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1 Introduction Occasionally in mathematics, and especially in various
fields of formal logic, there arise various questions of alternate axiomatization.
In the equivalential calculus, for example, there are formulas that are known
to be strong enough to serve as single axioms. In [15] Peterson gave various
possible shortest single axioms for that calculus. With the 10 given there
and the one found by Kalman [3], there arose a question concerning the
existence of any additional formulas that might also be shortest single axioms.
There remained seven formulas yet to be classified in that regard [15].

In this paper we show that each of the four formulas XJL, XKE, XAK and
BXO is too weak to be a single axiom. Although the corresponding proof and
discussion of the remaining three unclassified formulas are deferred to a
later paper, we remark that XCB is also too weak but both XHK and XHN are
each "new" shortest single axioms.

The method for obtaining both the results presented here and those that
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are deferred rests heavily on the use of an automated theorem-proving program.
This program is a general-purpose program in that it has been and is used to
study questions from various fields of mathematics and logic. Before this
study was made, proofs obtained with such programs were for theorems
naturally phrasible in the first-order predicate calculus. This study, on the
other hand, required proving theorems of a higher order. This additional
requirement resulted from the intent of examining the full set of theorems
deducible from a formula in order to show that certain known theorems are
absent from the set. Since, for each of the formulas under study, the set of
deducible theorems is infinite, the direct examination thereof is impossible.
To cope with such infinite domains and remain within the province of the
existing theorem-proving program, a new methodology was developed.

For each of the four formulas, use of the program led to the discovery
of a corresponding finite set of schemata. The individual sets of schemata
each respectively characterize the set of theorems deducible from the par-
ticular formula under study. Although this treatment of infinite domains
extends the scope of automated theorem-proving programs, its more significant
aspect for the logician is its generality. Evidence of the generality of the
method is provided by applications to similar problems in both the R and
the L calculus [4] and is covered in a later paper.

Four aspects of the method given in this paper are worth noting. First, for
those four formulas that are proved here too weak to be a single axiom, the
method yields a characterization of the theorems deducible from them in terms
of a finite set of schemata. Second, all formulas are treated in a uniform
fashion. Third, for each of the seven formulas studied, the method is used to
establish either the inadequacy or the adequacy of the formula as a single
axiom. For example, XJL is inadequate, and XHK is adequate. Fourth, other
than that which was required to produce the existing theorem-proving program,
no programming was required to obtain the results.

In the interest of providing an understanding of the potential value of
such a program and thereby suggesting possible alternate uses of the computer
in the study of formal logic, we provide a brief discussion of how the program
was used to obtain these results. We include the discussion of the solution of a
rather different problem than that of the consideration of infinite domains.
Specifically, we show how the program can be used to find shorter proofs for
already proved theorems. The example chosen is XGK. Kalman [3] proved
that XGK is a single axiom for the equivalential calculus. We briefly discuss
the heavy use of Kalman's proof by the program in its successful attempt at
obtaining an alternate proof—a proof roughly half the length of Kalman's.

The techniques given in this paper, especially when coupled with the
knowledge that no additional programming is required by the researcher,
may suggest the feasibility of attacking additional open questions with the
assistance of an automated theorem-proving program.

2 Overview

2.1 Background The focus here is on the equivalential calculus. The
elements of that calculus are the expressions that can be recursively well-
formed from the variables, x, y9 z, w,. . ., and the 2-ρlace function E. The
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theorems of the calculus are just those formulas in which each variable therein
occurs an even number of times [14]. There are individual formulas there
that are strong enough to serve alone as axioms. It has been proved [15] that
the shortest possible single axiom must contain at least 11 symbols, and there
are in fact formulas of that length that suffice. There are 630 formulas of
length 11, i.e., that contain 11 symbols. Of these, 11 have been shown to be
single axioms [3,13], but 612 have been proved too weak. Of the remaining
seven, we show here that four are also too weak. In a later paper, we will show
that two of the seven are addition "new" shortest single axioms and that the
last of the seven is too weak. We thus disprove the conjecture [5] that no addi-
tional shortest single axioms would be found.

The standard rules of inference in this calculus are the substitution rule
and the rule of detachment [17]. However, studies thereof are often conducted
by means of the inference rule of condensed detachment [15]. By a remark
by Kalman [16], we have the fact that all theorems in the calculus can be
obtained by substitution into some formula that can in turn be obtained by
condensed detachment. Since there exist single axioms for the calculus in
which each variable therein occurs precisely twice, and since Lemma 2.2.1
establishes the fact that the successful condensed detachment of two formulas
of this type yields a formula of the same type, we choose in this paper to
confine our attention to the use of condensed detachment. We also, therefore,
restrict our attention to those theorems of equivalential calculus in which each
variable therein occurs twice.

Definition For the two formulas E(A,B) and A, detachment is that in-
ference rule that yields the formula B.

Definition For the two formulas E(A,B) and A' which are assumed to
have no variables in common, condensed detachment is that inference rule that
yields the formula 2?", where B" is that which is obtained from detaching
E{A\B") and A", and where E(A",B") and A" are obtained from E(A9B) and
A', respectively, by the most general possible substitution whose application
forces A and A' to become identical. Condensed detachment is denoted by CD.

