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The Class of Neat-Reducts of Cylindric

Algebras is Not a Variety But

is Closed w.r.t. HP

ISTVAN NEMETI

Problem 2.11 formulated on p. 464 of [ 11 ] asks whether the class NraCAβ

of all α-dimensional neat-reducts of β-dimensional cylindric algebras is closed
under the formation of homomorphic images and subalgebras or not (for
ordinals a < β).

Theorem 1 below formulates the answer for every pair a < β of ordinals.
At the end of this note some corollaries are formulated. Finally, a conjecture
is stated which seems to be provable by the constructions used in the proofs
of Theorem 1 here and II.8.6 in [12], p. 266.

Independently of us, Roger Maddux [ 13]-[ 14] obtained a partial solution
of Problem 2.11 of [ 11 ] proving that S Nr3CAβ Φ Nr3C4/3 if β > 5.

We shall use the notations of the monograph [11]; e.g., 1.5.8 refers to
"item" 1.5.8 of [11], and p. 489 refers to page 489 of [11]. We shall often
refer to items in the textbook [12] on cylindric set algebras (i.e., on repre-
sentable CAs). Since [12] consists of two parts, we shall refer to an item n
in the First Part by l.n and to an item n in the Second Part by II.π; e.g., 1.1.1
is on p. 4, and II. 1.1 is on p. 145.

Theorem 1 For arbitrary ordinals θί<β, (i) and (ii) below hold.

(i) H NraCAβ = NraCAβ.
(ii) S NraCAβ Φ HxaCAβ if and only if\<a.

Proof: In the proof we shall extensively use the notations of [11] without
reference or any kind of warning; e.g., "s ; ", "as(ij)"9 "C7Γ". All these are
collected at the end of [ 11 ] under the title "Index and symbols," p. 489.
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Proof of "if part" of (ii): Let 1 < a < β be arbitrary. We have to prove
SNraCAβΦNraCAβ.

Notation: τ(x) =<#• (s^CiX slcox).

Statement 1 Let I e NraCAβ be arbitrary. Let X Q M be such that
(Vx e X)r(x) e AtΈ. Suppose sup X exists in I . Then.sup {r(x):x e X\ also
exists in 1.

Proof of Statement 1: We shall need the following lemmas.

Lemma 1 Let a e Γ <Ξ β and i,j e β ~ Γ. Let U e CAβ. Then as(i,j) is a com-
plete one-to-one endomorphism of (SIΓH. That is, as(ij) e Ism(>(ίlΓyί, SlΓ5I).
Further, as(i,j) is an automorphism if |Γ| > 1.

Proof: We may assume i Φj since Clr^.][as(i,i)] C Id by 1.5.13(iii) and
1.5.8(i). as(ij) is a complete endomorphism of 35151, by 1.5.16. To prove that
it is one-to-one on CIΓU, it is enough to show x > 0 =» as0>J)(C(χX) > 0. By
definition,

αs(/,/) cαx = s?sjsicax = ca(dai - Cfidij - Cj{dja cax))).

By 1.3.8, 0<x=>0<dkrcιx for every fc,/ eβ. Thus,

0<x=>0<as(i,j)cax;

i.e., α5(/,/) is one-to-one on C/Γ5Ϊ. It remains to check that x e CIΓU => as(Uί)x e
C/Γ^I. This follows from 1.6.13 which implies that

Δ(«S(Ϊ,/)X) C Δx U {/,/!.

The automorphism statement follows from 1.5.17 (cf. also top of p. 195).

Lemma 2 Let \ < a < β be arbitrary. Let $ e G4β αrcd I ^ Sxα^,. Let
xeMbe such that τ(x) eAtW. Then

βs(0,1)?* = T(JC) = τ ? (x) = r 1 (x).

Proof: Let x e M b e such that r(x) e ̂ 4ίl. α5(0, l)^x is meaningful by a <β
and $ e CAβ.

