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A Note on Intuitionistic Models of ZF

R. LAVENDHOMME and T. LUCAS

An analysis of the forcing construction of models of ZF by means of
intuitionistic logic and Kripke semantics (or sheaf semantics) has been made by
many authors (see for example [ 1 ], [2], [5]). We feel however that some basic
information is still available from this approach, the motto of which could be
"think of a sheaf of structures as a structure, using intuitionistic logic". In this
note, we are not really interested in obtaining independence results, but want to
sketch a set-theoretic forcing along lines which closely agree with that motto.
In usual forcing constructions, there are two sheaf structures:

<M, -ep -)peC

and

(M,p l h - e - > p e C ,

and passing from the first to the second is nothing else than a sheaf-version of
the extensionalization of a binary relation. This is discussed in Section 2 for
Kripke-structures but the proofs are designed so as to immediately extend to
sheaf structures as is indicated in Section 4. Application to the construction of
models of ZF is given in Section 3. To this we add definitions and notions
which bring the construction closer to the classical construction of inner
models of ZF and, as a "test-case", indicate how to adapt the well-known
proof of relative consistency oϊVΦL.

Roughly speaking, we may distinguish between two approaches to forcing.
In the first, the model, be it Boolean-valued or intuitionistic, is constructed
from the base model Masa union of a sequence of Ma indexed by ordinals of
M ([1], [2], [4], [5]). In the second, no hierarchy is present, at least to begin
with, and the hierarchy effect remains concentrated in the various forms of
induction [7]. Our approach is of the second kind and may be viewed as an
intuitionistic version of [7], whereas [2] for example is an intuitionistic con-
struction of the first kind. In fact, this distinction is not so clear-cut and the
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reader will notice that our presentation sometimes parallels [2]. For example,
no new ordinals are added in the construction (Proposition 7, Section 3,
compared with [2], Ch. 9, Section 6).

In contrast with these approaches, the sheaf and topos-theoretic methods
have inspired our Section 4. We do not develop the subject very much, but
enough, we think, to suggest comparisons in that direction.

1 Preliminaries All languages to be considered here are first-order languages
which have only the binary predicate symbols to be denoted by 'e', Έ\ Έλ\ . . .
according to the intended interpretation. They do not contain symbols for
equality and Ή', V, '->', ' 3 ' are their only logical symbols. The use of 'Vx' is a
mere abbreviation for '"ΊBΛΠ' so that notations like 'Vz e yφ" abbreviate
'π3zπ(x e y -> φ)\ '3z e yφ\ '0 v φ\ '0 <—• ψ' are also considered as abbrevia-
tions. It is important, however, when we come to semantics to consider '->' as
not defined from 4~ι' and V. Languages will be denoted by L(e), L(E),
L(E, Eu . . . ) , . . . according to their list of typical symbols.

The following definitions are given for a language L(E). The generalization
to other languages is immediate.

A theory T (in L(E)) is a set of formulas of L(E). We denote by T \γ 0'
(respectively T Y^ φ) the fact that φ is an intuitionistic (respectively classical)
consequence of T. Recall that since we do not have universal quantifiers in
L{E), the double negation theorem holds: if T \~c 0, then T \γ ~Π0. In the
absence of a symbol for equality, the axioms of equality and extensionality,
written in L(E), reduce to

3zEy z ^ x -> xEy,

where x ^ y abbreviates \ft(tEx <—> tEy); we refer to the above formula as
CE-Ext). The other axioms of ZF will be taken from [4], pp. 55 ff under the
following form and with the usual restrictions on the variables of 0:

(£-Found) Vy'Ex ByEx ΊzEy izEx
(is-Pair) 3z(xEz Λ yEz)
(E-Όnion) 3y \fuEx \/υEu υEy
(^-Subset 0) 3y \fuEx(3v φ->3vEy φ)
(£"-InO 3y(3uEy Λ \fvEy 3wEy vEw)
(E-Comp 0) 3y(\fuEy(uEx Λ 0) Λ \fuEx(φ -> uEy))
(^-Subset) 3y \fu(\fvEu vEx -» uEy).