Thus condensed detachment, when it applies, takes two formulas and
renames their variables so that they have no variables in common, then seeks
the most general substitution that can be found whose application will permit
a detachment, and finally applies detachment to the pair of formulas after
the substitution has been made. For example, the condensed detachment
of E(E(E(x,x)9z),z) with E(E(x,y),E(y,x)) yields E(x,x) and also yields
E{x,E(E{y,y),x)), depending on the order in which the premisses are con-
sidered.

For the remainder of the paper, a "theorem" of equivalential calculus
will be a formula in which each variable occurs twice. Such formulas will be
called pure. The study of the calculus will thus be entirely in terms of pure
formulas.

2.2 Definitions and notation We now turn to the formal treatment. We
adopt the following notation and employ the following definitions.

The formulas of the equivalential calculus will be written in terms of the
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2-place function, E, and the variables, x, y, z,. ... However, when two formulas
are considered simultaneously (as in condensed detachment, for example),
we assume that no variables are shared regardless of the syntactic form. We
refer to the equivalential calculus as EC. Using the notation of Peterson [15],
the four formulas to be studied are XJL, XKE, XAK and BXO.

Definition Two well-formed expressions (which are assumed to have no
variables in common) are said to unify [18] if there exists a substitution that
can be applied to them which makes them identical.

Definition Except for alphabetic variancy, the most general unifier (MGU)
is the most general substitution that forces a pair of unifiable expressions to
become identical.

Definition The most general common instance (MGCI)—within alphabetic
variancy—for two unifiable expressions is that expression yielded by applica-
tion of the MGU.

Definition If the condensed detachment of E(A,B) with A' yields B",
then E(A 9B) is called the major premiss and A' the minor premiss.

By convention, when we say "condensed detachment of A with B",
henceforth we shall mean that A is the major premiss and B is the minor.

Since the condensed detachment of E(A,B) withal' requires finding the
most general common instance, if any exists, of A and A'9 we have the follow-
ing definition.

Definition If the successful unification of A with A' is represented by the
set of pairs -ίz /z/ where ί, are well-formed expressions and z, are the variables
in A and A', then tj are called the replacement terms of unification, or simply
the replacement terms. When E(A,B) is condensed detached with A', those
replacement terms tf whose zz are present in both A and B are called key
replacement terms.

Thus the formula yielded by the successful condensed detachment of
E(A,B) with A' is obtained by replacing those z, in B that are also in A by the
corresponding key replacement terms. For example, the condensed detachment
of E(jE(E(x9x\y),y) with E(E(x,y),E(y,x)) yields E(x,x), where the key
replacement term is E(x,x).

Definition A well-formed formula of EC is called pure if each of its distinct
variables occurs exactly twice.

Definition When a variable in a well-formed formula A of EC occurs
exactly once in A9 that variable is called isolated and is usually denoted by w.

Definition A well-formed formula of EC is called almost pure if it contains
exactly one isolated variable and, except for the occurrence of the isolated
variable, the formula is pure.

For example, the formula E(E(x,x),w) is almost pure, and also the
formula w by itself is almost pure.
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Definition The keπιel(s) of a pure formula are those (not necessarily
proper) subexpressions that are pure formulas but that properly contain no
pure formulas. Kernels are usually denoted by K, K\ . ...

Thus we have: E{y,z) is not pure; E(E(x,x),E(y,y)) is pure, where its
only kernel (exclusive of alphabetic variancy) is E(x,x)\ and the formula,
E(E(x,y),E(y9x))9 is itself a kernel.

Definition For any formula, A, the closure of A, denoted by CL(A), is
the smallest set of formulas that contains A and that is closed under condensed
detachment.

Lemma 2.2.1 The successful condensed detachment of two pure formulas
yields a pure formula.

Proof: The proof is omitted. A similar result is found in Belnap [1] after
point 12 in the proof of the lemma.

We therefore have the following remark.

Remark 2.2.1: If A is a pure formula, then all elements of CL(A) are pure.

Finally, in order to study the precise nature of CL(A) for the four choices
of A in question, we introduce the following definitions.

Definition Let A be any pure formula of EC, and let C be any nonempty
set of well-formed formulas of EC. Then C is called a containment set for A
when: A is in C; all elements of C are pure; and C is closed under condensed
detachment.

Definition Let A be any pure formula of EC, let C be any containment
set for A, and let U be any nonempty set of well-formed expressions from EC.
Then U is called a unification set for A and C when: every element of U is
almost pure; every element of U contains exactly one isolated variable, which
is denoted by w; and the successful unification of any element of U with any
element of C yields a replacement term for w that is itself an element of C
(Although the first property of unification sets implies the second, we choose
to have both given explicitly because of extensive use of isolated variables in
the following sections.)

The concept of unification set is introduced because of the close connec-
tion between condensed detachment and unification. Since both particular
unification sets and particular containment sets occurring in later sections
are defined in terms of schemata, we do not restrict the application either of
unification or condensed detachment to just the formulas of the equivalential
calculus. In fact we will in most cases be concerned with application of either
to various schemata. For example, if the schema f(A) = E(E(x,A),x) and the
schema i(z) = E(z,z), the condensed detachment of f(A) with i(z) yields A.

