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Approximate Truth and tukasiewicz Logic

T. S. WESTON

Lukasiewicz' infinite-valued logic L has been used by a number of
authors to study reasoning with vague, "fuzzy", or uncertain statements ([5], [2],
[11], [12]). Scott and, more recently, Katz have also argued that L is appropriate
for the logic of degrees of error or degrees of approximation to the truth ([6],
p. 421 and [4], p. 773). The aim of this note is to show that L is not appropri-
ate for this purpose, regardless of its possible application to vagueness, and to
derive a few facts about alternative systems which are appropriate, or more
nearly so.

Both Scott and Katz indicate that a leading idea in their analysis of degree
of error is the case of equations r = s, where some metric is used to measure the
distance between r and s. If r and s are reals, then a convenient example is the
metric |r — s|. In this case, r = s true iff |r — s\ = 0, and if r Φ s, \r — s| mea-
sures the degree of error of the equation r = s9 larger values indicating larger
errors.

Scott and Katz both use L to extend to compound formulas the measure
of error that a metric like | r — s\ gives for equations. My contention that L does
not do this correctly is based on the following claim: If we are to take at all seri-
ously the idea that the "truth values" of our system measure the degree of error,
we must insist that true statements have zero error. This aim is, of course,
already met for the equation example just mentioned, but we ought to meet it
for all statements whose "nearness" to the truth is to be assessed.

In fact, it is just the property that true statements are zero distance from
the truth —call it the "accuracy property"—that distinguishes an assessment of
accuracy, at which Scott and Katz are clearly aiming, from an assessment of
proximity to the comprehensive truth, which is the aim (or an aim) of the the-
ories of so-called verisimilitude or truthlikeness and of theories of vagueness.
A statement can be inaccurate only by stating something which is false. It may
be less than the comprehensive truth, on the other hand, merely by sins of omis-
sion. Similarly, a statement might possess some degree of vagueness and still be
true, but it could not possess any degree of inaccuracy and still be true.1
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Let us apply the accuracy property to a multivalued logic designed to mea-
sure error. For simplicity, we consider the language whose only predicate is ' = ' ,
with constants '/*', V, H\ etc., and variables 'x\ y, V, etc. The symbols V, '&',
' D ' , ' — ' , '(x)\ and *(3Λ:)', stand for disjunction, conjunction, material condi-
tional, negation, universal and existential quantification, respectively. A structure
M for this language consists of a nonempty universe U, denotations for the terms
V, V, 6t\ etc., and a function F: U x £/-> [0,1] giving a metric on U with values
in the interval [0,1]. We also use a denotation function d(u,σ) defined as fol-
lows: let the function σ

be any assignment of values in U to each variable *x\ y, etc. Then d(u,σ) is
the denotation of u if u is a constant, or the value assigned to u by σ if u is a
variable. We are clearly assuming here that the value 0 represents the truth, and
that values in (0,1] represent various degrees of error or inaccuracy, with 1 the
maximum possible error. We let \p\ be the degree of error assigned by F t o the
statement p. If we interchange 0 with 1 in the usual Lukasiewicz continuum-
valued system, we get definition clauses equivalent to those adopted by Katz for
||/?||(σ), which is \p\ considered as a function of the sequence σ:

(1) \\u = v\\(σ)=F(d(u,σ),d(v,σ))
\\~p\\(σ=\-\\p\\(σ)

|/?v<7| |(σ)=min(|/?|(σ), \\q\\(σ))
| |/?&?| |(σ)=max(| |/? | |(σ), ||^||(σ))
|/7D<7||(σ) = max(O,||<7||(σ)- \\p\\(σ))

\\(x)p\\(σ) = sup ||/?||(σ'),
σ'

where the supremum is taken over those σ' which agree with σ except possibly
on the assignment to V .

||(3*)/>||(σ)=inf b | | ( σ ' ) ,
σ'

where the infinum is taken over all σ' which agree with σ except possibly on the
value assigned to *x\

Where σ is understood, we can omit the * (σ)' in ' || |(σ)', but we also offi-
cially define

||/?|| = s u p | | ι | ( σ ) ,
σ

the supremum of ||/?||(σ) over all assignments σ. If 0 < \\p\\ < 1, we say that p
is intermediate. We also restate the accuracy property that true statements have
zero error as:

(2) If/? is true then \p\\ = 0 .