Let <C, <> be a partially ordered set; the elements of C are denoted by
'/?', 'q\ V, . . . A structure for L(E) over (C, O is an ordered pair 7ϊv =
(D7^, E7^) where D7* = (D^)peC, E9^ = (E^)peC and for every p, q e C,
E^C(D^)2anά

q<p^D^C Df and E? C Ef.

Formulas of L(E) are interpreted in 7)v by "forcing"; i.e., we define
'Tns 1̂  φ{x) [a]9 (for p e C, Έ is a sequence of elements of D^ whose length
matches that of x) by induction on the form of 0:

(0) Thy \VV xEy [a, b ]_iff (a, b) e E^
(1) Thy \\^( Ίφ)(x) [a] iίf\fq<p9^ ¥q φ(x)[a],



56 R. LAVENDHOMME and T. LUCAS

(2) 7ns hp (φ Λ χ)(χ) [a] iff Thy II, φ(x) [a] and Thy_ \VV χ(x) [a]
(3) 7?ιsltp(ψ-> χ)(x)[a] iff Vq<p(Thy 1̂  φ(x)[a] implies 7ns hq χ(χ) [a])
(4) 7ns lip (3xψ)(x) [α] iff 3a e ^ ^ / 1̂  φ(x, x) [a, a].

From this we define for formulas φ(x):

Thy lip 0(3c) iff VάeD^ Thy lip 0(3c) [5]

and ^ Ih φ(3c) iff Vp %/ 1̂  φ(3c). If T is a theory in L(E), " %/ is a model of Γ '
is defined by:

%/ Ih Γ iff for every φ(x) in 71, ^ IH 0(3c).

When there is no risk of confusion, we use simplified notations like:

Thy ipφ[a].

The following lemmas are easily established and will often be used without
explicit reference:

Extension lemma If q <p and Ths \^ φ[a]y then Thy |^ φ[a].

Validity lemma IfT\jφ and Thy Ih Γ, then Thy Ih φ.

2 Extensionalization of structures In this section we fix a partially ordered
set <C, O . All structures to be considered are structures for different languages
over (C, <>; notations like (/%/,£), (Tfts,E, Ex, . . .) will put in evidence the
typical symbols of the underlying languages. All our considerations are carried
out "naively" within a background ZF-set theory; adaptation to the construc-
tion of models of ZF will be considered in Section 3.

Definition 1 (Thy, E) is ranked if for every p e C, (a, b) e E^-^ rank(a) <
rank(Z?).

Definition 2 Let φ(x, z) be a formula in L(E, Eh . . .)• The axiom of
E, Eu . . .-induction for φ is the formula (E, Eh . . .-Ind 0): \/x(\/yEx φ(y, z) ->
φ(x, z)) -+ \fx φ(xt z). The schema ofE, Eh . . .-induction (E, Eu . . .-Ind) is the
set of all such formulas for φ in L(E, Eh . . .).

Another intuitionistically equivalent form of (E, Eu . . .-Ind) is the
schema:

3x φ(x, z) -> -\~\3x(φ(x, z) Λ Ί 3yEx φ(y, z)).

This form is well adapted to forcing computations as in the following
proposition:

Proposition 1 If (Thy, E) is ranked, then every expansion (Thy, E, Eh . . .) of
(Thy, E) is a model of(Ey Eu . . .-Ind).

Proof: The above remark and usual forcing computations lead us to choose in a
nonempty set B = \b\3r < q (b e D^ Λ Thy \~r φ(b, c))i an element b0 of
minimal rank which will be used to prove the thesis.

More generally, every expansion of a ranked structure is a model of
E, Ex, . . .-induction in n variables. This results from the following lemma:
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Lemma 2 For every formula φ(xγ, . . ., xn, z) of L(E, Eu . . .),

(E, Eu . . .-Ind) t φ,

where φ is the following formula:

\/xx. . . \/xn (VylExl. . . VynExn φ(yu . . .,yn, J) ^ 0(^i,. .,^«, ?))
-> Vx! . . . Vxrt φ(xl5 . . .9χn, z).