We can immediately give a trivial example of these definitions. Let A
be any pure formula, let Cbe CL(A), and let U consist of the single expression,
w. Then C is a containment set for A, and U is a unification set for A and C.

Although we define a "new" containment set and a "new" unification
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set for each formula to be studied, we omit notationally their respective
dependence on the formula in focus. A similar remark holds for the various
schemata and kernels relevant to the corresponding study.

2.3 The problem and the method of solution The problem is that of con-
sidering a formula and the possibility that it may be strong enough to be a
single axiom for the equivalential calculus. One can prove that the selected
formula is a single axiom by merely deriving from it by repeated use of con-
densed detachment some known single axiom. On the other hand, if it is too
weak, establishment of that fact might proceed by showing that some known
theorem cannot be thereby deduced.

Since in general from a given formula one can deduce an infinite number
of theorems, direct examination of that set is not possible. Thus the problem
of showing a formula too weak to be a single axiom is potentially harder than
proving it strong enough. With much assistance from the automated theorem-
proving program [10,19,25,26], we found that a finite set of schemata exists
that circumvents the difficulty of examining the infinite domain of interest.
More precisely, for each of the four formulas considered here (XJL, XKE,
XAK and BXO), there exists a finite set of schemata that completely charac-
terizes the theorems deducible from the formula. Not surprisingly, the nature
of the respective sets depends on the particular formula under study.

To prove that a formula A of EC is not a single axiom, it is sufficient to
prove that some containment set C for A excludes a known theorem, since
such a C contains all formulas deducible from A. For each of the four formulas
A at hand, we do this by presenting a C such that every formula in C contains
a variant of A— which is itself a kernel—or, in the case of BXO, a variant of A
or a second kernel, namely, E(x,E(y,E(x,y))). Thus in every case, C fails to
contain E(x,x), a known theorem. (As an aside, it can be proved that C =
CL(A) for all four formulas, although this equality is not crucial here.)

In each case the required C, which is infinite, is inductively defined in
terms of a finite set of schemata. That C is closed under condensed detachment
is proved by conducting a case analysis (based on these schemata) for the
possible forms of the major premiss coupled with a study of the corresponding
condensed detachments. When such a CD is attempted, a subformula S of the
major premiss is considered for unification with the minor premiss. To study
the appropriate unifications, an infinite unification set U is also inductively
defined in terms of a finite set of schemata. Then various unifications of
elements from C with elements from U are considered. The consideration of
such unifications for these formulas often reduces to yet further unifications
whose MGCI is smaller in length. Thus the proof that C is closed relies on an
induction argument based on the length of the MGCI. (The schemata used to
define C and U were discovered with the aid of the automated theorem-proving
program by attempting unifications on partially defined C and U.)

For each of the four formulas, we first prove a lemma that shows that the
unification of an element of U with an element of C yields a key replacement
term that in turn is an element of C From this, it is easy to show by case
analysis that the successful CD of two formulas in C is also in C.

Upon its completion, this study yields the following for A, where A is
respectively each of the four formulas under investigation.
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1. C is closed under condensed detachment
2. C contains CL(A)
3. C is a containment set for ̂ 4
4. U is a unification set for A and C
5. With the exception of BXO, the only kernel to be found (up to alpha-

betic variancy) in any element of C is A itself; for BXO a second kernel
appears, namely, E(x,E(y,E(x9y)))

6. Among the theorems of EC, C does not contain E(x, x)
7. C = CL(A)\ (A strengthening of 2 but with some detail omitted), and,

because of (6),
8.̂ 4 is too weak to be a (shortest) single axiom for the equivalential

calculus.

Because purity of formulas is heavily relied upon throughout the treat-
ment given here, we give the following word of warning. When defining various
C and U, we implicitly assume that the various schemata employ variables
distinct from those occurring in their arguments. For example, if h(w) =
E(y,E(w,y)), then h(h(w)) = E(z,E(E(y,E(w,y)),z)), as occurs in BXO.

3 Examination of four possible shortest single
axioms for equivalential calculus

3.1 Ground rules In this section we show that each of the four formulas—
XJL, XKE, XAK, and BXO— is too weak to be a (shortest) single axiom for
EC. For each, we are content merely to define the appropriate containment
set, unification set, kernel(s), and schemata and give the necessary CD argu-
ments in terms of unification. The proofs are contained in various tables.

Before turning to the first of the four, we give the following remark but
without the tedious and straightforward details of its proof. The remark is
relied upon throughout the rest of this section.

Remark 3.1.1: If E(A,B) and E(A',Bf) can be unified, where A, B, A', B'
are all well-formed expressions of EC, then the pairs A,A' and B,Br can be
respectively unified. Furthermore, if σ is a most general unifier of A and A',
and if the most general common instance of E(A,B) and E(A',B') is of length
p, then oB and σB' unify and the length of their most general common instance
is strictly less than p. In addition the replacement terms that occur in the unifi-
cation of σB and oB` are the same (except for possible variable renaming) as
their correspondents that occur in the unification of E(A,B) with E(A',B').
By symmetry, the respective roles of A and B and A1 and B` can be inter-
changed with the corresponding remarks for a most general unifier r.

3.2 XJL In this section we prove that

XJL = E(x,E(y,E(E(E(z,y),x),z)))

is too weak to be a single axiom for the equivalential calculus. The proof pro-
ceeds by first letting XJL be denoted by K.