(*) 0:̂ (0,1) is a complete one-to-one endomorphism on M = C7(0~α)$, by
Lemma 1.

a5(0,l)x <α5(0, 1)^!^ = 5o5?5ic1X = S%S*CιX = SQS^C^

= ^o^α^l^l^- = CQgSiCγX — S\CγX,

by (*), 1.5.8, and* = cαx.
Similarly, α5(0, l)x <5jc0x by (*), 1.5.8, x = cαx, and 1.5.10(ii) (hint: see

the proof of Π.8.6.2.1(ϋi) in [12], p. 271). Thus, as(0,l)x < τ(x) (for every
x e Cha\§). We have x > 0 since τ(x) is an atom. By (*) we have that

α5(0,l)x > 0 and αs(O,l);c e M. Since r(x) is an atom of 1, this means

as(0,l)x = r(x).

Now we prove Statement 1. Let 1 < a < β. Let I e NraCAβ. Let X C Af
be such that (Vx e X)r(x) e ̂ l ί l . Suppose that ,swp Z exists in 1. We have
to prove that sup {τ(x):x e X\ also exists in 1.
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Let St = Kvaψ for some ψ e CAβ. Let $ =df Θg^Aί. Then 1 = »*<,?
and M generates $β.

Let z = ^ sup X in s l . First we prove that

(1) z = sup Xin Sβ, too.

Suppose that y is an upper bound of X in 5β. Since *β is generated by Cl(a~β) *β,
we have that (Δ>> ~ α) =#• Δ is finite. Then C'(Λ)J; e Cl(a~β) $ = M and (Vx e X)
[x = C(Δ)X < C(Δ)j/ < y]. Since C(Δ).y is an upper bound of X in 1 , we have
z < cfA)y <y. Thus z = sup X in $β as well as in 1 .

By 1.5.16(i), (1) above implies

as(0, l)z = sup \as(0, l)x:xeX}mψ.

By L e m m a 1 w e h a v e as(0, l ) z e A/ a n d also (Vx e X ) α 5 ( 0 , l ) x e M. T h e r e f o r e ,

α 5 ( 0 , l ) z = sup {as(0, l)x:x e X\ in 1 .

By Lemma 2, αs(0, l)z = sup ί r 1 (x):x e X\ in 1.

Statement 2 For every \ <a<β there exist 51 e S Nr^C^^α^JZ C A such
that (\/x e X)r(x) e AtU, sup X exists and sup \r(x):x e X\ does not exist in 21.

Proof of Statement 2': Let 1 < α be arbitrary. MAsα denotes the class of all
weak cylindric set algebras (of dimension a) as defined in Def. 1.1.1 (vi) of [ 12],
p. 5. The full Wsa with unit V is (Sb V\ Π,. . . >, i.e., full means that the
universe is the power set of the unit, see Def. 1.1.1 (in) of [12], p. 5. The unit
of a CAa is its greatest element (see p. 162).

Q denotes the set of rational numbers. We shall construct a Wsa with
base Q. Let 6 =df <0:i < α>. ® denotes the full Wsa with unit α Q ( 0 ) , see Def.
1.1.1 of [12], p. 5.

a=df\seaΦ:s0+\= X) sΛ.

as =df \s\, for every sea.

K=dfS%i(ί)\a,as:sea\.

Now we show that this 21 has the desired property with X = \as :s e a\. Clearly,
a = sup X in 21. Since 21 e Wsa, we have 2ϊ e S NraCAβ for every β > a, see
p. 268 and 2.6.26.

It is easy to see that for every seawe have

τ(as) = \(suSo,Si)1<i<al

O f c o u r s e , τ(as) e AtW for every sea. L e t

b= U \τ(as):sea\

= s e a Q ( 5 ) : 5 l + l = £ sΛ.

Now we show that sup \τ(as):s e a} does not exist in 21. First we observe that

{sj e A for all s e α Q ( δ )
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since

\s\ = cA(s0, (so + 1 - Σ) sΛ,Si) \'CO\((Σ sλ-l,sλ >.
' * \ K/<α ' 'l</<α> l\W/<<* ' 'l<i<J

Now suppose y = swp {r(βs):,s e #!. Let z e a Q ( 0 ) ~ b. Then r ( ^ ) < ~{z! for
every sea, thus >> < ~{z\. Hence y < b. Since y > Z> trivially holds, we have
y = b.

We have seen that if y = sup {r(as):s e a\ exists in 21, then y = b. Thus, it
suffices in order to show that sup \τ(as):s e a\ does not exist in 21 to show
bfA.