Proof: The following method of proof will be repeatedly used in the sequel:

(E, El9 . . .-Ind) ^ ψ ;

therefore, by the double negation theorem:

(£, El9 . . .-Ind) h ππψ;

but

I7 π π ψ -> φ

(recall that 'Vx' stands for ςπ3xπ'); therefore

(£, £ l s . . .-Ind) \~ φ.

Definition 3 (!ftis,E) is extensional \ϊ(7hs,E) is a model of (£-Ext). (7?ι/,R)
is an extension of (?%/, £ ) if

(^,£, R) W-xEy^xRy,

and an ^/id extension oϊ{7fts, E) if moreover

(7?ι/9 E, R) \\-χRy -> 3z£> z ~ x

Proposition 3 // (7?u,E) is ranked, there is at most one extensional end
extension of (Thy ̂  E).

Proof: Let (?%y,R) and (Thy.S) be two such extensions. We consider in

L(E, R, S) the theory T formed by the schema (E, R, S-Ind) and formulas

0M6):

(1) xEy->xRy, (4) xEy-*xSy,
(2) xRy -> 3zEy z^x, (5) xSy -> 3z£^ z p ,
(3) xRy ^^ 3zRy z ̂  x, (6) x ^ ̂ -> ΞzSy z ̂  x.

A classical proof by 'Έ-induction" will show that

T\-Cxjy<~^x^y,

from which, by the double negation technique used in Lemma 2:

T Y-iX^y+^x^y.

It is then easy to prove T hj xRy -* xSy; taking xRy as a hypothesis, one
obtains:

3zEyz~x (by (2))
3zEy z ̂  y (by the preceding result)
3zSy z~y (by (4))

xSy (by (6)).
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Similarly, T ^xSy-^xRy. Finally,

T hj xRy <—• xSy,

and the proposition follows from the validity lemma.

Definition 4 The axiom of E, R extensionalization is the formula

(E, R-Ext) : xRy <-» 3zEy z § x,

where z ̂  x abbreviates \ftEz tRx Λ MtEx tRz.

Proposition 4 // (Thy, E) is ranked, then every extensional end extension
(Thy,R) of (Thy, E) is a model of(E, R-Ext).

Proof: Similar to the proof of Proposition 3, using for T the theory constituted
by the schema (E, jR-Ind) and formulas (1)—(3) of Proposition 3. The main
steps are:

Thcx§y^χ-y,Tl1x§y<-^x^y,T^(E,R-Ext)

and the thesis follows from the validity lemma.

Proposition 5 If (Thy, E) is ranked, there exists an extensional end extension
{Thy, E*) of\7hs, E).

Proof: By Proposition 4, such an extension is necessarily a model of
(E, £*-Ext). This means that for every p e C, a, b e Dj^,

(Thy,E,E*) \\p aE*b

iff

\/q<p\/deD^ ((d,a)eE^-*3r<qTh/ \\~rdE*b)
/\\/q<p MdeD^ ((d, b)eE^^3r<q Thy \Vr dE*a).

The usual rank-argument shows that there exists a formula φ(x, y, z) of the
background language of ZF such that for every p e C,

ψ(a,b,p)*-*aeD^/\ beϋf N (Thy,E,E*) \VV aE*b;

thus, defining

£ * ^ = \(a, b)\φ(a, b,p)\

will give the required structure (Thy, £*) . To see that this is indeed an exten-
sional end extension of (Thy,E), we form the theory T constituted by the
schema (E, /s*-Ind) and (E, £*-Ext) and prove successively:

T V] x ̂  x

E* E*

T η χ^y->y^χ
E* E* E*

Trjx^y/\y^z~>x^z

T I7 xEy -> xE*y

T\-iX£y+-+x&y
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T Y~ι xE*y ->• 3zEy z j% x

T hj (£*-Ext).

