-variable fragment of RM); a fortiori, there are only finitely many
nonequivalent instances of A in this vocabulary. So any formula C in the B
vocabulary is a theorem of RM + A iff it is deducible in RM, using the axioms
and rules of RM, from the formula &oc. Similarly, we may find a formula
&RM that will stand in for the conjunction of all the theorems of RM in the
^-vocabulary. (In fact, the conjunction of the p •+ p (the well-known 'V-surro-
gate"), where p occurs in B, will serve for &RM.)

Then, simply applying the appropriate deduction theorem, for all C in
the ^-vocabulary, C will be a theorem of RM + A iff &a & &RM -> C is already
a theorem of RM itself. We have chosen a B which is a nontheorem of RM + A,
whence by the completeness proof for RM, there is a finite Sugihara matrix Sp

in which Sea. & &RM ->• B may be refuted at the value - 1 , by our RM observa-
tion. Indeed, there is a smallest such Sp. In order for this to happen, on inspec-
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tion of the "truth-tables" for finite Sugihara matrices, each of &a, &RM must
take one of the values 0, +1, while B must have been assigned -1 in Sp.

It will now suffice for Dunn's result, in its present recension, if we can
show p < n, where Sn is the smallest Sugihara matrix in which A itself is
refutable. (For if a formula is refutable in any Sugihara matrix, it is also
refutable in any larger one; whence, since B is an arbitrary nontheorem of
RM + A, if p < n then B will be refutable in Sn-γ in particular, clinching the
claim that £„_! is characteristic for RM + A.)

To nail down p < n, it will suffice to show that A is valid in Sp. (For A is
not valid in any Sugihara matrix from Sn on.) Suppose, to the contrary, that A
is not valid. Then there is some refuting interpretation / of A in Sp, different
from the interpretation /', perhaps, that we just picked to refute &α &
&RM -> B. But we shall show that, under these circumstances, &α could
not have been true on /', either.

First, we observe that, for each element b of Sp, there is some sentential
variable q of B such that Γ(q) = b or Γ(~q) = b. (For matrix values assigned
to neither sentential variables or their negates are assigned, on a Sugihara
interpretation, to no formula, whence we could have got a smaller Sugihara
matrix than Sp which would have done the same job by dropping the super-
fluous elements. But Sp is the smallest matrix that will do the job.) Accord-
ingly, for our refuting interpretation /, and each sentential variable r of A,
there is a sentential variable q of B such that either I(r) = Γ(q) or I(r) = Γ(~q).
Evidently, then, there is a substitution instance A' of A, in the vocabulary
of B, such that I(A) = Γ(A'). Since, on the (reductio) assumption presently
in force, A is undesignated on /, A' is already undesignated on /'. But we
chose &a so that it would ΛM-entail all instances of A in the B vocabulary,
including A' in particular. Since Sugihara matrices respect i?Λ/-entailment
this requires /'(&α) < 0 also, a possibility that we have already ruled out.
Accordingly, A is valid in Sp, whence p < n and B is refutable in Sn~ι. So
Sn-ι is characteristic for RM + A, as Dunn said that it would be.

We seem to have fallen a little short of the actual Dunn result, incidentally,
which is that every extension of RM, closed under -+E, &/, and substitution,
has a finite characteristic matrix. But this is only seeming. For let S be any
proper extension of RM, and let Sn be the smallest finite Sugihara matrix in
which at least one theorem of S is rejected. (For, since S is a proper extension
of RM, it contains at least one nontheorem of RM, which is rejectable in some
finite Sugihara matrix.) Then, I assert, Sn-.χ is characteristic for S (or, more
accurately, Dunn asserts). For let A be a theorem of S refutable in Sn. Then,
by what we have already shown, Sn^ is already characteristic for RM + A,
since, by leastness of n, neither A nor any other member of S is rejectable in
Sn-ι. And so, in fact, S and RM + A coincide, as is now clear. (In all of this,
incidentally, we have been tacitly avoiding the trivial extension of RM, of
which everything is a theorem. But this extension also falls under the general
rubric; its characteristic matrix consists of just 0, and that designated, trivially
validating all formulas. Letting this matrix be *SΊ, and noting that S2 is truth-
tables, Sj is characteristic for the theory that we get if we are silly to add a
truth-functionally invalid axiom scheme to RM, as is widely known.)

That was quite a digression, but it makes a nice application of our princi-
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pal lemma, when transmuted into our "RM observation". Alas, the application
is deeply ΛM-specific, and we return to our problems with R. But, in the RM
case, we got over our &/ problems by utilizing special properties of chains,
at least in the Sugihara case. For R, however, we have an outright counter-
example to the finite matrix shrinking lemma, if we try to put "R matrix"
for "R-> matrix" and "strongly closed matrix" for "closed matrix" everywhere
in that lemma.

