A Note on Conway Multiplication of Ordinals

JOHN HICKMAN*

We denote by ' ω ' the first transfinite ordinal, and by ' $\alpha+\beta$ ', ' $\alpha \beta$ ', and ' α ', respectively, the usual ordinal sum, product, and exponentiation of an ordinal α by an ordinal β. We assume that the reader is familiar with Cantor's ω-normal form theorem, which uniquely represents a nonzero ordinal as a sum of powers of ω. Given a nonzero ordinal α, we let $\ell(\alpha)$ be the number of summands in the ω-normal form of α, and express this form as $\Sigma\left\{\omega^{e(\alpha, i)} c(\alpha, i)\right.$; $i<\ell(\alpha)\}$.

Regrettably, there seems to be no "nice" way of formulating an adequate definition of "natural" ordinal addition, and so we shall have to use the following not-so-nice way.

Let α, β be ordinals. If $\alpha \beta=0$, set $\alpha+\beta=\alpha+\beta$; otherwise set $\alpha+\beta$ equal to the unique ordinal γ whose ω-normal form has the following properties:
(1) $\{e(\gamma, i) ; i<\ell(\gamma)\}=\{e(\alpha, j) ; j<\ell(\alpha)\} \cup\{e(\beta, k) ; k<\ell(\beta)\}$.
(2) (a) If $e(\gamma, i)=e(\alpha, j)$ for some $j<\ell(\alpha)$ but $e(\gamma, i)=e(\beta, k)$ for no $k<\ell(\beta)$, then $c(\gamma, i)=c(\alpha, j)$.
(b) If $e(\gamma, i)=e(\beta, k)$ for some $k<\ell(\beta)$ but $e(\gamma, i)=e(\alpha, j)$ for no $j<\ell(\alpha)$, then $c(\gamma, i)=c(\beta, k)$.
(c) If $e(\gamma, i)=e(\alpha, j)=e(\beta, k)$ for some $j<\ell(\alpha)$ and $k<\ell(\beta)$, then $c(\gamma, i)=c(\alpha, j)+c(\beta, k)$.
We can now define Conway multiplication, denoted by ' X ', which was introduced by Gonshor in [1] and attributed by him to Conway.

If $\alpha \beta=0$, then we set $\alpha \times \beta=0$; otherwise we set $\alpha \times \beta=(\alpha \times \delta) \stackrel{\circ}{+} \alpha$ if $\beta=\delta+1$ for some δ, and $\alpha \times \beta=\sup \{\alpha \times \delta ; \delta<\beta\}$ if β is a limit ordinal.

[^0]What in general does $\alpha \times \beta$ look like, compared to $\alpha \beta$? If β is finite, then simple iteration shows that the normal form of $\alpha \times \beta$ is derived from that of α by multiplying each $c(\alpha, i)$ by β. Thus Conway multiplication by an integer has no effect on the exponents of the normal form of the multiplicand. By using this fact, together with a straightforward inductive argument, we obtain Gonshor's assertion that if β is a limit ordinal, then $\alpha \times \beta=\alpha \beta$.

Thus if we denote the finite and infinite parts of an ordinal γ by ' $F(\gamma)$ ', ' $I(\gamma)$ ', then we see that $\alpha \times \beta=\alpha I(\beta) \stackrel{\circ}{+} \times F(\beta)$. In fact, $\alpha I(\beta) \stackrel{\circ}{+} \times F(\beta)$ can be replaced by $\alpha I(\beta)+\alpha \times F(\beta)$. If $I(\beta)=0$, then this is clear; and if $I(\beta) \neq 0$, then each exponent in the normal form of $\alpha I(\beta)$ is greater than any exponent in the normal form of $\alpha \times F(\beta)$, and the result again follows.