We now know by Propositions 3 and 5 that, if (7ft/, E) is ranked, there
exists a unique extensional end extension of (7ft/, E), to be denoted hereafter
by (?%/, £"*). To complete our study of extensionalization, we should look for
formulas preserved when passing from (7%/,E) to (7?i/,E*): since (7ft/, E*) is
essentially a "quotient" of (7ft/, E) (see remark at the end of this paragraph) it
is not surprising that "positive" formulas are preserved.

Definition 5 If 0 is a formula of L(E, E*), 0* is the formula (of L(E*))
obtained by replacing in φ every occurrence of E by E*.

It will spare notation to define Γ* as follows:

Definition 6 Γ* is the theory in L(E, E*) formed by the schema (E, E*-lnά)
and the axiom (E, £*-Ext).

Definition 7 A formula φ(x, z) of L(E*) is substitutive in x if T* \~ x ~ y Λ
ψ(x, z) -> ψ(y, z).

Proposition 6 For any formula φ of L(E*) and any variable x, ~iφ is sub-
stitutive in x.

Proof: Prove Γ* I7 3x (x ̂ y Λ πψ (x, z)) ̂—•> πψ(^, z)) by induction on the
form of ψ.

Definition 8 In L(E, E*)9 Pos(E) and Neg(E) formulas are simultaneously
defined by induction:

(1) formulas of L(E*) are Pos(E) and Neg(E)
(2) xEy is Pos(E)
(3) if φ is Pos(E), (nφ) is Neg(E)

if 0 is Neg(E), (πφ) is P o ^ )
(4) if 0 and ψ are Pos(E), (φ Λ ψ) is Aλs(£)

if 0 and ψ are Neg(E), (φ Λ ψ) is Neg(E)
(5) if 0 is Neg(E) and ψ is Pos(E), (φ -> ψ) is Po^ί^)

if 0 is Pos(£) and ψ is Neg(E), (φ -> ψ) is iV^(£)
(6) if 0 is Λ ? ^ ) , (3x0) is Pos(£)

if 0 is Neg(E), (3xφ) is Λfeg(£)
(7) if 0 is Neg(E) and 0* substitutive in x, (3x£jμ0) is Neg(E).

Note that if 0 is Pos(E), (\fxEy φ) is, up to intuitionistic equivalence, a
Pos(E) formula (apply Proposition 6).

Proposition 7 7/0 is Pos(E) and φ is Neg(E), then Γ* I7 φ •+ 0* 0«d
Γ* \-j ψ*-+φ.

Proof: A simultaneous induction on the form of Pos(E) and Neg(E) formulas.

In terms of models, this proposition means that Pos(E) formulas of
L(E, E*) can be transferred from (7?i/9E,E*) to (7ft/, E*) by "starring". In
particular,
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Proposition 8 For any formula φ of L(E*), Γ* \η (£*, £*-Ind φ);
Γ* Vj (£*-Found).

Proof: (£*, £*-Ind φ) is obtained by starring (E, £*-Ind φ), a.Pos(E) formula,
consequence of Γ*. The formula (£*-Found) (with z as a free variable) is
intuitionistically equivalent to (£*, £*-Ind (-ix£*z)).

We summarize the results of this section as follows:

Theorem 1

(1) // (7h/,E) is a ranked structure, there exists a unique extensional end
extension {7>v, E*) of (?fr, E).
(2) Such an extension is a model of the theory Γ* formed by the schema
(E, £*-Ind) and the axiom (E, £*-Ext).
(3) Γ* ljφ-+φ* for any Pos(E) formula φ of L(E,E*).
(4) Γ* h (£*-Ext).
(5) Γ* h (£*,£*-Ind).
(6) Γ* hr (£*-Found).

