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Quantifier Responsiveness

LAWRENCE POWERS

This paper is a logical defense of the essential rightness of the Scholastic
theory of distribution, the theory of distributed and undistributed terms. This
theory has been severely attacked by Peter Geach,! who regards it as a blot on
the history of logic. I, in fact, agree with Geach’s criticisms themselves, but I
wish to overturn his ultimate verdict. The theory of distribution is not a blot on
the history of logic, I believe, but rather an imperfect carrying out of a viable
and exciting idea.

Recently I have been writing a book on Greek philosophy, and in one chap-
ter I engage in some speculations about how Aristotle came to invent syllogis-
tic logic, and hence logic itself. According to my speculations, Aristotle had
noticed that the problem of the One and the Many showed that the logic of cate-
gorical statements was not exactly the same as the logic of simple identity state-
ments. So Aristotle thought that the ‘is’ of identity was different from the
categorical ‘is’. But if this were so then there ought to be only accidental similar-
ities between identity logic and syllogistic logic. Instead there are rather massive
similarities and parallelisms. I speculate that Aristotle developed syllogistic logic
hoping to find some enlightenment that would remove this puzzlement. But he
never found it.

I go on to find the answer to Aristotle’s puzzlement in the work of Medi-
eval logicians: the supposition theorists and the distribution theorists.

From this perspective, distribution theory is part of the answer to the
historically fundamental problem of logic and cannot be a blot on the history
of logic. I therefore set out to defend distribution theory.

From a purely logical point of view, which is the view of the present paper,
Geach’s important criticisms can be rolled into one: the traditional rules about
distributed terms are, it seems, a special —even almost accidental — feature of syl-
logistic logic and have no general significance or meaning.

But in this paper I present a method I call “quantifier responsiveness anal-
ysis”. This is a method of validating quantificational arguments and is a gen-
eralization of the traditional rules for validating syllogisms, i.e., the traditional

Received August 17, 1985



QUANTIFIER RESPONSIVENESS 323

doctrine of distribution. I show in effect that these traditional ideas can, in a
way, be extended to all of quantificational logic.
Consider the syllogism

All AB
All BC

All AC.

If a variable ‘@’ ranges over As, ‘b’ over Bs, and ‘c’ over Cs—each class assumed
nonempty —then the syllogism can be symbolized (following the Medieval sup-
position theorists?) as:

(a)(3b)(a =b)
(b)(3c)(b=c)
(a)(3c)(a=c).

Here the syllogistic ‘is’ is taken to be exactly the same as the ‘is’ of identity.
Now the traditional rules of quality and distribution have the effect of
dividing the above argument into two parts.

(a)(3b) a=b
(b)(3c) b=c
(a)(3c) a=c

These are: a valid nonquantificational argument involving identity; and a
prefixed quantifier pattern. The validity of the matrix argument

b
c

a
b
a

c
is then transmitted by the prefixed quantifier pattern

(a)(3D)
(b)(3c)
(a)(3c)

to the whole argument (the syllogism). And so a parallelism between syllogis-
tic and identity logic is explained: the identity argument is part of the syllogism,
and the latter derives its validity from the former.

The traditional rules of quality are in fact the rules for the validity of iden-
tity arguments which are matrices of syllogisms, provided the categorical state-
ments are symbolized as:

(a)(3b)(a = b)><(a)(b)(a # b)
(3a)(3b)(a = b) (3a)(b)(a # b)
The traditional rules of distribution are intended to be rules for what I call
quantifier-pattern responsiveness; however, the traditional rules are defective.
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To understand what I mean by responsiveness, consider the quantifier pat-
tern before us in our syllogism. Let

R ab
S bc

T ac

be any valid and conformable matrix. That is, let (x)(»)(z)(Rxy & Syz D Txz)
be taken as necessarily true. Then,

(a)(3b)Rab
(b)(3c)Shc
(a)(3c)Tac

will also be valid.

For, pick any arbitrary a, say a;. Then there will be some b, say b;, such
that Ra; b;. Then, by the second premise for b;, there will be some c, say c,
such that Sb,c;. Then, by the matrix argument, since Ra;b, and Sh,c,, we
have Ta,c,. But a; was arbitrary. Therefore, (a)(3c)Tac.

This reasoning shows that the quantifier pattern

(a)(3D)
(b)(3c)
(a)(3c)

is a responsive quantifier pattern; it will transmit the validity of any valid and
conformable matrix argument to the whole quantified argument.

The traditional rules correctly require that a syllogistic quantifier pattern
cannot be responsive unless: (1) a term distributed—that is, universally
quantified —in the conclusion must also be distributed in its premise. Thus the
term ‘@’ is distributed in the conclusion and in its premise. And they require (2)
that the middle term (namely ‘b’) must be distributed at least once.

These rules need to be generalized to be applicable to arguments other than
the syllogistic ones. They become: (1) any term distributed in the conclusion must
be distributed in every premise (if any) in which it occurs; and (2) no term may
be undistributed more than once in the premises.