One of the more difficult proofs in the classical theory of ordinal numbers is that which shows that for any infinite $\alpha, \beta, \alpha \beta=\beta \alpha$ if and only if $\alpha^{n}=\beta^{m}$ for some positive integers m, n. We wish to show that a similar result holds for Conway multiplication; for any infinite α, β we have $\alpha \times \beta=\beta \times \alpha$ if and only if $\alpha \uparrow n=\beta \uparrow m$ for some positive integers m, n, where for any ordinal γ and positive integer k we set $\gamma \uparrow k=\gamma \times \gamma \times \ldots \times \gamma$ (k products).

Clearly if $\alpha \uparrow n=\beta \uparrow m$, then $\alpha \times \beta=\beta \times \alpha$; and so henceforth we assume that α, β are infinite ordinals such that $\alpha \times \beta=\beta \times \alpha$.

If α, β are both limit ordinals then we can replace Conway multiplication by ordinary multiplication, and the result follows from the classical theory.

The case in which exactly one of α, β is a limit ordinal is not possible. For suppose that α is limit and β is successor. Then we would have $\ell(\alpha \times \beta)=$ $\ell(\beta)+\ell(\alpha)-1$ and $\ell(\beta \times \alpha)=\ell(\alpha)$; and since we must have $\ell(\beta) \geqslant 2$, the two right-hand sides cannot be equal.

Thus we are left with the case in which both α and β are infinite successor ordinals. In order to deal with this case, we introduce the concept of regularizing an ordinal.

Let γ be any nonzero ordinal. We define the regularization $\theta(\gamma)$ of γ by setting $\ell(\theta(\gamma))=\ell(\gamma), e(\theta(\gamma), i)=e(\gamma, i)$ for $i<\ell(\gamma)$, and $c(\theta(\gamma), i)=1$ for $i<\ell(\gamma)$. We claim that $\theta(\alpha) \times \theta(\beta)=\theta(\beta) \times \theta(\alpha)$.

By equating the normal forms of $\alpha \times \beta$ and $\beta \times \alpha$, we obtain two systems of equations, (A) and (B):
(A) In this system, each equation has one of four forms:
$\Sigma\left\{e\left(\alpha, i_{k}\right) ; k<r\right\}=\Sigma\left\{e\left(\beta, j_{k}\right) ; k<s\right\}$, where r, s take values from the set $\{1,2\}$ and the i_{k}, j_{k} take values from the sets $\{0, \ldots, \ell(\alpha)-1\}$, $\{0, \ldots, \ell(\beta)-1\}$, respectively.
(B) In this system, each equation again has one of four forms: $\Pi\left\{c\left(\alpha, i_{k}\right) ; k<r\right\}=\Pi\left\{c\left(\beta, j_{k}\right) ; k<s\right\}$, where r, s, i_{k}, j_{k} are subject to the same restrictions as in (A).

Now since the lengths and exponents of the normal forms of $\theta(\alpha), \theta(\beta)$ are the same as those of α, β, respectively, we see that system (A) is satisfied by $\theta(\alpha)$ and $\theta(\beta)$. Furthermore, since all coefficients of the normal forms of $\theta(\alpha)$ and $\theta(\beta)$ are 1 , system (B) is trivially satisfied. Thus we must have $\theta(\alpha) \times \theta(\beta)=$ $\theta(\beta) \times \theta(\alpha)$.

But $F(\theta(\alpha))=F(\theta(\beta))=1$ and so, as is clearly seen from our general representation of X, we have $\theta(\alpha) \times \theta(\beta)=\theta(\alpha) \theta(\beta)$ and $\theta(\beta) \times \theta(\alpha)=\theta(\beta) \theta(\alpha)$.

Since $\theta(\alpha), \theta(\beta)$ are both infinite successor ordinals, we know from classical theory that $\theta(\alpha)=\xi^{m}, \theta(\beta)=\xi^{n}$ for some ordinal ξ and some integers $m, n>0$.