We show & ^ A by elimination of cylindrifications.

Definitions

Pol =df I \s e *Q ( 5 ) : t + ̂  (ηSi) = 0> :{ί,r, : i<a\Q Q I

^ o ^ =,// {p e Pol'Xli <a)cjp = pi

Remark:

{α,Z?,l,Jί7:/,/eα!CPo/,
a.bfPo^, 1 e P o l a n d
[{d/y :/ ̂ / , /,; < OL\ C Po/< iff α > 3].

G =,// {α, -α, p, -p, c(Γ){0i, -c ( Γ )ί0!:p e Po^ U \dol\; Γ e 55 jot, 0 e Γl.

'/<π *

Clearly, G** 2 |fl,βs:Hfll.
We shall show that G** is closed under cylindrifications, i.e., that G**

is a subuniverse of (5. We shall also show £ ̂  G**. These statements show that
Z? ̂ ^4, as wished.

First we prove b $ G**. Suppose fe = Σy £ι a n ( ^ f̂ /:z ^ ^ — ̂ * Then

gj Q b for every i <n. Let

P(0) =d/ ίp e Po^icop Φp\Ό \doιl

Ci=d/UeG*:gCfl |

^2 =αf/ ί̂  €• G*:^ ̂  α and ̂  C p for some p e P(0)\

Gi =df Ipr... -pk'k e ω , \pu ...9pk}QG- (\a\ U P(0))l

Clearly, Gt U G 2 U G 3 = G * .

Some facts:

(1) UgeGl3ndgCbthengCd0l.

(2) If g e G3 and g C b then g = 0.
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(2) can be seen as follows: Let g = pt- . . . p# where \pXi. . .,pk] C G ~~
{{a] U />(0)). Suppose g Φ 0. We show that g £ 6.

Let z e g be arbitrary. Define

LPJ=4/M ro\ 0 ^ < α /) ( i<a )

(O otherwise

Let r e Q ~ ( ( | J [pΛ] J U [-6]} be arbitrary. Now
\\1</<A: / /

z? =df ((* ^ f<O,zo)i) U j<O,r>|) eg-b.

(Note that if c ( Γ ) ί0 ! e G or -c(r){0} e G then 0 e Γ.)
Let

i<nχ /<«2 ϊ<i3

where ίg/:/ < «y ! C G7 and g/ C b for every / < nj, j = 1,2,3.

We show that 6 =£ 6. By (1) and (2) above, G Q Σ Pi f o r s o m e

i<n

ipi'.i < n\ C ?(0). Now we show b <£ ΣE for every finite £ C Po/(0). Let
L =df \p e POFICQP Φpl Note that if a > 2 then ?(()) = L, and P(O) = L U jd01}
otherwise. If a = 2 then 6 C -c/0 1, otherwise ^(0) = L\ hence it is enough to
prove b φ ΣE for every finite E Q L, which is true because of the following.

It can be seen, by linear algebraic arguments, that for every ordinal a,
for every n e ω and for every system

Ό+ Σ fro/*/) = O

i<a

tn + Σ Om*i) = 0
/<O£

of equations such that Vj < n (3i < oήrμ = 0 and r ;0 ^ 0 the equation

Σ ^i = 2 * ! + 1 has a solution 5 in the weak space α Q ( 0 ) such that, for every
i<oc

j <:Π, s is πoί a solution of ίy + £y (O'/^^ = ^ (This is true for finite α as well
i<a

as for infinite a.)
This proves 6 Φ b. Thus, Z? ^ G** is proved for every 1 < a.
Next we show that G** is closed under cylindrifications. Let/ e α: and

g e G* be arbitrary. We have to show cβ e G**. (This is enough since cy is
additive.) We may suppose that

g = e Pί . . . T V - Λ -Λn :r-*(r1)ί5} . . . - c ( Γ N ) l δ l

where
e e \a, -a, 1!
n9m,Ne ω



404 ISTVAN NEMETI

pi9 P{ e Pol* U {d01} C Pol, CjPi Φ pi9 cjPi Φ Pt

y e ί c ( Δ ) ί 0 ! , 1 :Δ e Sbωa, 0 e A, ϋ A\

{Γ l 5 . . ., ΓN\ C ( χ e Sbω0L:j 4x,0e xl

Distinction of cases

Notation: Let p e Pol.

p(j\0)=dfCj\sep:s; = 0\.
(-p)0Ί0)=d /-(p(/!0)).