The schemata to be used in the definition of C are:

l.K = XJL = E(x,E(y,E(E(E(z,y),x),z)))
2.f(A) = E(y,E(E(E(z,y),A),z))
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3.g(B,A) = E(E(E(z,B),Alz)
4.i{A,B) = E{Aβ)

where A and B are pure formulas and also f(A), g(B,A), and i(A,B) are pure.
Note that K is indeed a kernel.

Definition Let Co consist of K alone. For / = 0, 1, 2,. . ., let C/+1 be the
union of: C, ; all f(A) with A in Q; all g(£,,4) with A and £ in Q; and /G4,£)
with 4̂ and 2? in C, . Then let C equal the union over / of Q.

The schemata for U are:

l.w
2. f(S) = £(j;,£(£(£(z,;0,S),z))
3.gOM) = £(£(£(z,S),,4),z)
4.g(£,S) = £(£(£(z,£),S),z)
5.i(S,B) = E(S9B)
6.i(A,S) = E(A,S)

where 4̂ and B are pure formulas and where S, f(S), g(S,A), g(B,S), i(S,B),
and i(A,S) are almost pure formulas with isolated variable w.

Definition Let Uo consist of the expression, w, alone. For i = 0, 1, 2,. . .,
let Ui+ί be the union of: Ut\ all /(S) for 5 in Uf all £(£,£) for S in £// and B
in C; all g(£,S) with S in £// and B in C; all /<£,£) and all i(B,S) with 5 in
Uj and 5 in C. Then let C/ equal the union over / of C//.

Lemma 3.2.1 // the pair S in U and BQ in C are uniflable, then the key
replacement term t for the isolated variable w in S occurring in the unification
is itself an element of C.

Proof: Let S be an element of U and BQ be an element of C. If S and Bo are
not unifiable, there is nothing to prove. Now assume that S and Bo are uni-
fiable. Then 6* and Bo have a most general common instance. The proof is one
of induction on the length of this most general common instance, where
length is defined as the symbol count. If the length, p, is one, the lemma holds
vacuously since all elements of C have length at least eleven. Next, assume by
induction that the lemma holds for all unifiable pairs whose MGCI is of length
less than p, and let S and Bo be unifiable with MGCI of length p. The proof is
one of case analysis on the possible forms for both S and Bo. The results of
this case analysis are given in a table below in terms of schemata rather than
in terms of formulas. The columns are indexed by the possible forms for S,
while the rows are indexed by those for Bo.

Each entry in the table reflects the outcome of consideration of a pair
of schemata for unification. There are three possible outcomes:

1. the unification fails
2. the unification succeeds, and the key replacement term is in C and is

found in the corresponding table entry
3. the attempted unification reduces to the attempted unification of

another pair of schemata, where the pair is found in the corresponding
table entry.
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In this third case, the length of the MGCI of the formulas represented by the
second pair is strictly less than that of the formulas represented by the original
pair under consideration. Remark 3.1.1 comes into play. If this third case
terminates with successful unification, we appeal to the induction hypothesis
to prove that the key replacement term is in C

Before presenting the table, we cite one example, taken from the table,
to illustrate each of the three cases.

1. Consider S = f(T) = E{yME{E{x,y),T\x)) and Bo = g(B}D) =
E(E(E(z,B),D),z). Clearly, y must become E(E(z,B),D). But z must
then unify with a term containing z itself, which is impossible.

2. Suppose S = w and Bo = K. Then the key replacement term is K itself.
3. Now suppose that S = f(T) and Bo = f(B). The unification question

immediately reduces to one for T and B. Recall that we are assuming
purity of f(B), almost purity of f(T), and disjointness of the sets of
variables for/(Γ) and/(5).

XJL 1 K f(B) g(B,D) i(B,D)

w Γ~^ JΪB) g(B,D) i(β,D)
f(T) failure T B failure g(B,T);D
g(T,A) failure failure T B i(i(D,T),A);B
g(A9T) failure failure T D i(i(D,A),T);B
i(T9A) f(T);A g(T,B);A T;i(i(A,B),D) T B
i(A,T) T;f(A) T;g(AfB) mT,B\D)\A T D

Examination of the table completes the proof.
Lemma 3.2.1 establishes that U is a unification set for XJL and C. More

importantly, this lemma enables us to prove the following theorem that in
turn shows XJL too weak to be a single axiom for EC.

Theorem 3.2.1 The set, C, of formulas is closed under condensed detach-
ment, and the only kernel, within alphabetic variancy, to be found in any
element of CisK = XJL.

Proof: The proof is one of case analysis. We focus attention on the possible
forms for the major premiss of the various cases of condensed detachment:

Case 1. Assume the major premiss is K = XJL itself. (To conform to the
definition of the various schemata under consideration, we assume throughout
the proof that purity is present.) The condensed detachment of K with any A
of EC yields f(A). Since, by definition, f(A) is in C whenever A is, closure
is preserved in this case.

Case 2. Let the major premiss be f(A) with A in C. It is trivial to verify that
the condensed detachment of f(A) and any B is g(JB,A). As above, if A and B
are in C, then g(B,A) is also.

