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A Note on Conwαy Multiplication

of Ordinals

JOHN HICKMAN*

We denote by ' ω ' the first transfmite ordinal, and by 'cv + β\ 'αβ', and
6aβ\ respectively, the usual ordinal sum, product, and exponentiation of an
ordinal a by an ordinal β. We assume that the reader is familiar with Cantor's
co-normal form theorem, which uniquely represents a nonzero ordinal as a sum
of powers of ω. Given a nonzero ordinal α, we let β(αθ be the number of
summands in the co-normal form of α, and express this form as Σ\ωe^Oί'ι^c(aJ);

i<i(a)l
Regrettably, there seems to be no "nice" way of formulating an adequate

definition of "natural" ordinal addition, and so we shall have to use the follow-
ing not-so-nice way.

Let α, β be ordinals. If aβ = 0, set a 4- β - a + β\ otherwise set a + β equal
to the unique ordinal y whose co-normal form has the following properties:

(1) ie(yj); i < £(γ)! = ie(aj);j < £(α)J U [e(β,k)\ k < i(β)\.
(2) (a) If e(y,i) = e(oc,j) for some / < β(ce) but e(y, i) = e(β,k) for no

k < t(β), then c(y, i) = c(a,j).
(b) If e(y, i) = e(β, k) for some k < i(β) but e(y, i) = e(a,j) for no

/ < ί(α), then c{y, ϊ) = c(β, k).
(c) If e(y,i) = e(atj) = e(β,k) for some / < £(α) and k < ί(j8), then

c(y,i) = c(oιj) + c(β,k).

We can now define Conway multiplication, denoted by ςX', which was
introduced by Gonshor in [ 1 ] and attributed by him to Conway.

If oiβ = 0, then we set ot X β = 0; otherwise we set a X β = (a X δ) + a if
β = δ + 1 for some δ, and a X β - suρ{α X δ; δ < β\ if β is a limit ordinal.

*The work contained in this paper was done while the author was a research officer at the
Australian National University.
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What in general does a. X 0 look like, compared to ocβΊ If 0 is finite, then
simple iteration shows that the normal form of a X β is derived from that of a
by multiplying each c(a, ΐ) by β. Thus Conway multiplication by an integer has
no effect on the exponents of the normal form of the multiplicand. By using
this fact, together with a straightforward inductive argument, we obtain
Gonshor's assertion that if β is a limit ordinal, then a X β = aβ.

Thus if we denote the finite and infinite parts of an ordinal 7 by 6F(y)\
7(7)', then we see that a X β = al(β) + αX F(β). In fact, al(β) + αX F(0) can be
replaced by α/(0) + a X F(β). If I(β) = 0, then this is clear; and ifl(β) Φ 0, then
each exponent in the normal form of od(β) is greater than any exponent in the
normal form of a X F(0), and the result again follows.

One of the more difficult proofs in the classical theory of ordinal numbers
is that which shows that for any infinite a, 0, cφ = βa if and only if an = βm for
some positive integers m, n. We wish to show that a similar result holds for
Conway multiplication; for any infinite a, β we have α X 0 = 0Xα:if and only if
a. t n = β t m for some positive integers m, n, where for any ordinal 7 and
positive integer k we set 7 t k = 7 X 7 X . . . X 7 (k products).

Clearly if a ϊ n = β t m, then a X β = β X a; and so henceforth we assume
that α, β are infinite ordinals such that a. X β = β X α.

If α, 0 are both limit ordinals then we can replace Conway multiplication
by ordinary multiplication, and the result follows from the classical theory.

The case in which exactly one of α, β is a limit ordinal is not possible. For
suppose that a is limit and β is successor. Then we would have 8(α X β) =
8(0) + 8(α) - 1 and 8(0 X α) = «(α); and since we must have «(j8) > 2, the two
right-hand sides cannot be equal.

Thus we are left with the case in which both a and β are infinite successor
ordinals. In order to deal with this case, we introduce the concept of regu-
larizing an ordinal.

Let 7 be any nonzero ordinal. We define the regularization θ(y) of 7 by
setting 8(0(7)) = 8(7), e(θ(y)J) = <?(%/) for / < £(7), and c(θ(j)J) = 1 for
i < 8(γ). We claim that θ(a) X θ(β) = 0(j3) X 0(α).

