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Commutativity and Self-Reference

C. SMORYNSKI

A common occurrence in fixed-point theory is the sharing of some fixed
point by commuting operators1: Quite often, if F, G are such that, for all
x, FG(x) = GF(x), there is some element x such that x = F(x) = G(x). How
common is this occurrence in the arithmetical fixed-point theory, i.e., in the
theory of arithmetical self-reference? The ongoing modal analysis of this
self-reference offers a tool to study this question. Put differently, this question
offers a test for the coherence of the modal theory.

In the present paper I will offer some simple observations in this direction.
Though the results are not difficult, I think they do testify to the coherence of
the modal theory. Moreover, through the exhibition of nontrivial differences
between varying types of self-reference, they offer some indication of the
possibility of a rich theory of arithmetical self-reference.

In its weakest and most popular form, the Diagonalisation Theorem
asserts there to be, for any formula \pv with only the variable v free, a sentence
0 such that

PA h0«-»i//( r0n).

Well, 0 is not a fixed point in the strictest sense: On the left it is a sentence and
on the right a numerical code for the sentence. Composing \p with the code-
assigning function will give an operator on sentences,

*(0) = tm,
for which we still do not have a fixed-point equation,

*(0) = 0, (*)

but merely an equivalence. Now, if ^ preserves provable equivalence, we can
identify equivalent sentences and so obtain a genuine fixed-point equation (*).
1 shall call such operators extensional and shall deal solely with extensional
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operators and their fixed points here—though I shall stick to linguistic rather
than functorial notation.

Is the notion of extensionality anything more than a red herring? I really
do not know. It would seem to be relevant on the superficial ground that
intuition from fixed point theory should be more reliable when one is dealing
with genuine fixed points than when one is not. At one point below I will use
extensionality; but, since the particular application will depend on somewhat
more than mere extensionality, no inference about the value of extensionality
in itself can be drawn.

Let us get down to business:

Example: Let xjjv be any formula with only v free such that, for all sentences 0,

PA h i//(rn0"1) <-* -i i//(r0n).

Then \jj and ~i \p commute, but share no fixed point.
The proof is immediate. Less immediate are good instances of this

example. I cite two:

i. Let \jjv assert v to be the code of a formula containing an odd number
(or: an even number) of symbols;

ii. Let \jjv define truth for a model of PA.

The first of these is simple, but not very exciting. The second is much more
interesting, but requires a bit of effort to construct: One needs the Orey
Compactness Theorem (which can be found in [2]; but cf. [3] and [5] for
related formulae and their fixed points). I note that formula (ii) is extensional
and seems to be more interesting for this reason: iHr0n) depends on what 0
says rather than on how 0 says it.

Just as it is not the case that every function has a fixed point or that every
pair of commuting functions possessing fixed points will share a fixed point, it
is not, as we have just seen, the case that commuting formulae will share a fixed
point. Fixed-point theory depends on special properties of the functions (e.g.,
continuity) or of the underlying space on which the functions are defined (e.g.,
well-orderedness). By analogy, the theory of self-reference will have to invoke
special properties to establish particular results. In the present context, the best
understood relevant special property is the modal one—that \JJV be modal in
character.

There are now several systems of modal logic dedicated to the study of
various types of self-reference. The first, simplest, most successful, and most
widely known of these is the system L, the language of which is given by:

Propositional variables: p, q, r, . . .
Truth values: T , l
Propositional connectives: n, A, V, ->
Modal operator: D.

Arithmetical interpretations * of the modal language are determined by first
assigning arithmetical sentences 0p to variables p and then defining:

i.p*: 0P

ii-iii. T*: 0 = 0;!*: 0= 1
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iv-vi. (A °B)*:A* ° B*,for° eU, v,->i
vii. (~"î 4)*: ~iA*

viii. (UA^'.PrpAfA*1),

where Prp^iv) is the canonical proof predicate foriM. If A{px, . . ., pn) has only
the propositional variables pt and 0, = p*, we will write A(<j)u . . ., <j}n) for
^ (P i , • • .,Pn)*-

The most popular result about L and its interpretations is Solovay's
Completeness Theorem ([8]):

Solovay's Completeness Theorem For any modal sentence A, L h A iff
V*(iM \-A*).

Solovay's Completeness Theorem is very interesting, but not in itself very
useful. What is useful is a technical lemma upon which this result and a gen-
eralization rested. But that lies ahead of us.