Clearly we may assume that m, n are coprime, for otherwise we could replace ξ, m, n by $\xi^{d}, m / d, n / d$, respectively, where $d=\operatorname{gcd}(m, n)$.

Set $p=\ell(\xi)-1$; then $\ell(\alpha)-1=m p$ and $\ell(\beta)-1=n p$. We wish to show that for some ordinal μ of length $p+1$ we have $\alpha=\mu \uparrow m, \beta=\mu \uparrow n$. We may assume without loss of generality that $n \geqslant m$, and we set $n=s m+r$, with $r<m$. We note that because of our assumption that m, n are coprime, either $r>0$ and m, r are coprime, or else $r=0$ and $m=1$.

In either case, by equating the normal forms of $\alpha \times \beta$ and $\beta \times \alpha$ we obtain:
(1) $c(\beta, i)=c(\alpha, i)$ for $i<m p$
(2) $c(\beta, m p+i)=c(\beta, i) F(\alpha)$ for $i<(n-m) p$
(3) $c(\beta,(n-m) p+i) F(\alpha)=c(\alpha, i) F(\beta)$ for $i<m p$
and another set of equations relating the exponents. These however we do not need to worry about, because the exponents of α and β are just those of $\theta(\alpha)$ and $\theta(\beta)$, and so from the established relations $\theta(\alpha)=\xi^{m}, \theta(\beta)=\xi^{n}$ we know that the exponents satisfy the required conditions.

If $m=1$ and $r=0$, then from (2) we conclude immediately that $c(\beta, k p+i)=c(\beta, i) F(\alpha)^{k}$ for $k<n, i<p$; and then by applying (3) we obtain $F(\beta)=F(\alpha)^{n}$. But these are just the equations we need for the identity $\beta=\alpha \uparrow n$.

Hence we may assume that $r \neq 0$. In this case it is straightforward to show that $c(\alpha, i) F(\beta)=c(\alpha, r p+i) F(\alpha)^{s}$ for $i<(m-r) p$, and that $c(\alpha, i) F(\beta)=$ $c(\alpha, i-(m-r) p) F(\alpha)^{s+1}$ for $(m-r) p \leqslant i<m p$. Therefore, because m, r are coprime, we have $c(\alpha, i) F(\beta)^{m p}=c(\alpha, i) F(\alpha)^{(m-r) p s} F(\alpha)^{r p(s+1)}=c(\alpha, i) F(\alpha)^{n p}$ for each i; hence $F(\beta)^{m}=F(\alpha)^{n}$ and so $F(\alpha)=c^{m}, F(\beta)=c^{n}$ for some integer c.

Now let u, v be positive integers such that $u m-v r=1$. Then we have $c(\alpha, j p+i) F(\beta)^{v}=c(\alpha,(j-1) p+i) F(\alpha)^{v s+u}$ for $0<j<m, i<p$. That is, $c(\alpha, j p+i)=c(\alpha,(j-1) p+i) c^{m(v s+u)-v(s m+r)}=c(\alpha,(j-1) p+i) c$. Once again these are just the relations we require for the identity $\alpha=\mu \uparrow m$ for some infinite successor ordinal μ with $\ell(\mu)=p+1$ and $F(\mu)=c$.

If we now apply (1), (2) to our representation of α, we obtain a corresponding representation for β, and we can thus conclude that $\beta=\nu \uparrow n$ for some infinite successor ordinal ν with $\ell(\nu)=p+1$ and $F(\nu)=c$.

But the first p terms in the normal forms of α and β are equal by (1). Thus $\mu=\nu$.

REFERENCE

[1] Gonshor, H., "Number theory for the ordinals with a new definition for multiplication," Notre Dame Journal of Formal Logic, vol. 21 (1980), pp. 708-710.

Department of Mathematics
Institute of Advanced Studies
Australian National University
P.O. Box 4

Canberra, ACT 2600
Australia

[^0]: *The work contained in this paper was done while the author was a research officer at the Australian National University.

