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A Basic Free Logic

KATHLEEN JOHNSON WU*

1 Introduction In [S] Lambert and van Fraassen propose a first-order predi-
cate logic with identity using Fitch’s method of subordinate proofs [3]. The sys-
tem is universally free, that is, valid whether or not the domain is empty and
whether or not all terms are assumed to refer to existents. For those cases in
which the domain is assumed nonempty, they provide a special rule of vacuous
quantifier elimination. With this rule the logic is still free, but not universally.

In [7] I construct a universally free logic with identity, also using Fitch’s
method, but one simpler and more intuitive than Lambert and van Fraassen’s.
I begin with a nonfree or “standard” logic, that is, one valid only if all terms
are assumed to refer to existents. From this system, I form a free logic valid for
only nonempty domains by placing a restriction on just two rules: the rule of
universal quantifier elimination and the rule of existential quantifier introduc-
tion. This restriction limits nonvacuous universal quantifier elimination and
existential quantifier introduction to general subordinate proofs with respect
to the instantial term. With a stronger restriction on those same two rules, a
universally free logic results. The stronger restriction limits both nonvacuous and
vacuous universal quantifier elimination and existential quantifier introduction
to general subordinate proofs.

My purposes in this paper are (i) to construct a universally free logic that
is simpler and more intuitive than that in [7] and (ii) from it to generate a free
logic for only nonempty domains and then a nonfree logic. The universally free
system, which I call S1, is proposed as “a basic free logic” because of (i) the sim-
plicity of its language and rules and (ii) the intuitively obvious and natural way
in which the other two systems develop from it.

The language L of S1 is without identity ‘=" and without the existence sym-
bol ‘3!’. The proof technique follows Fitch’s with the major exception of a novel

*Some results reported in this paper are contained in an earlier paper entitled “Simpli-
fied quantifier rules for natural deduction,” presented at the annual meeting of the
Association for Symbolic Logic, 29 December 1985, Washington, D.C. I wish to thank
Hugues Leblanc and an anonymous referee for helpful comments and suggestions.
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technique I call “prefixed proofs”. Both main and subordinate proofs may be
prefixed. For simpler quantifier rules, subordinate prefixed proofs are used
instead of Fitch’s general subordinate proofs. A non-universally free system
results from adding to S1 a rule of existence assumption. This rule directly
reflects the assumption that the domain is nonempty and can be defined in a lan-
guage that excludes vacuous quantifiers. For those cases in which all terms are
assumed to refer to existents, I modify S1 by counting last items (formulas) of
not only regular but also prefixed categorical main proofs as theorems. As a
prefixed term is assumed to refer to an existent, enlarging the class of theorems
in this way to yield a nonfree logic seems quite natural.

2 The language The rules to be presented are intended for a language L hav-
ing the following characteristics. The primitive signs are: atomic formulas; n-
place predicates; term variables; terms; the usual logical connectives ‘~’ and ‘D’
the quantifier ‘3’; and the two parentheses ‘C and ¢)’. The connectives ‘&’, ‘v’
and ‘=’ are defined as usual. As syntactical notation, ‘x’, ‘y’, and ‘7’ are used
to refer to any term variable; ‘a’, ‘b’, and ‘c’ are used to refer to any term; and
the logical constants and parentheses are used to refer to themselves. The let-
ters ‘4’, ‘B’, and ‘C’ are used to refer to pseudo-formulas. The pseudo-formulas
are: atomic formulas, n-place predicates followed, respectively, by » term vari-
ables or terms; ~A4; (A D B); (x)A and (3x)A. An occurrence of a term vari-
able x in A is bound in A4 if it occurs in a part (x)B or (3x)C of A; if an
occurrence of a term variable is not bound in A, it is free. Notation like (a/x)A
is used to refer to any result of replacing every free occurrence of a term vari-
able x in 4 by some term a. If x does not occur free in A4, then (a/x)A is A.
The formulas are a subset of the pseudo-formulas; they are the pseudo-formulas
in which no term variable occurs free. The universal and existential formulas are,
respectively, formulas like (x)A4 and (3x)A. An instance of a universal formula
(x)A or an existential formula (3x)A is (a/x)A with a being the instantial term.

3 Prefixed proofs. The proof technique I use follows Fitch’s with the major
exception of prefixed proofs. Proofs as well as formulas may be items of proofs,
but pseudo-formulas that are not formulas may not. Thus, no term variable
occurs free in any item of a proof. Only prefixed proofs are described below.
For a more complete account of the proof method, see the Appendix.