That definition (1) does not conform to this condition (2) may be seen from the
following proposition:

Proposition 1
(a) If p is intermediate, then \p v ~/?|| > 0.
(b) If p and q are intermediate and \q\ > \\p\\ then \\p D q\\ > 0.

Proof: Immediate from definition (1).
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It follows from this proposition that (2) is violated in several ways by the
Lukasiewicz clauses in (1). In (a), p v ~ p is obviously true under the usual
interpretation of the connectives since it is a tautology.2 If \p\ = \, however,
then ||/7 v ~p\ = \, which seems a long way from the truth on a scale of 0 to
1. In (b), p and q must both be false since their || || values are positive (using
(2)), so that/7 D q must be true although its || || value is positive. If \p\ = | ,
for example, and \q\ = f, then \p D q\\ = | , althoughp D q is true.

A little more analysis of these two cases shows that the '—' and ' ! ) ' clauses
can be modified to avoid violating the accuracy principle (2). These modifica-
tions can be carried out and still retain the convenient feature that L shares with
most multivalued logics, namely truth-functionality. That is, if Ή ' stands for
any of the binary connectives of L, there is function/D: [0,1]* [0,1] -> [0,1]
such that ||/7 D q\\ = /π(||/?ll>kl|)> and a similar function for negation.

Using (2) and truth-functionality as joint requirements, we give a heuris-
tic "derivation" of an alternative multivalued system S, beginning with negation:
If ||/71| > 0, then p must be false, so ~p will be true, and || ~/7|| = 0. If ||/?|| =
0, however, p could conceivably be false, since (2) only requires that true/7 have
||/71 = 0, not that falsep must have \p\ different from zero. It is convenient

to suppose this, however, and by doing so, we would only be requiring of all
p what the metric F already guarantees for equations. This supposition does not,
however, determine a unique value for || ~p\ when \p\ = 0. || ~p\\ must have
some positive value, and it is convenient to choose || ~p\\ = 1. Thus we obtain
the following revised definition for || ~ p \\:

[ l i f \\p\\ = 0 .

For the revised definition of \\p D q\\, condition (2) requires a value of 0
whenever \\p\\ > 0, sincep D q must be true in that case. For \\p\\ = 0 , \\p D
q\\ must be a function of \\q\\ if D is to be truth-functional. It also seems clear
that in this case, \\p D q\\ should be an increasing function of ||<7||. That is, if
p is true and q is false, then \\p D q\\ should be farther from the truth (i.e., from
0) the "more false" q is. Since the simplest increasing function of | |^|| is \\q\\
itself, we arrive at the following clause for D:

Γo if \\p\\ > 0

(4) \\pDq\\ = \ \γ
I k l if WPW = o .

For comparison with other multivalued systems, it is convenient to let x
stand for any element of [0,1] other than the end points 0 and 1, and "compress"
the continuum-valued function || || into a three-valued logic given by the follow-
ing tables:

D I 0 x 1 v 1 0 x 1 & 1 0 x 1 _~

(s)
 0 0 x 1 0 0 0 0 0 0 x 1 0 1

^ x O O O x O x x x x x l x O
1 0 0 0 1 0 x 1 1 1 1 1 1 0
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The multivalued system 5 based on these tables clearly satisfies (2), but
has an important drawback, that logically equivalent statements need not have
the same S-values. For example, if \\p\\ = x, 0 < x < 1, then || ~p\\ = 0, and
|| —p\\ = 1, so | |p| | Φ I — p \ . This unhappy property is not, however, a result
of some mistake in the formulation of 5, as the following proposition shows:

Proposition 2 If \ || assigns degrees of error in [0,1] to statements p by a
truth-functional multivalued logic, if p and q are intermediate with \p\ Φ \\q\\,
and for all /?', \p' || = 0 ifp' is true (the accuracy principle), then \p\ Φ \ — p \
or\q\Φ\~~q\.