Even so, the generalized rules are not sufficient for responsiveness. Con-
sider the syllogism:

AllA B

All BC
Some C is not A.

In symbols:
(a)(3D)(a =b)
(b)(3c)(b=c)
(Ic)(a)(c #a) .
The traditional rules (of quality) correctly reject the matrix as invalid, and hence

reject the syllogism. However, the rules of distribution do not distinguish
(3c)(a) from (a)(3c) and so incorrectly see the quantifier pattern as respon-
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sive, which it is not.? It may be noted, however, that in 256 syllogisms, this is
the only one where the traditional rules go wrong.

Before looking to complete a correct criterion for responsiveness, we must
look again at the connection between responsiveness and validity. By definition
of ‘responsive’, if an argument has both a valid matrix and a responsive quan-
tifier pattern, then the argument is valid.

The converse is true for the 256 syllogisms but is not true in general.

First, an argument with quantifiers and with all statements in prenex form
may be valid and yet not have a valid matrix.

This happens, for instance, in syllogistic-with-negative-terms. Thus

No A is B
Every A is non-B

is symbolized as

(a)(b)(a # b)
(a)(3b)(a = b)

and the matrix

*
S

a

S

a=

is either invalid or uninterpretable.*
In standard logic we have also

(x)(Px)
(¥)(Py),

though % does not look valid, and we have

(x)Px
(»Qy
(z2)(Pz & Qz)
Px
though %;TQ_Z doesn’t look valid.

In these examples, the problem is that the variables do not have indepen-
dently assigned ranges. In the traditional syllogism, a, b, and ¢ are each inde-
pendently assigned to a nonempty range. But in the negative syllogistic, b is
assigned to some range, and then b is dependently assigned to the complement
of b’s range.

In modern logic, x, y, and z are all automatically assigned to the same
range, and so not to independently chosen ranges.

If we reinterpret all variables as independently assigned, then the problem
cases are no longer valid. Thus,

(a)(b)(a + D)
(a)(3b)(a =b)
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would be invalid because no man (a) is a tree (b) and yet not every man (a) is
a camel (b is no longer the complement of b).
(x)Px

Also () Py
that every tree (y) is P. And the last argument is similar.

The validity of the three arguments can be recaptured with independently
ranged variables if the required dependencies are stated explicitly as premises.

Thus if we want b to range over the complement of b’s range, we add the
premises (b)(b)(b # b) and (a)(3b)(3b)(a # b D a = b). This last is the pre-
nex of (a)(~3b(a = b) D 3b(a = b))}

Then the argument in b becomes:

(a)(3b)(3b)(a#bDa=0D>)
(b)(B)(b + b)
(a)(b)(a # b)
(a)(3b)(a = D).

is invalid because if every stone (x) is P, it doesn’t follow

And it now has a valid matrix (and also responsive quantifiers).
(x)Px
(¥) Py,
X. This can be expressed in the premise (y)(3x)(y = x). If this premise is added,
then the matrix will be valid (and the quantifier pattern responsive).

However, if we further assure that every X is Y by adding also (x)(3y)
(x =), then the matrix will still be valid, but the quantifier pattern will no
longer be responsive. Of this, more later.

And, finally, if we add to the last example the needed premises (z)(3x)
(z=x) and (z)(3y)(z = »), it will have a valid matrix (and again, with only
these additions, a responsive quantifier pattern).

I hereafter mean by a “quantified argument” that all statements are pre-
nex and that all variables are independently ranged.

It should be clear that in principle the question of the validity or invalid-
ity of quantified arguments in this sense is equivalent to that question for ordi-
nary arguments in standard quantification theory, given that these latter are in
prenex form.

To revalidate the argument it suffices to require that every Y is

o, . o e
Take any argument s in prenex form in standard quantification theory.

. . . o
Suppose x, ¥,...,w, v are all the variables involved. Reinterpret P as involv-

ing independently ranged variables and add the premises: (x)(3y)(x = y),
VA =2),...,(w)Av)(w =v), (v)(IX)(v = x). That is, just say that
every Xis Y, every Yis Z, etc., every Wis V, and every V is X, so that all vari-
ables cover the same entities. In this way we get the “quantified argument” cor-
responding to the original argument.

The original argument is standardly valid iff the corresponding quantified
argument is valid in the semantics with independently ranged variables. This is
obvious from the very meaning of “validity in a semantics”.

Conversely, suppose we have a quantified argument in variables a, b,
¢, ...,f, g To find a corresponding ordinary argument, take first the premises
(Ix)Ax, (3x)Bx,...,(3x)Gx, where A, B, C,...,G are new predicates not
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already occurring in the matrix of the argument. Then, reinterpreting each vari-
ablea, b, c,...,g as a standard variable, rewrite all the original premises from
the inside out by replacing (3a)¢a by (3a)(Aa & ¢a) and (a)¢pa by (a)(Aa D
¢a) and similarly for b and B, cand C, . ..,g and G. (These rewrites can then
be made prenex if desired.)