Note that p(j\O) e Polκ for every p e Pol, since

pU\0)=\seaQ®:t+ Σ Ί*/= θ|,

Case/. ^ = c ( Δ )l0i.

Cjie-Pi' ...'Pn—Pι'... '-Pm'C(A)\0\'-c(Γl){0\' . . . - - ^ r ^ i O ! )

= eOΊO) Pl(/IO) . . . •PaOΊOV-ΛOΊO)-. . . '-Pmϋ\0>CjC(A)\0\
'-cic{Γl)l0\'...-cίciΓN){0L

Case II. y=\.

Cjie-Pί . . . -Pn-Px . . . —Pm'-c{Tι){0\' . . . --^r^iOO

= f(e) ΓίllU CjiPk Pi)) ' ( Π CjipΓ-Pi)) - ( Π Cj(pk -ciΓOiO\))) ,

wheie

/(fl) =#( Π 9(fl Pife)) ( Π Cjia-Pi)) ( Π cf(a-ciTi)i0l)),

f(-a)=df Π Cjipk -a), and
k<n

Note that for every p,q e Pol there are p\ q\ p", q" e Polκ such that cj(p-q) -
p'-q', Cj{p'-q) = p" ~q", and if e Δp ~ Γ then

Cj(P'-c(Γ){0\) = -p(j\O) + p(j\0) -cfciΓ)i0\.

By this, Statement 2 is proved.
Statements 1 and 2 imply that S NrαCAβ Φ NrαC4^ for every 1 < α < β.

Proof of "only if part" of (ii): Let β > 1 be arbitrary. We have to prove
S NηCAβ = NηCAβ9 for / = 0,1. Nr0C4^ = BA = CA0, by 2.6.30(ϋi) (cf. p. 171
too). Thus S NroCi40 = Nr0C4^.

Now we prove NrχCAβ = CAV Let S e C4j be arbitrary. We prove

8 β Nr^CV S i n c e CAι = S P C 5 i ( c f P 1 7 1 ) '
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B ΞS 8 ' C p 8/
le/

for some {8.z : ieI\Q Csλ and for some 8'.
Every algebra 8/ e CSΊ is isomorphic to a Csj having only infinite or empty

sets as elements. Thus we may suppose that (Vz e Γ)(\fb e Bf)[b = 0 v \bI > ω].
For every / e /, let ί// =<#• U 5 / = lB j. and let $βz denote the full Cfy with base £/z .
L e t ? = d / PSp/#

ί e /

Now we define a one-to-one homomorphism h\ %' >—• StojSβ. Let x e i?z .
Then x=df\s€ βUi:soex\, and Λ«x/>/e/) =df <Jc,>/6/. Clearly, A: » ' > - > » « ! ? .

Let X = d / A*5' = ih(x):x e B'l, and let a =df 6g(?5)X. Now 8 ^/z*B' C
3^^!^. We show X = A/ViS. 21 is a monadic generated CAβ since (Vx e X)
Δ (^ }(x) C 1. Thus we can apply 2.2.24 which states that

Nr,n = c/^ 1 } a = sg( B U ) ( J Γ u c),

where

C= | c ω (3( fc X K) - Π Jλx):κ < ( β + 1) Π ω, x 6 x\.

(This is true because X is closed w.r.t. the Boolean operations of 21 and Sχ is a
Boolean endomorphism by 1.5.3.)

Now we show C C J ,

Notation: Sκ(x) =^/ c(κ)(J(/<: X K) Π ^ )
\ λ<κ /

It is enough to show that &κ(x) = cox for every K, and x e X, since X is closed
w.r.t. c0.

Coordinate wise: 6K«i/)/e/) = <6κ(jcz )>ze/.

Let / e / and let OΦxfe Bt. Then

5λ(iz) = ί5eί3C/z:1sλ ex/1.

Thus S κ (i/) = 1 = c0Xi, since |JC/| > ω. Further, i6K(0) = 0 = c oθ. By these
C ί Xis proved.