Proof: Since p and q are intermediate, they must be false, since we would have
|| p I = 0 or || q || = 0 if either were true. Since p and q are false, ~p and ~q are
true, and by the accuracy principle, || ~ p\ = || ~q\ = 0. Since negation is truth
functional, || —p\\ = || ~ ~ # | | . Since \\p\\ Φ \\q\\ by hypothesis, we have either
\\p\\φ\\~~p\\or\\q\\Φ\\~~q\\.

The consequences of this proposition are sweeping. No logic of accuracy
worthy of the name is possible if there are not at least three degrees of accuracy.
At least two are necessary merely to distinguish between true and false state-
ments, and at least three if any distinctions among degrees of falsity are to be
made. The accuracy principle is unavoidable as well, since without it some true
statement will be counted as inaccurate. It follows from Proposition 2 either
that the logic of approximate truth is not truth-functional, and a fortiori, not
Lukasiewicz logic, or that some logically equivalent statements are assigned
different degrees of inaccuracy. This suggests that one should look into non-
truth-functional alternatives. Hilpinen ([3]), for example, proposes a logic based
on Brouwerian modal logic. I will discuss this alternative further in a future
paper, but a few important points remain to explore about S.

Although there is very little in the literature on systems based on the truth
tables (5), Slupecki ([7]) investigated a related system based on D and ~ as in
the tables (5), plus a third unary operation R which has the table:

_R

0 x
x 0
1 1

Slupecki gives an axiomatization and completeness proof for this system, but
his only designated value is 0, so he only considers how truth, and not approx-
imate truth, is preserved by inferences.

This is a critical limitation, however, because a major reason for studying
approximate truth is to discover which inferences from nearly true statements
have nearly true conclusions. Some familiar valid arguments can permit arbi-
trarily large errors in conclusions, even for small errors in the premises. For
example, consider the modus ponens argument:

pD q
(6) p

q
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If |/71| = .01 or any other positive distance from the truth —no matter how
small—then p D q is true, so the accuracy principle (2) implies \p D q\\ = 0 .
Thus both premises can be as close to the truth as we like, without imposing any
conditions on the size of ||<gr||. Note that this discontinuity in modus ponens is
not just a property of the system S, but follows directly from (2). Additional
conditions can be obtained to guarantee that sufficiently small errors in the
premises will yield small errors in the conclusion—i.e., a kind of continuity for
arguments —but the above example shows that modus ponens will not, in gen-
eral, be continuous.

It is often possible to compensate for inaccuracy in one premise of a valid
argument by strengthening another premise. For example, if we assume that the
second premise of (6) is precisely true, then we will have \\q\\ < a for the con-
clusion q if \\p D q\\ < a, i.e., if the error in the first premise is at most α. On
the other hand, if conditions stronger than truth are imposed on the first prem-
ise, the error in the conclusion will be at most a if the error in the second premise
is at most α. (Sufficient conditions for continuity of arguments like modus
ponens were announced in [9].) Katz in [4] and Aronson, et al., in [1] investi-
gate inferences which preserve small or large truth values within their respective
Lukasiewicz-based systems, but if the argument of this paper is correct, that
work will not apply to the reservation of accuracy without substantial modifi-
cations. There remain the two possibilities of the system S and of non-truth-
functional logics to be investigated further.

NOTES

1. For further discussion of this criterion, see [3] and [10].

2. Here, as throughout this paper, I attempt to develop a notion of approximate truth
suited to a classical interpretation of the logical connectives. There are, of course,
interpretations of the propositional calculus in which pv ~p need not be true, but
this will not happen in the classical interpretation of V, which is the subject of this
paper.
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