The second most popular result is the de Jongh-Sambin Fixed Point
Theorem (cf. [4] and [7]). Notice that, if each occurrence of p in A(p) lies
within the scope of a • , the corresponding occurrences of 0 in A((p) will not be
occurrences of 0 as a subformula of A ((/>), but merely references to 0 via r0~l
Thus, if each occurrence of p is so restricted, there will be a sentence 0 such
that PA h 0 *—• A{<j>). Because of this, the restriction on p that each of its
occurrences in A(p) lie within the scope of a D is called the diagonalisation
restriction (DR).

De Jongh-Sambin Fixed Point Theorem Let p obey the DR in A(p). There
is a sentence B constructed from the variables of A(p) other than p and such
that

i.L h[p <-»A(p)] A n[p*-+A(p)] ^.p±-+B
ii.L \-B+-+A(B).

As one of the two who originally conjectured this result, I rather like it.
I must nevertheless admit that, as was the case with Solovay's Completeness
Theorem, the result is more interesting than useful. What is generally useful is
the weaker uniqueness result of Bernardi and de Jongh (cf. [ 1 ] and [6]):

Uniqueness Theorem Let p obey the DR in A(p). Then L h D [ p *—>
A(p)] A B[q +-+A(q)] -+n(p^+q).

The arithmetical interpretation of this is: If p obeys the DR in A(p), then,
for any interpretation of the variables of A(p) other than p, if

PA | -0 o+->,4(0 o )andiM h 0 ! +-+A(<j>l)9

then

PA 1-00*-* 01-

In other words, if \pu arises from a modal formula A(p) in which p obeys the
DR, then \jjv has (up to provable equivalence) a unique fixed point. The signifi-
cance of this for fixed points of commuting operators is immediate:
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First Common Fixed Point Theorem Suppose i/zji;, \jj2v arise from modal
formulae A (p) and B(p) in which p obeys the DR. If, for all sentences 0,

PA h ^ ( ^ ( W ) *-> ̂ /2(
r^i(r0T),

there is a single sentence 0 such that

PA h 0 <-> \p xf<p) and PA h 0 <-* i//2r0"i).

Proof: Diagonalise on i/̂  to produce a sentence 0 such that PA h~ 0 «—> i/ziO"^).
By extensionality, A4 h i//2(

r0n) *~+ ̂ 2(ri> i(r<PV)- By commutativity, A4 h
^iCtP) *~~^ & i(r~l//2(r0~1)"1) a n ^ ̂ 2(r0n) is a fixed point of ̂ ^ By the uniqueness
of the fixed point of i//l5 this yields PA h 0 «-* i//2(

r0n). QED

Remark: The proof of the First Common Fixed Point Theorem establishes a
bit more than stated: If \jjx arises from A{p) withp obeying the DR, and \p2 is
extensional, then the commutativity of \jjx and i//2 entails the existence of a
common fixed point.

The remark is a bit nicer than the theorem, although both results are
slightly too trivial to be very pleasing. Another disappointing feature of the
theorem is that such instances of commutativity are not all that common. In
ordinary algebra, for example, the formulae A(p) = p A C and B(p) = p A D
(with p not occurring in C or D) obviously commute: L \~ AB(p) +-+BA(p).
The diagonalisation restriction largely kills this:

Example: Let A(p) = Up A C, B{p) = Up A D, withp absent from C,D. Then
the following are equivalent:

i. L V- AB(p) <-> BA{p)
ii.L H C A D C ^ D A UD

iii.L hAA(p)+-+BB(p).

Moreover, under any of these assumptions, L \~ An(p) «—> Bn(p) for all n > 1.

Proof: (Those unfamiliar with L should first consult, e.g., [8].) Note that

L \-AB(p) «—>. D2p A D D A C
L Y-BA(p)+-+. n2p[KUCr\D.

i=> ii. Letting p = T,

L \-AB(T)*->BA(T)^L hDD A C+-+UC AD

=*Z, HOC-*•(•£>->£>)

=^L h C A • < ? - * • / ) A Z>.

The converse implication is similar,

ii => hi. Note that

L \~A2{p)+-+. D2p A DC AC
I h £ 2 ( p ) < - * D2pADi)AZ).

The conclusion is immediate.
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iii=»i. Letting p = T,

L \-A2(T)+-+B\T)=>L H C A D C < - > Z ) A D Z )
=*L hDACADC^DAD/)
=*L hDD /\DC+-+nD
=*L hnz)->nc
=>L H C A D Z ) ^ C A D C

=>I hCADD-^DADD
=>I hCADD-^D ADC.