Case 3. Let g(B,A) with B,A in C be the major premiss. For an arbitrary
choice of D from the equivalential calculus as minor premiss, the condensed
detachment question can be settled by considering the unification question
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for E(E(w,B),A) with D. If the unification is successful, the inference of
interest is determined by the key replacement term, the term to be substi-
tuted for w. That E(E(w,B),A) is in U can be seen by letting S2 = w, Sx =
i(S2,B), and noting that i(Sx,A) is in U. When D is restricted to be an element
of C, Lemma 3.2.1 forces the key replacement term in question, say D', to be
in C. Since the CD of g(B,A) and D will be just D' itself, C is closed under
this set of condensed detachments.

Case 4. Let E(A,B) be the major premiss for some A and B in C. Since A
and B are by definition assumed to have no variables in common, the con-
densed detachment with some D in C will either fail or -yield B, and again
closure is preserved. This completes the proof of closure for C.

That the only kernel to be found in any element of C is K follows from
the definition of the classes of elements comprising C, which completes the
proof of the theorem.

3.3 XKE In this section we prove that

XKE = E(x,E(y,E(E(x,E(z,y)\z)))

is too weak to be a single axiom for the EC, The proof proceeds as that for
XJL.

The schemata to be used in the definition of C are:

\.K = XKE = E(x,E(y,E(E(x,E(z,y)),z)))
2.f(A) = E(y,E(E(A,E(z,y)),z))
3.g(B9A) = E(E(P,E(z,A))9z)
4.i(A,B) = E(A>B)

where A and B are pure formulas and also f(A), giA^B), and i(A,B) are pure.
C is the minimal set generated by K and closed under the operations of/,g,/,
which is just the analogue of the definition of the corresponding C for XJL.

The schemata for U are:

1. w
2.f(S) = E(y,E(E(S9E(z,y))9z))
3.g(S,A) = E(E(S,E(z,A)),z)
4.g(B,S) = E(E(B,E(z,S))9z)
5.i(S,B) = E(S,B)
β.i(A,S) = E(A,S)

where A and B are pure formulas and where S, f(S), g(S,A), g(B,S), i(S,B), and
i(A,S) are almost pure formulas with isolated variable w. Essentially, U is the
set generated by w and closed under the operations represented by schemata 2
through 6 above, which is just the analogue of the definition of the correspond-
ing U for XJL.

For this C and this U, both dependent on XKE, we can prove the analogue
to Lemma 3.2.1.

Lemma 3.3.1 // the pair S in U and Bo in C are unifiable, then the key
replacement term t for the isolated variable w in S occurring in the unification
is itself an element of C.
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Proof: As in Lemma 3.2.1, this proof is by induction on the length of the
most general common instance of S and Bo. Remark 3.1.1 again comes into
play.

XKE I K f(β) g(B,D) i(B,D)

w K f(B) g(B,D) i(B,D)
f(T) failure T\B failure g(T,B),D
g(T,A) failure failure T\B i(TJ(DfA));B
g(AJ) failure failure T\D i(AJ(D,T)),B
i(T,A) f(T);A g(B,T);A T;i(B,i(A,D)) T B
i(A,T) T;f(A) T;g(β9A) i(BJ(T,D));A T D

The proof of Lemma 3.3.1 is thus obtained.
Lemma 3.3.1 establishes that U is a unification set for XKE and C. More

importantly, we can prove Theorem 3.3.1 which shows XKE too weak to be a
single axiom for EC.

Theorem 3.3.1 C (which is dependent on XKE) is closed under condensed
detachment, and the only kernel (within alphabetic variancy) to be found in
any element ofCis K = XKE.

Proof: As in Theorem 3.2.1, we proceed by case analysis by focusing atten-
tion on the forms for the major premiss of the various cases of condensed
detachment.

The following summary suffices. The condensed detachment of K as
major premiss with any A of EC is f(A). The CD of f(A) for any A in C with
any B of EC is g(A,B). The CD of g(A,B) for A,B in C with some D in C
reduces to the unification question of E(A,E(w,B)) with D, and Lemma 3.3.1
applies since this E(A,E(w,B)) is in U. And finally, the CD of i(A,B) with D
for A and B and D in C either fails or is B.

Examination of the definition of C shows that K = XKE is the only kernel
therein, which completes the proof.

One can immediately see that C contains CL(XKE) but does not contain
E(x,x). So XKE is too weak to be a single axiom for the equivalential calculus.

3.4 XAK The formula,

XAK = E(x,E(E(E(E(y,z),x),z),y)),

is too weak to be a single axiom. This result can be established by defining a
C and a U, each dependent on XAK, and proceeding as with XJL and XKE.

The schemata to be used in the definition of C, which is shown to be a
containment set for XAK by examining the following tables, are:

l.K = XAK = EOc9E(E(E(.E(y,z),x)9z),y))
2.f(A) = E{E(E(E(y,z),A),z)9y)
3.g(A,B) = E(E(E(A,z),B),z)
4.i(A9B) = E(A,B)

where A and B are pure formulas and also f(A), g(A,B), and i(A,B) are pure.
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C is the minimal set generated by K and closed under the operations of/,g, i,
which is just the analogue of the definitions of the corresponding C for XJL
and XKE.