For consider the case of the 4-diamond, now taken as a DeMorgan monoid
(with lattice connectives) and henceforth dubbed 4D. Were the modified
shrinking lemma true, there would be a homomorphic image 4Df or 4D, under
a matrix homomorphism A, such that hF is the greatest undesignated element
of 4D\ and 4Df is reduced and strongly closed. This is the situation that we
were in before, when we passed from 4D to the 4-chain, but then we were
only trying to preserve < and the intensional operations.

At any rate, suppose that there is such an A and such a 4D\ We note first
that 4D' (and any nontrivial matrix homomorphic image of 4D which is closed
and preserves D and -+) must continue to have 4 elements, in view of hT -» hf =
hT -> ht = A/-* ht = ht-+ hF = hf-+hF = hT-* hF = hF. Moreover, since A
preserves <, hF remains least in 4D' also, whence, since it is also maximally
undesignated, in 4D\ hF must be the only undesignated element in 4D'. In
particular, hf is designated, whence, in 4D', ht < A/. But this produces the
4-chain, as 4D\ which, we have essentially shown, is the only nontrivial, proper
reduced matrix homomorphic image of 4D, considering the former as an ->
matrix only. If we must attend to & also, the matrix homomorphism snaps.
For, in 4D\ hf & ht = hF must continue to hold, whence the &/ principle
fails for 4D'.

We are back now where we started—reflecting on the relations between
the 4-diamond 4D and the 4-chain 4C, considered as matrices for R. And it
is now clear that we have not one choice but two for the & and v tables to be
added to the intensional specifications on 4C, to make 4C an i?-matrix. In
the first place, we may use its ordering under its own matrix < to define &
and v on 4C; this has the effect of making / & t = t, whence 4C is strongly
closed. Or else we can continue to define & and v, even in 4C, in the 4D way,
with / & t = F. Note that, on the latter plan, a & b remains a lower bound
in 4C for a and b, but it is no longer a greatest lower bound, with respect
to the 4C matrix ordering.

Where we started, we shall end, since I see no present hope of giving
further content, for the system R itself, to the concept of "best" refutation
which it has been the purpose of this note to set out. This is doubly ironic,
since it is exactly the R+ machinery on which we have depended to set out
the concept. But not only does the key congruence condition (8) fail for R
on the lattice connectives & and v, but adding the theorems necessary to nail
down this condition produces intuitionist breakdown in the R+ case, and
classical breakdown in the R case. For consider the result of adding to R+
the new axiom scheme A -> B -•. B -> A -*. A & C ->. B 8c C. In the presence of
the Church constant T (see [10]) whose chief property is that everything
implies it, this yields Γ -* 7" -*. T -* T -*. T & C ->. Γ & C , which readily
reduces to T -•. C -> C and then to D ->. C -• C, which is what it takes to get
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/+ from R+. T itself is irrelevant to the argument (being always contextually
replaceable), whence the smallest extension of R+ satisfying (8) is indeed /+;
and of R, it is K. So the congruence condition, for the lattice connectives,
looks, and is, irrelevant. Nor shall we think any further here about what is
necessary to extend our result to implicational or other fragments of weaker
neighbors of R, such as E+.

One final point, however, is worth noting. What our principal result is,
really, is an excluded middle theorem, on what Slaney calls the Principle of
Relativity for a greatest falsehood /. Logic, we expect, should not be in the
business of telling us which is the greatest falsehood. This is partly concealed,
in relevant and other logics (e.g., K, as well as R and Curry's D), by favored
interpretations on which a sentential constant / is intended as a greatest
falsehood, and, happily, turns out to be so; AD is such an interpretation of R.
But there are other possible interpretations on which the situation simply
turns confusing; e.g., 4C, in which, although / may have been intended as a
greatest falsehood, it is in fact entailed by the least truth t\ and it is an odd
situation, which I shall leave for the metaphysicians to ponder, when the
standard truth is, on interpretation, even more false than the standard false-
hood.

In fact, the word 'false', as applied to formal theories (and, in general,
to logic) easily lends itself to equivocation. On the one hand, there is what
a theory asserts to be false—say by having A -> / o r ~A as a theorem; on the
other hand, there is what a theory simply fails to assert—by not having A as
a theorem. Only in rare—though theoretically desirable—circumstances is the
equivocation removed; for this happens when, and only when, the theory T
is consistent and complete relative to what passes as its negation.

Now it is often thought, or felt, or at least devoutly hoped, that we
have a semantical overview that disposes of these vexing questions, and which
divides real sentences (as opposed to the mere scribblings of logicians) exclu-
sively and exhaustively into true sheep and false goats. That's as may be; in
practice, God is not at our elbow, giving us hints as to how he carves up the
world. And so, relative to actual formal theories—and actual informal ones,
for that matter—it is useful to characterize what is false according to a theory
on grounds intrinsic to that theory, without appealing to anybody's sense that
his axioms are God's axioms, which, as it happily turns out, correspond to
Reality. So let us say that a sentence of a theory is directly false, according to
that theory, if its negation shows up among the theorems: and that it is
indirectly false when the sentence itself fails to make the Honour Roll of
theorems, without regard to the appearance, or nonappearance, of its negation
on that Roll.