Remark: If (7)v, E) is not ranked, the existence of an extensional end exten-
sion (7h/,E*) of (?%/,E) can still be proved by adapting for example the
construction of [3]; a sequence of (9?is, Ea) (a ordinal) is defined, letting for
peC,

(a, b)eE°<-> (a, b) e Ep

(a, b) e E«+1 «-> 3c«c, b) e E« f\Vq <p W e D%"((d, c) e E$ <-> <d, a) e E$)
(a, b)eE£+-+3a<X (a, b) e E$ (λ limit);

since a < β implies Ep C E$, a cardinality argument shows that for some δ,
(7ft/, Eδ) is identical with (9?i/, Eδ+1); (%/, Eδ) is an extensional end extension
of (7h/,E). Such an extension is not necessarily unique (see [4] for classical
structures), and in general uniqueness clearly depends on some "well-founded"
character of (%/, £): we proved it for ranked structures. It can also be proved
for "well-founded" structures: (Ϋ?i/,E) is well-founded if there is no family
{an, pn)n<ω such that for every n < ω, pn+ι < pn, an e Dj% and <αΛ+1, an) e
tfpn+v well-founded structures in fact satisfy Proposition 1. Note also that
"ranked" implies "well-founded". We did not take these lines of proof because
they do not seem to carry over to "class-structures" as is required for the
construction of models of ZF.

3 Application to the construction of models of ZF To construct models of
ZF by "forcing", one usually fixes a (classical) transitive model M of ZFand a
partially ordered set <C, <> in M. A (Kripke) structure (9?ι/,E) arises when
defining for p e C, a, b e M

(a, b) eEJ^+->3q>p {a, q) e b

(we refer to this as Forcing (A); see for example [7]). In Hey ting-valued
versions, one fixes a complete Heyting algebra H in M\ if H happens to be the
Heyting algebra of all open subsets of (C, O for the order-topology, a (Kripke)
structure also arises with the following definitions:
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D^ - the Heyting-valued universe MH

(a,b) eEJ^<-*ae d o m φ ) Ape b(a)

(Forcing (B); see for example [5]). In this section we apply results of Section 2
and ideas underlying it to give sufficient conditions on a general (7ft/, E) to
obtain models (%/, £*) of ZF(E*). We also develop a few definitions which
bring the whole construction closer to the (classical) construction of inner
models of ZF. Our definitions and propositions are designed not only to cover
Forcing (A) and Forcing (B) but to suggest generalizations to sheaves which
will be briefly discussed in Section 4. We will omit generics since these are
dispensable from the present point of view (see [2]).

We fix a (classical) transitive model M of ZF and a partially ordered set
<C, <> of M. To apply Section 2, the construction of {Thy, E*) from (7ft/, E)
should be done "inside" M. We therefore restrict our attention to Λf-definable
structures:

Definition 1 (Thy,E) is M-definable if there exist formulas δ(x, z, t) and
t(x, y, z, t) of the language of ZF such that for any p e C,

D^ = \a\a e M and M 1= δ(α, p, C)\

Ej^ = i(a, b)\a, beM andΛf t=ε(a, b, p, C)ί .

(Thy, E, Eί9 . . .) is M-definable if {%/, E\ (Tϊv, Eγ\ . . . are Λf-definable.

Using this definition, all results of Section 2 hold when "structure" is
replaced by "^/-definable structure". Thus, for example, Proposition 1 is proved
by the same forcing computations but uses the fact that M is a (classical)
transitive model of ZF; more precisely, although B (in the proof of Section 2,
Proposition 1) is no longer an element of M, usual e-induction applied in M will
furnish the desired b0 of minimal rank. The only other point which really needs
adaptation is in the proof of Proposition 5 one needs the fact that M allows
definitions by transfinite induction and from this the well-known "definability
of forcing" will follow:

Definability lemma // (Thy ,E) is M-definable, then {Thy, £"*) is M-definable
and more generally, to every formula φ of L(E, E*) one can associate a formula
φ# of the language of ZF in such a way that for all p e C,a e D^,

{Ths,E, E*) lip φ[a] iffM f= φ#{a, p, C).