The schemata for [/, which is shown to be a unification set, are:

1. w
2.f(S) = E(E(E(E(y,z),S),z))y)
3.g(S9A) = E(E(E(S9z)9A)9z)
4.g(B>S) = E(E(E(B,z),S),z)
5.i{S9B) = E{S9B)
6.i(A,S) = E(A,S)

where A and B are pure formulas and where S, /(£), g(S,A), g(B,S), i(S,B),
and i(A9S) are almost pure formulas with isolated variable w. Essentially,
U is the set generated by w and closed under the operations represented by
schemata 2 through 6 above, which is just the analogue of the definitions of
the corresponding U for XJL and XKE.

Unification table for ί/and C:

XAK I K f(β) g(B9D) i(B,D)

w K f(B) g(B,D) i(B,D)
f(T) failure T B i(T9D)\B g(D,T);B
g(T9A) failure T;i(B9A) T\B i(i(T,D),A);B
g(A,T) failure i(β9T)\A T D i(i(A,D),T);B
i(T9A) f(T);A T;g(A,B) T;ί(i(B,A),D) T B
i(A,T) T;f(A) g(T9B)'9A i(i(B,TlD);A T D

Condensed detachment table for XAK:

Major premiss Condensed detachment with D in C reduces to

K fφ)
f(A) unification of g(w,A) withD
g(A,B) unification of i(i(A9w)9B) withD

i(A,B) B (if A and D unify; failure otherwise)

This concludes the discussion of XAK.

3.5 BXO We now come (in this paper) to the last of the four candidates
for the status of shortest single axiom for EC, namely,

BXO = E(E(E(E(x9E(y9z))9z),y),x).

(In a second paper we dispatch the remaining three candidates, XCB, XHK, and
XHN. This task is accomplished by extending the method described herein.)

BXO is rather more interesting than its three predecessors in that imme-
diately one infers E(x,E(y,E(x,y))) from the condensed detachment of BXO
with itself. Thus a second kernel is quickly present. What may be surprising
is the fact that no further kernels arise. Hence we can conclude that BXO is
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also too weak to be a single axiom for EC, although the case analysis is some-
what more complicated.

The schemata to be used in the definition of C, which is shown to be a
containment set for BXO, are:

\.K = BXO = E(E(E(E(x,E(y,z)),z),y),x)
2. f(A) = E(E(E(A,E(y,z)),z),y)
3.g(A,B) = E(E(A,E(B,z)),z)
4.i(A,B) = E(A,B)

5.κ'=E(xMyMχ,y)))
6.h(A) = E(y,E(A,y))
7\j{A) = E{E{z,E{E{A,z),y)\y)
8. n(A,B) = E(z,E(E(A,z),B))

where A and B are pure formulas and also f(A\ g(A,B), h(A), i(A,B), n(A,B),
and j(A) are pure. C is the minimal set generated by K and K' and closed under
the operations of f,g,h,i,j,n, which is just the analogue of the definitions of
the corresponding C for XJL,XKE, and XAK.

The schemata for U, which is shown to be a unification set, are:

l.w
2.f(S) = E(E(E(S,E(y,z)),z),y)
3.g(S,A) = E(E(S,E(A,z)),z)
4. g(B,S) = E(E(β,E(S,z)),z)
5.i(S,B) = E(S,B)
6.i(A,S) = E(A,S)
7. b(S) = E(y,E(S,y))
8.j(S) = E(E(z,E(E(S,z),y)),y)
9.n(S,A) = E(z,E(E(S,z),A))

10. n(B,S) = E{z,E(β(P,z),S))

where A and B are pure formulas and where S, f(S), g{S,A), g(B,S), i{S,B),
i{A,S), h{S), j(S), n(S,A), and n{B,S) are almost pure formulas with isolated
variable w. Essentially, U is the set generated by w and closed under the opera-
tions represented by schemata 2 through 10 above, which is just the analogue
of the definitions of the corresponding U for XJL, XKE, and XAK.

Unification table for U and C:

BXO I K f(β) g(β,D) i(.B,D)

w K f(B) g(JB,D) i(B,D)
f(T) T K1 T B i(T,hφ));B g(T,D);B
g{T,A) T;j{A) T;i{B,hiA)) T B i(T,i(A,D));B
g{A,T) j(T);A HBMT));A T D i(A,i(T,D));B
i(T,A) T;f(A) T;g(B,A) T;i(B,iφ,A)) T B
i(A,T) f{T);A g{B,T);A i(B,iφ,T));A T D
h(T) failure failure failure ί(J,B);D
j(T) failure failure i(T,B);D n(T,D);B
n(T,A) failure failure failure i(i{T,B),A);D
n(A,T) failure failure failure i(i(A,B),T);D
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BXO Kf h(B) j(B) n(B,D)

w K' h(B) i(β) n(β,D)
f(T) failure failure failure failure
g(T,A) failure failure i(B,T);A failure
g(A,T) failure failure T;i(B,A) failure
i(T,A) HT);A i(fl,T)',A T;n(B,A) i(i(B,T),D);A
i(A,T) T;h(A) T;i{B,A) n(B,T);A T;i(i(B,A),D)
h(T) failure T B failure T;i(B,D)
j{T) failure failure T B failure
n(T,A) h(T);A i(T,A);B failure T B
n(A,T) T;h(A) i(A,T);B failure T D

Condensed detachment table for BXO:

Major premiss Condensed detachment with D in C reduces to

K unification of/(w) with D
f(A) unification of g(A, w) with D
g(A,B) unification of i(AJ(B,w)) withD
i(A,B) B (if A andD unify; failure otherwise)
K' hφ)
h(A) i(A,D)
j(A) unification of n(A,w) with/)
n(A,B) i(i(A,D),B)

This concludes the discussion of BXO except for one important point,
namely, there are two kernels present in the theorems deducible from BXO
instead of just one as in the other cases. They are BXO itself, which is usual
for this study, and E(x,E(y,E(x,y))). It is the presence of this second kernel
that makes this study of BXO rather more interesting.