It has been an important point, in relevant semantical analysis (e.g., in
[14]) to distinguish between direct and indirect falsehood, using the latter
to offer a kind of semantical explication of the former. What our present
result suggests, however, is that indirect falsehood can quite generally be
transmuted into direct falsehood, just by switching what counts as '/'. For,
unless a theory is to be wholly trivial, something in it will fail to be asserted.
And the import of our main result here, for Rt and the other theories for
which it holds, is that any nontheorem may be taken as the '/ ' of a suitable
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theory which rejects that formula. Moreover, this choice of / is a strongly
two-valued one; for refuting a given nontheorem B, on interpretation, at a
greatest undesignated value means precisely that, in the regular theory consist-
ing of just the formulas mapped into "true" values on this interpretation,
we shall have A -+ B as a theorem if and only if A itself is not a theorem.
Note also that the fate of the actual sentential constant /, if present, is not
involved in our analysis, despite the fact that this constant was presumably
intended to serve as a greatest falsehood. For our actual theories do not
necessarily realize our intentions, and the / that we intended should be
formally false may in fact stand high on the list of formal truths. In that case,
we may well speak of / as both true and false, the latter in the direct sense,
on what was called the "American plan"2 of semantical analysis in [11].
But we may equally well say, in this situation, that the constant / i s just not
the real / of the theory, and that the "both true and false" talk, which sounds
exciting, is in prosaic reality much less so. For, lurking behind our intuitions
as to what should be true or false, according to the intentions that we set out
to formalize, there is that which is true or false, according to what we (or our
theories) actually say. And let us not get so hung up on our formal insights,
and their delicious interrelationships, that we lose our common sense, and
begin to babble what is absurd. No more than any other sort of logics have
relevant logics made sense of what, in Reality, is both true and false. What
they have made direct sense of is our commonsense conviction, which the
paradoxes of implication belie, that our reason does not buckle under when
confronted with contraditions—or, as we might wish to put it, with what is
together asserted-true and asserted-false. But, on the latter point, as Slaney
(and, before him, Johansson) correctly intuited, what is asserted-false is
very much relative to what shall be counted as formally false, in the direct
sense. A common criterion is, "A is formally false if it implies something
repugnant". But this is clearly relative to what we find repugnant, and to
what degree we find it repugnant. (It is obvious, of course, that we may
season a theory with several / ' s , and several accompanying negations, depend-
ing on how bad we would feel if the / in question were provable. While it is
not unreasonable to have a standard /—say, the / of R—WQ can prove that /
whenever we get into difficulties, so that it is good to have fallback, unprovable
/ ' s , which, like a quarantine during an epidemic, keep the diseased areas of our
thinking from infecting its healthy parts. The runaway classical / , which says to
us "If I get sick, I will cough in your face, and bring all of thought to ruin",
is a menace to the public health of logic, and rightly belongs to the era in which
it was invented—to the 19th century, when diseases of all sorts ran riot.) Mean-
while, the conclusion of this note is that under very general conditions, which
R-> suffices to guarantee, we can pick our / as any nontheorem B of logic,
dividing the sheep and the goats around it. It will be interesting to know
whether and how far this result extends to systems not covered by this note.

NOTES

1. Although this paper does not, in general, depend upon [1], it will be helpful if the reader
has access to that book. For one thing, I shall employ its notation and notational con-
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ventions (with some adaptations too trivial, I trust, to require explicit mention). For
another, I shall cite [1] as the most convenient source for results and discussion signifi-
cant for this note. Because [1] is a conglomerate affair, to which many authors con-
tributed, imputing a result to it does not necessarily—and, in this note, usually does
not—impute that result to one of the main authors of [1]. More often, here, the results
cited are in those sections of [1] written by Dunn, while the Sugihara matrix complete-
ness proofs for RM, used in passing, are mine alone.

2. The plan is "American" because it was invented by Dunn, though Slaney has pointed out
that it was to some (small) degree foreshadowed in previous work, e.g., in Rescher's [13],
though Rescher's own interests and purposes were quite different (and, as Dunn has
assured me in correspondence, furnished no "input" to his own thinking, in refutation
of my speculation in [9] that there was perhaps some likelihood that such input had
occurred). The contrasting "Australian" plan was invented by R. and V. Routley, and
has formed the basis for most work in the Kripke-style semantical analysis of relevant
logic, e.g., in [14]. I have used both plans in my own work (the American plan in [11])
and consider them technically equivalent. On the philosophical grounds set out in [9],
however, I like the Australian plan better.
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