By equating the normal forms of α X 0 and β X α, we obtain two systems
of equations, (A) and (B):

(A) In this system, each equation has one of four forms:
Σ\e(a,ik); k < r\ = Σ{e(β,jk); k < s], where r, s take values from the
set {1,2! and the ty, /# take values from the sets {0, . . ., £(α) - 1!,
{0, . . . ,8(0)- Π, respectively.

(B) In this system, each equation again has one of four forms:
Π\c(a,ik); k < r\ = ϊl\c(β,jk); k < s\, where r, s, /#, /& are subject to
the same restrictions as in (A).

Now since the lengths and exponents of the normal forms of 0(α), θ(β) are
the same as those of α, 0, respectively, we see that system (A) is satisfied by
θ(ά) and 0(0). Furthermore, since all coefficients of the normal forms of θ(ά)
and θ(β) are 1, system (B) is trivially satisfied. Thus we must have 0(α) X 0(0) =
θ(β)XΘ(a).

But F(θ(a)) = F(θ(β)) = 1 and so, as is clearly seen from our general
representation of X, we have θ(a) X 0(0) = θ(a)θ(β) and 0(0) X θ(a) = θ(β)θ(ά).
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Since 0(α), Θ(β) are both infinite successor ordinals, we know from classical
theory that Θ(a) = ξm, Θ(β) - ψ for some ordinal ξ and some integers m, n> 0.

Clearly we may assume that m, n are coprime, for otherwise we could
replace ξ, m, n by ξd, m/d, n/d, respectively, where d = gcd(m, n).

Set p = £(£) - 1 then C(α) - 1 = mp and 2(0) - 1 = np. We wish to show
that for some ordinal μ of length p + 1 we have α = μ t m, β = μ t rc. We may
assume without loss of generality that n>m, and we set n = sm+r, with r<m.
We note that because of our assumption that m, n are coprime, either r > 0 and
m, r are coprime, or else r = 0 and m = 1.

In either case, by equating the normal forms of a X β and β X a we obtain:

(1) c(β, 0 = c(a, /) for / < mp
(2) c(ft mp + 0 = c(β, i)F(a) for i<(n- m)p

(3) c(|8,(π - m)p + 0 f ( α ) = cfe i)F(β) for ί < ^ P

and another set of equations relating the exponents. These however we do not
need to worry about, because the exponents of a and β are just those of θ(a)
and 0(j3), and so from the established relations θ(ά) = £m, θ(β) = ζn we know
that the exponents satisfy the required conditions.

If m = 1 and r = 0, then from (2) we conclude immediately that
c(β,kp + /) = c(β,i)F(a)k for k < n, i < p; and then by applying (3) we obtain
F(β) = F(a)n. But these are just the equations we need for the identity β = a t n.

Hence we may assume that r Φ 0. In this case it is straightforward to show
that c(a,i)F(β) = c(a,rp + i)F(a)s for i < (m - r)p, and that c(aJ)F(β) =
c(u,i - (m - r)p)F(a)s+1 for (m - r)p < i < mp. Therefore, because m, r are
coprime, we have c(aJ)F(β)mP = c(aJ)F(a^m-r)PsF(a)rP(s+1) = c(aJ)F(afP for
each i\ hence F(β)m = F(a)n and so F(ά) = cm, F(β) = cn for some integer c.

Now let u, υ be positive integers such that um - υr = 1. Then we have
ciajp + i)F(β)v = c(α,(/ - \)p + /)F(α) y s + " for 0 < / < m, i < p. That is,
c(otjp + 0 = c(α,(/ - \)p + ϊ )c'"(w+«)-ϋ(^+'') = c(α,(/ - l)p + z)c Once again
these are just the relations we require for the identity a = μ t m for some
infinite successor ordinal μ with £(μ) = p + 1 and F(μ) = c.

If we now apply (1), (2) to our representation of a, we obtain a cor-
responding representation for β, and we can thus conclude that β = v f rc for
some infinite successor ordinal ẑ  with Sί{v) - p + 1 and F(^) = c.

But the first p terms in the normal forms of a and β are equal by (1).
Thus μ = v.
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