The converse implication being similarly established, we have

L )rA\p)*-+B\p)**L \-nDNC*->Dr\UC
=>L \~U2p NUD t\C+->n2p r^UC f^D
=*L hAB(p)+-»BA(p).

The final assertion is trivial. QED

That A(p) «—•> i?(p) does not follow from commutativity in this case is
shown by the following counterexample:

Counterexample: Let A(p) = Dp A q, B(p) = Dp A (\3q -» q). Then:

i. L h AB(p)+-*BA(p)
i l l lM(p)<->5(p).

I leave the proof to the reader.
This example and its accompanying counterexample illustrate the poten-

tial for interesting, or at least amusing, results. From the panoply of possi-
bilities, permit me to propose a pair of open problems:

Problem 1: Find a number of nontrivial pairs A(p) and B(p) in which p obeys
the DR such that L h AB(p) *-+BA(p).

Problem 2: Does there exist a formula A(p) in which p obeys the DR such
that, for all B(p) in which p obeys the DR, it follows from L h AB(p) «—>
BA{p) that, for some n> 1, either L \~B(p) +-+An(p) or I \-A(p)+-+Bn(p)l

Should these prove too easy, I also note there is the general question of
providing a simple computable criterion for the commutativity of such formulas
A(p) and B(p). Since I have settled for citing such simple-seeming questions, it
should come as no surprise to the reader that I have, at this point in time,
nothing more to report on the commutativity of such operations. Where do I
intend to go from here?

Let us back up a bit. Recall the formulae

A(p)=p AC, B(p)=p A A

whose commutativity is evident (provided, of course, p is absent from C and D).
A(p) has the obvious fixed point C and B(p) the fixed point D. Moreover, they
further share the fixed point C ND. Surely the modal theory should be able to
account for this, i.e., this sharing of a fixed point should be explainable as
being a more-or-less trivial instance of some general result. This is my next goal.

First, I should isolate the "cause" for the existence of fixed points to
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formulae like A(p) and B(p) as just described. To do this, I must first define
what "formulae like A (p) and B(p)" means:

Definition The notion p is weakly positive in A(p) is inductively defined
by:

i. p is weakly positive in T, 1 and any variable q
ii. p is weakly positive in \3B for any formula B (whether or not p occurs

in B)
hi. if p is weakly positive in B and C, then p is weakly positive in B A C

and B v C.

The adverb "weakly" is explained by clause ii: p can do all sorts of negative
things, provided it limits such behaviour to occurring within the scopes of
boxes.

The self-referential interest in formulae in which p is weakly positive stems
from their possession of fixed points: Write A(p) = A(p, qh . . ., qn), with all
variables exhibited (this notation will be freely invoked whenever convenient),
and suppose p is weakly positive in A. Then, for any choice 0l5 . . ., 6n of
arithmetical sentences, there is another arithmetical sentence 0 such that

PA h 0 « - M ( 0 , flj, . . ., 0w).

To see this, simply write A (p) in disjunctive normal form (maximal subformulas
of the form DC being considered strange new variables):

L hA(p)^-^.B1(p)y(B2(p)AP)

where p obeys the DR in Bx{p) and B2(p). Note that the quantifier complexities
of the formulae i?i(0, 01? . . ., Bn) and B2((j), #i, • • •, 0«) are governed by the
complexities of the formulae 01? . . ., 6n and not by that of 0, which is only
referred to via r 0 n in these sentences. Thus, if this complexity is Xn+1 and if
0 e Sw+1, A((j)) will also be 2W+1, and we can temporarily modify A to solve the
equivalence

PAh$+-+. Bx{<t>) v [£2(0) A 7>^+1(r0-i)],

where Tr^n+1(v) is a 2W+1 truth definition for Srt+1 formulae. Since 0 e 2W+1, we
can erase 7>2w+1(-) from this last displayed formula and conclude

PA h0+-+y4(0).

Let me digress briefly to give a quick application:

Example: Let A(p) -p N q, B(p) = Dp A (Dq <—* g). Then:

i. L hA£(p)*-+£,4(p)
ii. For no w, m > 1 does I h An(p) ^ > £™(p)

iii. For any 6, there is a sentence 0 such that

iM h0*->. / l (0 ,0)andiM h 0 <-• 5(0,0).