(In fact, the whole construction could be carried out "inside M", interpreting
the validity lemma, the double negation theorem, etc. . . ., as instructions to
compute forcing).

Summarizing, we may state:

Theorem 2 // (9hy,E) is a ranked M-definable structure, there exists a
unique extensional M-definable end extension {Thy, E*) of {Thy, E).

In the case of Forcing (A) for example, (7?ι/,E*) is in more usual notations
the family of structures (M, p h - e ~)pec\ Theorem 2 thus characterizes the
so-called "forcing for atomic formulas".

From now on, we fix a ranked Λ/-definable (7ft/, E). By Theorem 1 (4)
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and (6), (7ft/, E*) is a model of (E*-Ext) and (£*-Found). We now investigate
when (7ft/, E*) is a model of the other axioms of ZF (£*).

Definition 2 ZF (E, E*) is the theory Γ* together with the axioms CE-Pair),
(£-Union), (E-lnf), (£-Subst φ), (£-Compr φ) for any formula φ of £(£*) and
(Subsets): 3y\/u (\fvEu vEx -> 3uxEy Vw(wEu λ <-> wEu)).

Proposition 1 ZF{E, E*) \~ ZF(E*).

Proof: Apply Theorem 1, (4) and (6), to get (£*-Ext) and (£*-Found). Except
for (£*-Subset), every other axiom of ZF (E, E*) follows from the correspond-
ing axiom of ZF(E,E*) by Theorem 1, (3). To prove (£*-Subset) from
ZF (E, E*), write (Subsets) as 3yψ(y) and prove

ZF (E, E*) ry φ(y) -> \fu(\/vEu vE*x -> uE*y);

the usual double negation argument shows that a classical proof (using a com-
prehension axiom) suffices.

As a consequence of Proposition 1, a sufficient condition for (Ths, E*) to
be a model of ZF (E*) is that {Thy, E, E*) be one of ZF(Ef E*). This in turn
will hold as soon as (/^/,£) is "large enough". It is also convenient (but not
necessary) to assume from now on that <C, O has a greatest element, to be
denoted by V . This allows us to talk of "global sections" of (7ft/, E). (In case
C has no greatest element, replace global sections by coherent families (ap)pec).

Definition 3 An M-class d of (7ft/, E) is a family (dp)pec such that

(1) deM
(2) \Jp,qq<p^dpCdq

(3) Vp dp C D^.

A global section of (7ft/, E) is an element of D^. (7ft/, E) is M-universal if there
exists a term σ(x) (in an extension by definitions) of ZF such that for every
M-class d = (dp)peC of (7ft/, E),

(1) σ(d) is a global section of (2%/, £ )
(2) Vp«α, σ(d)> e EJ^ *^ a e dp).

Briefly stated, Λf-universality means that there are enough global sections
to represent small classes. Note that structures (7ft/, E) arising in the cases of
Forcing (A) and (B) are clearly M-universal for the following definitions, given
for an M-class d = (dp)pec.

Forcing (A): σ(d) = \{a, p)\a e dp, p e C\

Forcing (B): σ(d) is characterized by

dom(σ(d)) = U{dp\peC\

and for a e dom(o(d))\

σ(d)(a) = \p\aedp\.

Proposition 2 // (7?i/,E) is M-universal, then (7?ι/, E, E*) is a model of
ZF(E,E*).
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Proof: To prove that {Thy, E, E*) is a model of (£-Pair), let p e C, a, b e D^y

and consider the Λf-class d = (dq)qec defined by dq = [a, b\ for q <p and dq - 0
otherwise; by A/-universality, (a, σ(d)) e E^ and φ, σ(d)) e Ej^, which shows
that σ(d) is the required set z in (Thy ̂  £, JE1*) 1̂  3z(aEz Λ &£Z). A similar proof
applies to (£-Union), (E-lnf), (£-Subst 0) and (is-Compr φ). For (Subsets), let
p e C, a e D^ and consider the M-class b defined by

bq = {σ(d)lc/M-class of(7?ι/9E)9 V *£pdp> = 0,

Thy \\^\fwEσ(d)wEa\

for q <p and bq - 0 otherwise; σ(Z?) is the required set y in

Tfis It̂  3y\fu(\fvEu υEa -+3uιEy \/w(wEuι <—>• vv.β'w)).