4 Use of an automated theorem-proving program At this point, we touch
briefly on the methodology and also on aspects of the automated theorem-
proving program employed in obtaining our results. The assistance of such
a program was invaluable in completing this study. A more complete treat-
ment of the method and use of the program can be found in [26]. Examina-
tion of the following material may suggest to the logician other uses for such
a program.

The language required by the program is a modified first-order predicate
calculus. For the problem at hand, we use a one-place predicate P to represent
"is deducible", and " - " to represent "not". Thus the wff P(E(x,x)) states
that E(x,x) is deducible. The conjunct

-P(E(xxy)) ~P(x) P(y)

states the rule of condensed detachment: for any x and\y, if E(x,y) and x are
both deducible, then y is also deducible. Although the first inference rule of
note was binary resolution [18], which combines substitution with a general-
ization of modus ponens and syllogism, a number of inference rules are now
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extant in the program. One of these, UR-resolution [9], actually performs
condensed detachment when supplied with the encoding of condensed detach-
ment given above. When seeking to prove that a particular formula is a single
axiom, the program generates formulas by repeated application of condensed
detachment. These formulas are continually compared to a list of known single
axioms. The object is that of noting when a known single axiom has been
derived. Because of the need to avoid examination of the myriad of formulas
that would naturally arise, various powerful strategies must be used to guide
the search. We now briefly describe certain of these.

One strategy is to key on certain formulas. This strategy is especially useful
in seeking shorter proofs of known theorems (see Appendix). Examination of
the work of Kalman [3] and that of Peterson [15] reveals that certain formulas
that occur while attempting to establish that a formula is a single axiom are
exceedingly powerful. Examples are:

1. the given formula under study and the one immediately deducible
from it by a single application of CD

2. formulas that have certain structural properties, such as the occurrence
of a variable as the first argument of a formula

3. certain formulas that arise repeatedly in related proofs found in the
literature.

The program can be instructed to place these formulas on special lists [19],
and/or it can be instructed to assign them high priority by means of "weight-
ing" [10]. Such an instruction enables the program to prefer such a formula
as a premiss for CD. One can thus "build in" one's intuition and/or take advan-
tage of known structure when using the program.

Certain other formulas, like E(E(x,y),t) for any t other than E(y,x), if
felt to be unnecessary (because they did not occur in proofs of other single
axioms) can be avoided (as in searching for a different or shorter proof, see
Appendix). These formulas can be removed from consideration by assigning
them low priority or by subsumption (the removal of formulas that are either
less general than or identical to ones already present [18]). For example, to
prevent the program from finding the same proof of XGK as given by Kalman
[3], certain formulas of his proof were put on a special list that was not used
for CD. If any of these formulas were generated by the program, they were
discarded by subsumption. Thus certain steps in Kalman's proof were blocked.
With such a mechanism one can easily explore a wide variety of alternate
proofs.

A major use of the program was that of gathering information on the
structure of formulas derivable from the one being studied. The purpose of
many runs was not to generate a proof, but rather to identify patterns in the
formulas and to formulate conjectures about the space of derivable theorems.
In one instance, we had the program generate a number of the derivable
theorems from XΛK, the formula then under study.

To aid in the examination of the derived formulas, we employed a standard
mathematical approach—that of using notation to simplify the form of the
formulas. When using the program, one has access to such simplifying notation
by means of demodulation [24]. For example, when the equality
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E(x,E(E(E(E(y,z),xlz),y)) = K

{XAK = K) is adjoined, the program automatically replaces every occurrence
of XAK by the single constant K. Examination of the transformed formulas
generated by the program led directly to the conjecture that all theorems
derivable from XAK by CD contain a variant of XAK as a kernel. Use of
demodulation coupled with a series of program runs alternated with analyses
of the runs then led to the discovery of the various schemata used in com-
pleting the proof of the conjecture.

Before the given study was completed, it was necessary to refute a
number of conjectures about the structure of the derivable theorems which,
although natural, were easily rejected only because of access to the program.
These conjectures required counting various symbol occurrences and also
classifying formulas according to their structure—that briefly alluded to in 2
above. Although we could have used tedious hand counting or could have
written yet another program, instead this study led to the formulation of new
uses of demodulation. The new uses include scanning formulas as they are
derived, counting symbol occurrences, and classifying formulas [23].