A main proof, as well as a subordinate proof, may be either regular or
prefixed by a term. In a proof prefixed by a term, the term appears to the left
and near the top of the vertical line bordering the column of items of the proof.
No formula preceding and no direct consequence of a proof prefixed by a term
may contain that term.! Thus, in constructing a subordinate proof prefixed by
a term, one must take care (i) to pick a term which does not occur in any for-
mula preceding the subproof and (ii) not to claim that a formula which contains
the term is a direct consequence of the proof. In constructing a main proof
prefixed by a term, such caution is not needed as no main proof is an item of
any other proof.

If a term is prefixed to either a main or a subordinate proof, the term is
assumed, within that proof and any proof subordinate to it, to refer to an exis-
tent. If a term prefixed to a main proof is assigned a referent, it is understood
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to refer to that referent within that proof and any proof subordinate to it. The
situation is somewhat different for subordinate proofs. No formula preceding
a subordinate proof prefixed by a term may contain the term. Because of this
restriction, the prefixed term may be replaced by any term which refers to an
existent and the subproof be valid. A term prefixed to a subordinate proof,
unlike a term prefixed to a main proof, stands in for any term that refers to an
existent. Thus, the referent (if any) of a term prefixed to a subproof is irrele-
vant just as the referent (if any) of ‘John Doe’ is irrelevant in informal reasoning.
Once the function of terms prefixed to subordinate proofs is understood, the
restriction on any formula in which a term occurs being a direct consequence
of a subproof prefixed by the term seems quite natural.

4 Quantifier rules The rules for the logical connective ‘~’ and ‘O’ and the
rule of reiteration are given in the Appendix. The quantifier rules are given
below.

Rule of Universal Quantifier Elimination (“u q elim”) An instance of a univer-
sal formula is a direct consequence of the universal formula in a proof prefixed
by the instantial term or subordinate to one that is. This rule may be represented
graphically as follows:
al (x)A
(a/x)A.

Rule of Universal Quantifier Introduction (“u q int”) A universal formula is
a direct consequence of a categorical subproof which contains one of its
instances and is prefixed by the instantial term. This rule may be expressed
graphically as follows:

a

(a/x)A
(x)A.

Rule of Existential Quantifier Elimination (“e q elim”) A formula B is a direct
consequence of an existential formula and a subproof prefixed by a term not
occurring in B (i) which has as its only hypothesis an instance of the existential
formula with the prefixed term as its instantial term and (ii) which contains the
formula B. This rule may be represented graphically as follows:

(Ix)A
(a/x)A

S
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Rule of Existential Quantifier Introduction (“e q int”) An existential formula
is a direct consequence of an instance of the existential formula in a proof
prefixed by the instantial term or in a proof subordinate to one that is. This rule
may be represented graphically as follows:

al (a/x)A
(Ix)A.

The rules for universal quantifier elimination and existential quantifier
introduction should be obvious; in the other two rules, however, a formula is
a direct consequence, not just of a formula in a prefixed proof or a formula in
a proof subordinate to one, but of a prefixed subproof (as in u q int) or of a
formula and a prefixed subproof (as in e q elim). By the rule of reiteration, a
subproof may have as items the preceding formulas of the proof to which it is
subordinate. By the definition of a prefixed proof, none of these formulas and
no direct consequence of the prefixed proof can contain the prefixed term. From
this, it follows that if (@/x)A is obtainable in a categorical subproof prefixed
by a, the result of replacing @ in (a/x)A by any term that refers to an existent
(if there are any) is obtainable in the proof to which the prefixed proof is subor-
dinate. Thus, the rule of universal quantifier introduction says, in effect, that
(x)A may be entered as an item of a proof if it is shown that (a/x)A is obtain-
able in the proof for any term « that refers to an existent (if there are any). And
the rule of existential quantifier elimination says, in effect, that B may be entered
as an item of a proof if: (i) it is shown that B would be obtainable in the proof
if (a/x)A were an item of the proof for any term a that refers to an existent (if
there are any) and (ii) (3x)A is a preceding item in the proof.