It remains to discuss the traditional embedding of {M, e) in {7)v^E*}.
From now on we assume that (??z/,E) is M-universal. We associate to every
a e M the global section a defined by induction on the rank of a:

Definition 5 a - σ(({b\b e a\)pec).

That a is indeed a global section of (%y, E) is proved by induction on the rank
of a. As usual,

P r o p o s i t i o n 3 F o r e v e r y a, b e M, p e C, c e D p ,

( 1 ) {Thy \^άE*b)<->aeb
(2) {Thy VtpcE*b)-+3q<p3ae M Thy l^c-ά.

E*

(In (2) and in the sequel, ~ is^ϊ or jr: these are equivalent in Thy). Proposition 3
(1) means that the formula (x e y) is "absolute" and Proposition 3 (2) means
that it is "conservative" in the following sense:

Definition 6 To every formula φ of L(e) associate the formula φ* of L(E*)
obtained by replacing every occurrence of e by E*.

(1) The formula φ(xl9 . . ., xn) of L(e) is absolute if for every au . . ., an e M
and p e C,

( 7n/ lip φ+(al9 . . ., 3Λ)) <~+M 1= 0( f l l , . . ., αΛ).

(2) The formula φ ( ^ l 5 . . ., > Λ̂, xl9 . . ., x m ) of L(e) is conservative in .y1? . . ., ^

if for every al9 . . .9am e M, p e C a n d bl9 . . .,bn e / ) ^ ,

( ^ 1̂  Φ*(bu . . ., bn, άί9 . . ., άm))
->3q<p 3b\9 . . .9b'neM Thy \~qbλ~b\h. . . Λ bn ~ b'n.

(Note that we could as well enrich our language L(E, is1*) with constants
a(aeM) interpreting a in Thy by (ό) p e c and consider (7k/, e) as a constant
structure over (C, O for the language L(E, E*,a)aeM, interpreting E and E* by
e and α by α. This consideration of constants would require a slight extension
of the notions of Section 2 but would have the advantage of giving a better
formulation of Definition 6.)
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Lemma 4

(1) If φ and φ are absolute, so are iφ, φ Λ φ, φ -* φ.
(2) // φ is absolute and conservative in y, yh . . ., yn, then 3yφ is absolute and
conservative in yu . . ., yn.

Proof: Immediate from the definitions.

Using the classical definition of ΔfF-formulas (but always reading 'Vx' as
'-ι3x~i'), the following holds:

Proposition 5 If φ is ΔfF, then ~\~\φ is absolute.

Proof: Lemma 4 and Proposition 3 give the result for formulas with bounded
quantifiers. This is easily extended to ΔfF-formulas.

Proposition 5 allows us to transfer automatically classical results:

Proposition 6

(1) The formula i~]Ord(x) where Ord(x) expresses (classically without uni-
versal quantifiers) that x is an ordinal is absolute.
(2) The formula ~i~\L(y, x) where L(y, x) expresses (classically without uni-
versal quantifiers) that y is the x-th set of the constructible hierarchy is
absolute.

Proposition 7 The formula Ord(x) is conservative in x.

Proof: Let p e C, c e D^ and Thy 1̂  Ord(c). Define a = {β\β ordinal of M,
3q < p 7n/\^βE*c\; prove first that a. is an ordinal of M then compare a and c
in 7)v by the (double negation of the) law of trichotomy; the fact that
3q <p Ύn/ |^ c ~ ά will follow.

To show that L(y, x) is conservative in y and x9 we use the following
notion:

Definition 7 The formula φ(y, x) is strongly conservative in x if for every
peM, b, aeD^

( ^ \^Φ^(bfa))^3q<p3a eM Thy ha-a.