Proof: i. Note

/, h A f f ( p ) ^ [Dp A ( D 4 ^ - > 4 ) ] A 4

I hiL4(£>) <—*•/? A • # A (Dq +-+q).
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ii. F o r m , n ^ 1,

L \~An(p) <-+p i\q
L \-Bm(p)<->nmpNn[nq *-+q] h(nq+-+q)

<—> Ump A Dq A (Dq <—* g).

Letting q = J, p = 1. quickly reveals

L \f-An(p)+-+Bm{p).

iii. Since p obeys the DR in B(p) and A(p) gives rise to an extensional operator,
our earlier Remark applies. QED

With this example, I have finally given a nontrivial pair of commuting
formulae sharing a fixed point. Of course, there is also the pair A(p) = p A C,
B(p) = p A D, with p absent from C, D. How does one explain examples such
as this modally? The answer, of course, is: with Kripke models.

Definition A Kripke model is a triple AT = (K, <, Ih), where (K, <) is a finite
partially ordered set with least element aQ and Ih is a "forcing relation" or
system of truth valuations indexed by (K, <) and satisfying: For all a e K,

ii-iii. a Ih T, a 11/1
iv-vi. a W-A ° 5 iff (a lh,4)° (a If-5), for° efA, v, -+}

vii. a Ih ~\A iff a 11/ ̂ 4
viii. a Ih DA iff V/3 > a(/3 Ih A).

The relevance of Kripke models to L is quickly explained by the following
oft-proven theorem:

Completeness Theorem For any modal formula A, L h A iff A is valid in all
Kripke models, i. e. for all K and all a. e K, a Ih A

The relevance of Kripke models to the problem at hand is also quickly
explained:

Second Common Fixed Point Theorem Suppose p is weakly positive in
both A(p) and B(p), and that L h AB(p) <-* BA(p). Then: For any Kripke
model K = (K, <, Ih), the forcing relation Ih can be extended to encompass a
new variable p0 in such a way as to make valid both p0 <~* A(p0) and p0 *-+
B(p0). In other words, in any Kripke model, A(p) and B(p) share a fixed point.

Proof: We mimic de Jongh's proof (cf. [6]) that fixed points of formulae in
which p obeys the DR are implicitly defined in all Kripke models; i.e., we show
by induction from the top down how to extend Ih to include p0 in such a way
as to always guarantee a: lhp 0 <-+A(p0) and o: lhp 0 «—>B(p0).

For notational convenience, we let lh0 be the extension of Ih which we are
constructing.

Consider a node a e K. Our basic hypothesis is that Ih is defined on all of
(Ky <) ; and our induction hypothesis is that lh0 has been defined for all |3 > a:
in such a way that, for /3 > a, (S lh0 p0 *—>A(pQ) and 0 lhopo <—•> B(p0). Write
A(p0) and B(p0) in disjunctive normal form:

L \-A(po)<-+ Cx(p0)v [C2(p0)/\p0]
L \-B(p0) •-> D.ip0)y [D2(PO)APO],
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where p0 obeys the DR in each Q and each D^. Because of the DR, even though
the truth value of p0 at a has not yet been determined, the truth values of each
Q and eachZ^ at a have been determined.

Case 1. a lho^l(po) regardless of how we decide whether or not a lhopo. Let
a lh0 p0, so that a lh0 p0 <—> A(p0). But then a lh0 [p0 +->A(p0)] A D [ p 0 ^
A(p0)] and, since

I h [ £ ^ F ] A D [ £ ^ F ] ^ . G(E)<-+G(F),

we see that

a \\-oB(po)*-+B[A(po)].

By the commutativity of A, B,

a\\-oB(po)^->A[B(Po)]
\\-0B(p0)<->J,

this last equivalence following from the case assumption that a: lh0 A(p0)
regardless of our decision on o: lh0 pQ. Since we chose a lh0 p0, it follows that
a \\-0B(p0)+-+p0.

Case 2. a l(/0 A(p0) regardless of how we decide whether or not a lh0 p0. It
follows similarly that, if we define a lt/oPo> w e will have a lt~opo <—•> A(p0) and

Case 3. The truth value of A(p0) is undetermined. Without loss of generality,
we can assume the same to hold of B(p0). Replacing each Q, and each Dh by
their truth values, we see that A(p0) and B(p0) become positive in p0. Thus,
indeterminacy requires

a ¥oPo^« ¥oA(Po),B(po)
a \\-opo=*a \\-oA(polB(po).