Unlike many formalizations of free logic, the system formed, by the rules
above, does not contain either ‘=" or ‘3!’ as a primitive sign. Thus, ‘term a refers
to an existent’, usually rendered as ‘(3x)(x = a)’ or ‘3!a’, is not expressible in
the language. Yet, prefixing a term a to a proof indicates that within the proof
a is assumed to refer to an existent and thus within the proof serves the same
purpose as (3x)(x = a). In a proof prefixed by the term a, (a/x)A is a direct
consequence of (x)A and (3x)A is a direct consequence of (a/x)A. In systems
which use identity to express existence, to reach the same conclusions proofs at
least as complicated as the following are required:

1| (x)A4 1| (a/x)A
2l (xX)(x=a) 2] (xX)(x=a)
31 (a/x)A 3] (Ix)A.

5 A universally free logic The language of S1 is the language L described
in Section 2. The proof technique is that described in the Appendix and Sec-
tion 3. The natural deduction rules for S1 are the rules for the logical connec-
tives and the rule of reiteration in the Appendix and the quantifier rules in Sec-
tion 4. A formula is a theorem of S1 if and only if it is the last item of a regular
main proof that is categorical. The following will be proven as theorems of S1:

T1 A D (x)A4
T2 (x)(ADB)D (x)A D (x)B)
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(P)((x)A D (y/x)A)
(X)(PAD (Y)(x)A.

A
al A
(x)A
AD(x)A

(x)(A D B)
04
a| (x)(4 > B)
(x)A
(a/x)A D (a/x)B
(a/x)A
(a/x)B
(x)B
(x)A D (x)B
(x)(ADB)D((x)A D (x)B)
m S is (a/x)(A D B).
a (x)A
B (a/x)A
(x)A D (a/x)A

T3
T4
Proofs:
T1 1
2
3
4
Ite
T2 1
2
3
4
5
6
7
8
9
10
Ite
T3 1
2
3
4

T4

(P)(x)A D (y/x)A)

m 2 is (a/x)A as x does not occur free in A.
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hyp
1, reit
2, uqint

1-3, cond int

hyp

hyp

1, reit

2, reit

3, uqelim
4, u q elim
5, 6, mp
3-7, u q int
2-8, cond int

1-9, cond int

hyp
1, u qelim
1-2, cond int

1-3, u q int

As y does not occur free in (x)A, (a/y)(x)A is (x)A and (a/y)((y/x)A)

is (a/x)A. Thus, item 3 is (a/y)((x)A D (y/x)A).

(x)(»)A
a (A
bl (x)(»)A
(b/x)(y)A
(a/y)(b/x)A
(a/y)(x)A
»Nx)A

)

1
2
3
4
5
6
7
8

(X)(¥)AD (¥)(x)A

hyp

1, reit

2, reit
3,uqelim
4,u q elim
3-5,u qint
2-6, u q int

1-7, cond int

Item 4 is (y)(b/x)A, item 5 is (b/x)(a/y)A, and item 6 is (x)(a/y)A.
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The theorems T1-T4 of S1 that have just been proven are axioms Al1-A4
of the universally free logic of Lambert in [4].? Following Leblanc, I call this
system QC™. Like that of S1, the language of QC™* contains neither identity nor
the existence symbol ‘3!”. In addition to A1-A4, QC* has axioms AQ and A5
and the rule of modus ponens. The axioms of QC* in virtue of

A0 A, if A is a tautology

are theorems of S1 in virtue of the definitions of connectives in S1 and the rules
for conditional and indirect proof. The axioms of QC* in virtue of

A5 (x)A, if (a/x)A is an axiom (where a does not occur in A4)

are also theorems of S1 in that: (i) axioms of QC* in virtue of A0-A4 are the-
orems of S1; (ii) (x)A is an axiom of QC* in virtue of A5 if (a/x)A is an
axiom of QC*, where a does not occur free in A; and (iii) (x)A4 is a theorem
of S1 by the rule of universal quantifier introduction if (a/x)A is a theorem of
S1, where a does not occur free in A.

As all of the axioms of QC* are theorems of S1 and the only rule of QC*
is modus ponens (which is also a rule of S1), any formula provable as a theorem
of QC™ is provable as a theorem of S1. In short, it follows that all theorems of
QC™ are theorems of S1.

In this paper, I do not describe a semantics for S1 or for either the non-
universally free or the nonfree systems generated from it. I save a detailed dis-
cussion of semantics and proofs of completeness and soundness of these systems
for another occasion. However, because the language of S1 and the language
of QC* are the same and the theorems of QC* are theorems of S1, it should
be noted that the semantics provided for QC* by either Leblanc and Meyer in
[6] or Bencivenga in [1] (which differ) could be adopted as a semantics for S1.
That S1 can be proven complete relative to either of these semantics should be
obvious given Leblanc and Meyer’s weak completeness proof of QC* in [6] and
Bencivenga’s strong completeness proof of QC* in [1].