Lemma 8

(1) If φ(y, x) is absolute and strongly conservative in x and if ZF I7 3\yφ, then
φ is conservative in y, x.
(2) If ZF I7 φ(y, x) -» φ(x) and φ(x) is conservative in x, then φ is strongly
conservative in x.

Applied to L{y, x) and Ord(x), Lemma 8 gives the desired result:

Proposition 9 The formula L(y, x) is conservative in y and x.

Finally, denoting by Λ(x) the formula 3y(x ey N3Z -\-\L(y, z)) which
expresses that x is constructible and using the preceding observations, we
obtain:
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Proposition 10 Λ( c) is absolute and conservative in x.

This fact is what is essentially required to prove the relative consistency of
V Φ L: define <C, <> and (7hsy E) as usual, say with forcing 04) and p e C «—• 3
finite x C ω, p: x -* ίO, 1}

p<q<-+p D q;

consider c = Km, p)\p e C, (m, 1> e p}; using the conservative character of Λ(x),
it is easy to turn Ths \t -iA^(c) into a contradiction.

4 Generalization to sheaves Instead of interpreting languages in structures
over partially ordered sets, it is possible to interpret them in sheaves over a site
(and in particular over a topological space). We recall here this interpretation
due to Joyal (see [6]). A site J is an ordered pair (O, Cov) where & is a small
category and Cov a set of covering families (Cov(p))peco, Co denoting the set of
objects of &, satisfying the usual conditions. Any partially ordered set is a site
for the definition Cov(p) = {pi. The case of general Hey ting algebras (not
necessarily associated with a partially ordered set) is also covered by the
definition Cov(p) = {(p/)/€/l F p z = p i . A sheaf over si is a functor D:

Oop -> Set satisfying the glueing condition. A sheaf of structures for a language
L(E) over J is an ordered pair CD**', E^) where tf7" is a sheaf over J and E7^
is a subsheaf of (D9^)2. Formulas of L(E) are interpreted in 7h/ by an inductive
definition of 7h/ 11̂  φ(χ) [a] for objects p of O and sequences^ of elements of
D^, whose length matches that of x. This definition is that of Section 1 for
atomic formulas and conjunctions: the other cases are given below:

(1) 9^ \\p (iψ)(x) [a] iff \fq ̂  p in O Tfc ¥q ψ(x) {Dψ~a\.

(2)_ Thy l^_(ψ -> χ)(3c) [a] iff \fq *> p in &, Ths \~q φ(x) [D^a] implies 7ns \Vq

χ{x){Dfa\. _
(3) 7ns 1̂  (3xψ)(x) [a] iff there exists a family (p( -^ p ) i e / e Cov(p) and a
family (α/)/e/ e Π D^ such that for every / e /, ?^ l̂ τ ψ(χ, x) [aif Dffa].

Minor changes in Section 1 will again give an Extension Lemma and a
Validity Lemma, to which the local character of this forcing may be added:

Local Character Lemma // (p/ ^ p)ieI e Cov(p), Έ e D^ and for every i e I,
Thy I^Tφ(χ) [D^a], then 7*s \Vp φ(χ) [?].

Since Section 2 is mainly based on syntactic considerations and the
validity lemma holds, definitions and proofs will carry over without difficulty
and Theorem 1 will still hold for sheaves of structures over a site &.

Sheaves can also be used to give models of ZF but details of the adapta-
tion of Section 3 are more delicate than for Section 2. Essentially, J (and in
particular Cov) should be an element of M and "things" to be considered are
not sheaves in the external sense but sheaves in the sense of M\ these are
ordered pairs CD^, E7^) given by formulas of the language of ZF corresponding
not only to Df" and E^ but also to ϋf' and Ef" (/is an arrow of &), and such
that, using these formulas, M 1= "(D77^, E7^) is a sheaf over J". In this connec-
tion, the remark following the Definability Lemma of Section 3 may be useful.
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