Now, iV^a = X, since X is closed w.r.t. the Boolean operations of a, i.e.,
8 s ft*8' = ΪUja , which implies 8 e N r j C ^ . By this, C4j = tirxCAβ =
S NrjC4β is proved.

Proof of (i): Let α < j8 be arbitrary ordinals. We have to prove H NraCAβ =
NraCAβ. Let 21 e N ^ C ^ . Then 21 is the generating neat-reduct of some
8 e CAβ, i.e., 21 = ̂ ϊ α 8 and A generates 8 . Let R be a congruence of 21. We
have to prove that 21 /R e NraCAβ. By 2.3.8 R has an extension Rr to 8 such
t h a t Λ ' e Co 8 a n d Λ ' Π ( ^ X^) = R. Now a/Λ Cκ« α (8/Λ') .

We shall show U/R = ϊlαία(8//?'). LetbeB be arbitrary. Suppose (6/Λ') e
Λfrα(8/Λ') = C/ ( α^Λ(8/Λ'). It is enough to show that ((&//?') Π ^4) ^ 0 since
then

{<fl/Λ,fl/Λf>:fl€i4}:a/Λs»«β(B/Λ').
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Since A generates B and A = C7(0~α)8, we have that (Δb ~ α) is finite. Let
Γ =d/ (Δ& ~ α). Now Δ(c(Γ)fr) C α and thus C(Γ)& e Cl(β~a) B = A Since
(6/Λ;) e C/ ( α^)(8/Λ') implies c(Γ)(b/R') = (6/Λ'), we have c(Γ)Z> e (*//?').
Thus c ( Γ ) δ e (δ/Λ') Π 4 . This proves H{ 81 C tiraCAβ which means H N r ^ C ^ =
tiraCAβ since a e HraCAβ was chosen arbitrarily.

By these, the theorem is proved.

Notation: ?rK denotes the class of all isomorphic images of all reduced
products of elements of the class K (cf. 0.3.62(i)).

Corollary 2 Up MraCAβ = Pr NΐaCAβ = HraCAβ, for every oc<β.

Proof: P firaCAβ = tiraCAβ, by 2.6.32(i). By definition, any reduced product
of a family <a., :/ e /> of algebras is a homomorphic image of their direct prod-
uct. Thus for any class K of algebras, PrK C HP K (cf. 0.3.69(i)). Now,
Theorem 1 (i) completes the proof.

Corollary 3 CAX = Nrj CAβ for every ordinal β > 1.

Proof: This follows from the proof of the "only i f part of Theorem 1 (ϋ).

Remarks: Theorem 1 is the solution of Problem 2.11, p. 464 (see Remark
2.6.33). Corollary 2 is an improvement of 2.6.32(i). Corollary 3 is an improve-
ment of 2.6.39. Further, 2.6.46 can be improved by adding that

g* δ C4 α = 8*δNrαG4p iff CAa = NrαC4β,

for arbitrary δ and a < β.

Corollary 4 Let\<a<β. Then S KraCAβ φ Uf Up tiraCAβ.

Proof: In the proof of II.8.8 in [12], p. 275, a first-order formula φ was
exhibited and it was proved that NraCAβ \= φ but for the t l e ^ Π S HraCAβ

constructed in the proof of Statement 2 of the present paper 21 l£ φ (this
formula φ was denoted by Vy<βy\ψ(y&y\) in [12]). This claim a t£ φ was
proved immediately below II.8.8.1 in [12].

Below we hint that the results of this paper are not only about algebraic
logic but also have implications in logic, e.g., in abstract model theory (which
is sometimes called soft model theory). Algebraic logic for abstract model
theory was developed in [l],[9],[3-5]. The class Lra of locally finite regular
cylindric set algebras was introduced in [ 2 ], [ 1 ], [ 15 ] to investigate connections
between logic (first of all model-theory) and G4s. (In some of the quoted
papers, the adjective "locally /-finite" was used instead of "locally finite
regular". The class Lra was denoted by German L in [2] and by script Lυ in
[1]. See also the note above Section II.2 in [12], p. 153, in this connection.)
It was shown in the quoted papers that Lrω coincides with the class of cylindric
algebras corresponding to models of first-order logic (see, e.g., the function h:
Models -> Lrω defined on p. 30 of [1] or Proposition l(ii) on p. 564 of [15]).
By applying the Cantor-Bernstein argument to Proposition l(ii) of [15], we
obtain an isomorphism h: Models >-*> Lrω definable in ZFC by an absolute
formula without parameters. More information on the connections between
CAs and logic can be found in [15] and [9], especially on pp. 564-572 and pp.
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601-603 of [15]. It turns out there too, how and why cylindric set algebras
constitute that part of algebraic logic which corresponds to the part of logic
called model theory.