6 A free logic for only nonempty domains A free logic valid for only
nonempty domains (or a non-universally free logic) may be constructed by add-
ing any one of three rules to S1: a rule of vacuous universal quantifier elimi-
nation, a rule of vacuous existential quantifier introduction, or a novel rule of
existence assumption.’

Rule of Vacuous Universal Quantifier Elimination (“v u q elim”) A is a direct
consequence of (x)A, where x is not free in A4. '

Rule of Vacuous Existential Quantifier Introduction (“v e q int”) (3x)A isa
direct consequence of A. (As pseudo-formulas that are not formulas cannot be
items of proofs, the condition that x does not occur free in A is not needed as
a restriction on the rule of vacuous existential quantifier introduction.)

Rule of Existence Assumption (“ex a”) A formula which is an item of a cate-
gorical subordinate proof prefixed by a term is a direct consequence of the proof
so long as the prefixed term does not occur in the formula. This rule may be rep-
resented graphically as follows:
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a

B
B.

The following shows that the rule of vacuous universal quantifier elimina-
tion is derivable from the rule of vacuous existential quantifier introduction. It
is assumed that x is not free in A. Thus, item 4 is (a/x)A.

1] (x)A

21 (WA 1, veqint
3lal (x)A hyp
4 _A 3, uqelim
51 A4 2, 3-4, e q elim

The following shows that the rule of existence assumption is derivable from the
rule of vacuous universal quantifier elimination. It is assumed that ¢ does occur
in B. As x does not occur free in B, item m is (a/x)B.

1 |a

m B

n| (x)B 1-m, u q int
o| B n, vuq elim

The rule of vacuous existential quantifier introduction is derivable, in turn, from
the rule of existence assumption. As x does not occur free in A, item 2 is
(a/x)A. As 2-3 is a proof prefixed by @, a does not occur in 4.

1| A

2lal A 1, reit
3 (Ix)A 2, e qint
4] (Ix)A4 2-3,ex a

Of these three rules, I prefer the rule of existence assumption. Unlike the
two rules for vacuous quantifiers, the rule of existence assumption can be
defined in a language which excludes vacuous quantifiers. It also makes the
assumption of existence explicit and more intuitive. The system which results
from adding the rule of existence assumption to S1 I call S2. The following for-
mulas which are characteristic theorems of non-universally free logic are prov-
able as theorems of S2:

T5 (x)AD A
T6 (3x)(A v ~A), where x is free in A.

Theorem T35 would not be provable, of course, if the language of S2 excluded
vacuous quantifiers.
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Instead of adding one of the three rules discussed above to S1 in order to
get a free logic valid for only nonempty domains, I could adopt the following
convention: In a system in which something is assumed to exist, the last item
of a categorical main proof prefixed by exactly one term is a theorem so long
as the prefixed term does not occur in that item. This convention is reliable for
reasons analogous to those justifying the rule of existence assumption. Within
a proof prefixed by a term, the term is assumed to refer to an existent; but if
no item in which the term occurs is taken as a theorem, the assumption that the
term refers to an existent is limited to the proof. If an item which does not con-
tain the term is taken as a theorem, at most the assumption that something exists
is taken out of the proof into the system. As this assumption is already in the
system, however, no harm is done.

A logic is free if not all terms are assumed to refer to existents and non-
free if all are. So far, I have formulated two free logics: a universally free logic
and a free logic valid for only nonempty domains. Although, perhaps, of lit-
tle interest, there are, nevertheless, an infinite number of other non-universally
free logics which are valid only if some specific term or terms refer to existents,
but not all. These free logics may be formed from S1 by allowing as theorems
last items of categorical main proofs prefixed by the term or terms assumed to
refer to existents.

7 A nonfree logic In S1, only the last item of a regular, categorical main
proof is a theorem. By also allowing the last item of a prefixed, categorical main
proof to be a theorem, we have a nonfree logic. This system I call S3. To illus-
trate how this works, I shall prove the following as theorems of S3:

T7 (x)A D (a/x)A
T8 (a/x)A D (Ix)A.

Proofs:

T7 al (x)A hyp
2l | (arx)a 1, u q elim
3] (x)A D (a/x)A 1-2, cond int

T8 a1 (a/x)A hyp
2 _(Elx)A 1, e qint
3| (a/x)A D (3Ix)A 1-2, cond int

T7 is Specification and T8 is Particularization. Both are characteristic theorems
of nonfree logic.