Hence either decision about a \\~opo will yield

a \\-oPo*-^A(po)anda IHopo^-»5(po). QED

As the observant reader might have noticed, we have strayed from our
original path. The First Common Fixed Point Theorem dealt with self-
referential sentences; while the Second Common Fixed Point Theorem concerns
itself only with modal formulae. Does the Second Common Fixed Point
Theorem have anything to say about arithmetical self-reference, and, if so,
what? This question is where the depth lies and my shallow answer will be
incomplete and rather unsatisfying.

Corollary 1 Let A(p, pu . . ., pn) and B(p, ph . . ., pn) have only the
variables shown, with p weakly positive in both formulae. Suppose for all
arithmetical sentences 0, 0l9 . . ., dn,

PA h x ( 5 ( 0 , el9..., on), el9..., en) <-+B(A(<p, el9..., en)9 el9..., eny
Then there are arithmetical sentences 0, 6U . . ., 6n such that

PA \~<I>*-+A(<l>98l9. ..,On)andPA h 0 «->£(0, 0l9 . . ., dn).
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Proof: By Solovay's Completeness Theorem, from the commutativity of all
instances of A((j), 6h . . ., dn) and B((p, 6U . . ., 0n), it follows that

L \-AB(p)*->BA(p).

By the Second Common Fixed Point Theorem, for any Kripke model K =
(K, <, Ih) we can assume some p to be forced in such a way as to validate the
equivalences p «—* A(p) and p <—> B{p). Now, we wish to reinterpret this
arithmetically.

Solovay has shown the following: Let^f= (K, < , Ih) with minimum node
a0 and suppose

i. a0 Ih E
ii. a0 Ih DF -* F, for all DF occurring as sub formulae of E. Then

E* is true in the standard model for some interpretation *.
We shall apply Solovay's result to

E = n[p+-+A(p)]*n[p+-+B(p)].

Let K = (K, < , Ih), with minimum node a0 , be any model in which p <—* A(p)
and p <—• B(p) are valid. Define a sequence of models Ko = K, Kh K2, . . . as
follows:

Kn=KU{.au...,<*„]
a0 > ax > . . . > oin

OLI Ih q iff a0 Ih q,

for all propositional variables q other than p. Define «/ Ihp in accordance with
the procedure of the proof of the Second Common Fixed Point Theorem.

Note that, for any sub formula D F of E, if an W~ DF, then an+1 ¥~ D F -
hence the truth of D F is constant from some an on. Choose n large enough for
these values to be constant and consider Kn (and also Kn+1). Now, for any
sub formula OF of E,

an lhDF=>aM+1 IhDF

whence

aw I h D F - ^ F ;

i.e., Solovay's conditions hold and we can apply his lemma.
By Solovay's lemma, there is some interpretation p* = 0, pf = 6i making

E* true, i.e.

N t=iV/M(r0 ^ ^ « > , 0i, • • ., 0,,F) A PrPA(r$^B((py 8u . . ., 0wD,

i.e.,

PA h 0 < — ^ ( 0 , 0!, . . ., 0w)and/M h 0 ^ - > 5 ( 0 , 01? . . ., 0n). QED

The disappointing thing about Corollary 1 is that the parametric hy-
pothesis is too strong and the parametric conclusion too weak. When there are
no parameters, the relative strengths of hypothesis and conclusion match and
we get the pleasing result:
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Corollary 2 Suppose p is weakly positive in A{p) and B(p) and that p is the
only variable occurring in these formulae. If, for all sentences 0,

PA hAS(0)<-^&4(0),

there is a sentence 0 such that

PA V- 0 <-• ,4(0) and PA h 0 < - + £ ( 0 ) .

What about the case with parameters?

Conjecture: Let A{p, pu . . ., pn) and B(p, pl9 . . ., pn) have only the variables
shown, with p weakly positive in both formulae. Let 0l5 . . ., 9n be arithmetic
sentences such that, for all sentences 0,

PA hA(B(^ eu ..., en), eu..., en)*-»B(A{<t>, el9.. .,en), el9..., on).

Then there is a sentence 0 such that

PA h 0 ^ ,4(0, 6U . . ., dn) and P^ h 0 ^ > 5(0, fll9 . . ., 0,,).

Problem 3: Establish the Conjecture by modal considerations similar to those
used in proving Corollary 1.

NOTE

1. This fact was brought to my attention during a lecture by Dana Scott, who was bemoan-
ing the failure of models of the X-calculus to account for this aspect of Kleene's recursion
theorems.
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