In IL8.9 of [12], SP Lra $ NraCAβ for β > a > 1 was. proved to be a
corollary of Theorem 1 of the present paper. In view of results in the above
quoted works, this corollary has implications in logic. Note that Lra £ Lfa.

To see that the above corollary is not immediate by the proof of
Theorem 1, we formulate Proposition 5 below.

Notation: Let K be a cardinal and K a class of similar algebras. Then P ^
denotes the class of algebras isomorphic to fc-complete reduced products of
members of K. Note that Pr

ωK = PrK.

Proposition 5 Let a> ω. Then the Wsa 21 constructed in the present proof
of Theorem l(ίi) is such that 21 4 SPr

ω+Lfa. Further, (Wsa Π Dca) ψ SPr

ω+Lfa.

Proof: Let q be the ω+-ary quasiequation (/\\c2nx - y:n e ω\) -^ x ~ y.
Clearly Lfa 1= q and hence by Corollary 4 of [7], p. 33, we have SP^+L/α t= q.
But 21 Ψq and Wsa Π Dca ψ q.

The class Wsa C CAa was introduced in the proof of Statement 2. The
class Ci£g of regular cylindric set algebras is investigated in [12]. By passing
we note that Lra = Cgg Π Lfa.

Corollary 6 Let β > a > 1. Then

(i) Csr

a

eg $ Nr^CAβ
(ii) Wsa $ NraCAβ.

Proof: By the proof of Corollary 4, the Wsa 21 constructed in the proof of
Statement 2 in this paper is not in Uf Up tiraCAβ. Hence Wsa £ Uf Up NrαG4β,
proving (i). 1.7.13 of [12], p. 98, states Wsa C \Cgg. This proves (ii).

For more and stronger corollaries of the present proof of Theorem 1, see
Section II.8 of [ 12], pp. 261-309.

The class Crsa was defined in [12]. The class Crs™ of rectangular Crsas
was defined in [10], the following way.

Definition 1 Let 21 e Crsa. We define 21 e Crg to hold iff I51 = PF for some
function F. Note that PF= PieDoiF)Fi.

In [10] Crs™s were called "cylindric set algebras with diagonal" but
that name was already reserved for other purposes in [12] and [11]. For any
class K of algebras similar to CAβs we let NraK be as defined in Definition 3(ii)
of [15],p. 5 7 4 , i f α < β .

Proposition 7 Letl<ot<β. Then \Crs™ = NrJCrsβ

c.

The proof is the same as that of Proposition 5 (iii) in [15].

The theory of CAs was generalized to a more universal algebraic frame-
work in [3-5]. The basic concept there is a system of varieties definable by
schemes. It appears that the present Theorem 1 does not generalize under the
conditions given there. For example \Crs = (ICrs^'.a. e Ord) is a counterexample
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to the generalized version of (ii) of Theorem 1, since by Theorem 24 and
Proposition 9 of [15], \Crs is a system of varieties definable by schemes, but
\Crsa = Nra\Crsβ for all β > a > 1 holds by Proposition 5(iϋ) of [15]. It would
be interesting to know the necessary conditions for the present Theorem 1 to
generalize.

Other kinds of universal algebraic generalizations of neat-reducts (i.e., of
the operator Nrα) are found in [6].

Conjecture 8 Let β > a > 1. Then we conjecture that NraCAβ is not ele-
mentary. That is, we conjecture Uf NraCAβ φ NxaCA$.

For α = 2 this conjecture is proved to hold in II.8.6 of [12], p. 266. Cf. Prob-
lem 2.2 of [11], p. 463, and Problem II.8.7 of [12].

Bibliographical remark: The reference [AN4] on p. 314 of [12] refers to
the present paper.
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