The class of theorems provable in S3 will not be reduced, if the following
requirement is adopted:

Prefixing Requirement A main proof is prefixed by all terms which occur in
items of the main proof or items of proofs subordinate to it, with the exception
of those terms which are prefixed to subordinate proofs.

Once the prefixing requirement is adopted, the phrase ‘in a proof prefixed by
the instantial term or subordinate to one that is’ which occurs in the rules of
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universal quantifier elimination and existential quantifier introduction may be
omitted. With this simplification, the quantifier rules, with the exception of using
prefixed subproofs instead of general subordinate proofs, are similar to those
found in other Fitch-style formulations of nonfree logic. As the last item of a
categorical main proof is a theorem of S3 regardless of whether the proof is reg-
ular or prefixed, the actual listing of required prefixes may be left as understood.
With the listing of prefixes left as understood, proofs in S3 are similar to those
of other Fitch-style formulations of nonfree logic and indistinguishable from
those using the unrestricted rules in [7].

Appendix A proof is a column of items bordered on the left by a vertical
line extending the length of the column. Each item is either a formula or a subor-
dinate proof. A proof is subordinate to any proof in which it is an item, or an
item of an item, and so on, but is directly subordinate only to the proof in which
it is itself an item. A formula which is an item of a proof is: (i) a hypothesis,
(ii) a direct consequence of preceding items of the proof by one of the rules of
direct consequence, or (iii) in case the proof is a subordinate proof, a reiterate
by the rule of reiteration of a preceding formula in the proof to which it is subor-
dinate. The hypotheses, if any, are the first items of the column and are sepa-
rated from the others by a short horizontal line extending out to the right of the
vertical line which borders the column. A proof with hypotheses is a hypothetical
proof; a proof without, is categorical. A main proof, as well as a subordinate
proof, may be either a regular proof, as described above, or a prefixed proof,
as described in Section 3.

The rules for the logical connectives ‘~’ and ‘D’ and the rule of reiteration
are the following:

Rule of Modus Ponens (“m p”) The consequent of a conditional is a direct con-
sequence of the conditional and its antecedent.

Rule of Conditional Introduction (“cond int”) A conditional is a direct con-
sequence of a (regular) subordinate proof which has the antecedent of the con-
ditional as its only hypothesis and the consequent of the conditional as one of
its items.

Rule of Indirect Proof (“ind pr”) A formula is a direct consequence of a (reg-
ular) subordinate proof which has the negate of that formula as its only hypoth-
esis and a formula and its negate as items.

Rule of Reiteration (“reit”) Any item of a proof may be reiterated in a proof
directly subordinate to it.

The rules of modus ponens and reiteration should be obvious; in the other two
rules, however, a formula is a direct consequence, not of just a pair of formulas
but of a regular subordinate proof with one hypothesis. By the rule of reitera-
tion, a subproof with a hypothesis may have as additional items the preceding
formulas of the proof to which it is directly subordinate. From this, it follows
that what is obtainable in a regular subproof with a hypothesis is what would
be obtainable in the proof to which it is directly subordinate if the hypothesis
were an item of that proof rather than of the subproof. Thus, the rule of con-
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ditional introduction, in effect, says: a conditional may be entered as an item
of a proof if it has been shown previously that the consequent of the conditional
would be obtainable in that proof if its antecedent were an item of the proof.
And the rule of indirect proof, in effect, says: a formula may be entered as an
item of a proof if it has been shown previously that a formula and its negate
would be obtainable in that proof if the negate of the formula to be entered were
an item of the proof.

NOTES

1. Subproofs prefixed by a term are similar in appearance to and serve the same pur-
pose as Fitch’s general subproofs with respect to y ([3], pp. 130-131). However, as
it is stipulated from the start that no formula preceding and no direct consequence
of a prefixed proof can contain the prefixed term, quantifier rules formulated in
terms of prefixed proofs do not require the various restrictions on reiterates, hypoth-
eses, and direct consequences that accompany formulations in terms of general
subordinate proofs. In short, prefixed proofs are more efficient.

2. Until Kit Fine showed that (x)(y)A4 D (¥)(x)A is independent of the other axioms
of QC* (2], pp. 335-337), A4 was presumed derivable from them.

3. A rule for existential formulas analogous to the rule of universal quantifier introduc-
tion could also be used.
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