Finally, once the schemata had been discovered, the program was used
to study the interaction of these schemata under CD. This led almost imme-
diately to the case analysis given earlier and presented in tabular form. An
alternate and, as it turned out, pointless case analysis had been pursued for
some time. It was found wanting and was thus terminated because of infor-
mation derived directly from use of the program. Of equal importance, the
results obtained with the program pointed the way to the correct nature of
the case analysis and the corresponding induction argument.

The techniques of this section, especially the use of demodulation and
weighting, have proven to be applicable to many areas of study.

5 Conclusions We have proved here that each of the four formulas, XJL,
XKE, XAK, and BXO, is too weak to be a shortest single axiom for the equiva-
lential calculus. Each of the corresponding proofs exemplifies a method that
studies the set of theorems deducible therein. We were able with this method
to examine the infinite domain of deducible theorems in each of the four cases
by finding a finite presentation. We in fact found, for each of the four, a finite
set of schemata that proved that certain well-known theorems of the calculus
are not present even as subexpressions of any of the theorems deducible from
the formula. These studies were conducted by relying heavily on a general-
purpose automated theorem-proving program. Furthermore, the information
was obtained without recourse to any special programming, which suggests that
the system in its present state may prove useful to those interested in conduct-
ing various types of research .but without the burden of programming.

Among the kinds of questions that one might consider attacking with this
automated theorem-proving program are the following. What is the full set
of theorems deducible from a given formula or set of formulas? For a given set
of formulas and a given domain, does that set axiomatize the domain? Are the
elements of the set independent? Can an alternate and/or a shorter proof
than that which is known be found for a specified theorem? Can a proof be
found for a purported theorem? Can a counterexample be found for a given
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conjecture? Can a model, especially a small finite model, be generated for a set
of axioms?

Since we have succeeded in answering questions of the listed types with
the system [20,21,22], we are encouraged to ask for additional open questions
on which to work.

We have included here at least some details relevant to the theorem-
proving techniques for accomplishing the above tasks. We hope thereby to
further suggest uses of the system. For example, both the concept of kernel
and the corresponding conjectures for the four formulas studied here resulted
directly from the use of the procedure of demodulation in its function of
simplification.

Finally, we wish to dispel the possible notion that the method employed
in Section 3 relies on the weakness of the formulas therein. We shall in fact
show in a succeeding paper that the method can be applied to both sides of
the question, that is, it can also be used to prove a formula strong enough
to be a single axiom when that is the case. In fact two new shortest single
axioms for the equivalential calculus have been found. The method, together
with the automated theorem-proving program, has also been used to answer
certain open questions in both the i?-calculus and Z-calculus. Thus, at least in
this context, the method has the property of correctly establishing either
adequacy or inadequacy for the property of being a single axiom.

The nature of the methodology presented in this paper leads one to
conjecture that in no way is it dependent specifically on the equivalential
calculus. The successful examination of infinite domains gives rise to the
thought that a number of the techniques may well apply to other areas of
formal logic and perhaps to other areas of mathematics.

Appendix: A shorter proof The following proof, employing condensed
detachment, establishes that XGK is a shortest single axiom for the equiva-
lential calculus. The standard approach is used, namely, we show that PYO
[13,15], one of the known single axioms for EC, is derivable by condensed
detachment from XGK. The following proof is roughly half the length of that
given by Kalman [3].

Proof:

1 E{x9E{E{y9E(z9x))9E{z9y)))

2 1 1 E(E(x,E(y,E(zME(u,E(v,z)),E(v,u))))),E(y,x))
3 2 1 E(E(E(E(x,E(y9z))9E(y,x)),E(z9u))9u)
4 3 3 E(x,x)

5 1 4 E(E(x9E(y9E(z9z)))9E(y9x))
6 5 1 E(E(x9E(x9y))9y)
7 2 6 E(x9E(y9E(y9E(x9E(z9E(E(u9E(υ9z))9E(υ9u)))))))

8 5 6 E(x9E(y9E(y9E(x9E(z9z)))))
9 2 8 E{x9E(y9E(y9x)))

10 1 9 E(E(x,E(y9E(z9E(μ9E(u9z)))))9E(y9x))
11 2 7 E(x9E(E(E(y9E(z9u))9E(z9y))9E(μ9x)))
12 5 11 E(E(E(x9E(y9z))9E(y9x))9z)
13 1 12 Emx9E(y9E(E(E(z9E(μ9υ))9E(u9z))9υ)))My9x))
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14 10 1 E(E(E(x,E(x9y)\E(y,z)),z)

15 14 11 E(x,E(y,E(y9E(E(zMu,x)lE(u,z)))))

16 13 1 E{E(x,E{E{E{yMz,x)\E{z,y)\u)\u)

17 16 1 E(x,E(y,E(x,y)))

18 17 17 £(x,£(£(^£(z,£O;5z)))5x))

19 1 18 £(£(x,£(y,£(z,£(£(M,£(i;,£(ii,i;))),z)))),£(y,x))

20 19 15 £ ( £ O , J 0 , £ O , * ) )

21 1 20 E(E(x9E(y9E(E(.z>u)9E(μ9z))))9E(y9x))

22 21 1 E(E(E(x,y),E(E(y,x),z)),z)

23 22 11 £(x,£(£0/,z),£(z,£0>,x))))

24 2 23 £(£(£(x,£(j/,z)),z),£(j/,x)) = PYO.
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