An analysis of “quantified arguments” in my sense is thus equivalent to
doing ordinary quantificational logic.

Theorem Any quantified argument which is valid has also a valid matrix.
Proof: Suppose for example that

(a)(3b)Rab
(b)(3c)Sbhc
(a)(3c)Tac

were valid but its matrix was not. Then choose x, y, z such that Rxy and Syz are
true but 7xz is not. Let a range over the unit set of x, so that (a)¢a = ¢x =
(3a)¢a, and let b range over that of y, and ¢ over that of z. So the quantified
argument is also invalid, contrary to our supposition. QED

We can now state the necessary and sufficient conditions for the respon-
siveness of a quantifier pattern in a quantified argument.

Theorem A quantifier pattern is responsive iff it satisfies the following three
conditions:

(a) if a term is distributed in the conclusion, it is distributed in every premise
(if any) in which it occurs.

(b) no term is undistributed more than once in the premises, i.e., it is undis-
tributed in at most one premise.

(c) the terms (i.e., variables) are strictly orderable, with no circles in the order-
ing, so that if...(a)...3b... occurs in any premise, then a is before b in the
ordering, and if...3d. .. (e) ... occurs in the conclusion, then d is before e in
the ordering.

Proof:
Necessity:
(1) Suppose the pattern is of the type

Then for every quantifier not shown, supply trivial matrix:...(d)... (... &
d=d &...). For the shown quantifiers supply Pa. The argument reduces to
(3a)Pa
(a)Pa.
unresponsive.

The matrix is valid but the argument is not. Therefore, the pattern is

(3a)Pa

(3a)~Pa

(2) After similar reduction, has valid matrix but is itself invalid.
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(3) After reduction to eliminate by trivialization the irrelevant quantifiers,
we have a circular pattern.

(a)(3b) (a)(3d)
(b)(3c) (b)(3c)
(c)(3d) XXX
or e
(e)(3/) (e)(3f)
(f)(3a) (f)(3q)
(3c)(d)

Let all variables range over all the natural numbers and take the matrix:
(a)(3b)(a < b) (a)(3b)(a < b)
(b)(Ac)(b <) (b)(Ac)(b <)
(c)(3d)(c < d) XXX
(e)(3f)(e <)) (e)(3f(e < f)
(N@Ea)(f<a) (f)(3a)(f < a)

Q& ~Q (o) (@) (c £ d).

In the first case the matrix is valid (has contradictory premises) but the argu-
ment is not. Its premises are all trivial (and equivalent). The second case is the
same as the first, but the conclusion has been transposed with a premise and then
omitted as tautological.

Sufficiency: Suppose the matrix is valid and the three conditions satisfied. We
wish then to show that the whole argument is valid.

Take the last variable, say /, in the ordering. Then there is no (/)(3v) in
any premise, and no (3/)(v) in the conclusion. So if (/) is in any premise, it is
before only universal quantifiers and may be put last in the quantifier prenex.

If (3]) is in any premise, it may also be moved to last place, possibly
weakening but not strengthening the premise. This will happen (by condition 2)
in at most one premise.

If / does not occur at all in a premise, add a vacuous (/) at the end of the
quantifier prenex.

If (3/) occurs in the conclusion, it may be moved to the end of the prenex.

If (/) occurs in the conclusion, it may be moved to the end, possibly
strengthening the conclusion. This happens only if (3/) was in no premise.

Now the original matrix was, say,

Pl
Q!
Iil
Si
and was valid. We now take as new matrix
()Pl ()Pl
(Hot (3nHol

(DRI or (I)RI
(Hsi (ansi
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and this new matrix is valid also since the original one was (as can be seen by
instantiating to /, deriving according to matrix, and regeneralizing).
Now do the next to the last variable. Etc. QED

In trying to extend the classical method of validating syllogisms to quan-
tificational logic generally, our first problem was that a valid “argument with
quantifiers” might have an invalid matrix. But this no longer holds for “quan-
tifier arguments”.

Still, it may happen that a quantified argument —even in my sense —may
be valid and yet not have responsive quantifiers. This is our second problem.

First we may find examples if we consider arguments with vacuous quan-

tifiers.
(3a)(3b) Pb. . . (Fa) . .
~— 22 ~J- ~js valid but has unresponsive — in its pattern. Inter-
Thus =535y Pp P (@) P
estingly, however, if we differentiate @ into two variables, we may see this exam-
(3f)(3b)Pb
(g)(3b)Pb
To get more exciting cases, we may violate various conditions which Aris-
totle imposed in his notion of ‘syllogism’.
Aristotle said® a syllogism must have no unneeded premises. An example
I mentioned earlier:

ple as a special case of which does have responsive quantifiers.

(X)Iy(x=y)
»ax(y =x)
(x)Px

(¥)Py

has an unneeded first premise and the unresponsive circle pattern

(x)(3y)
) (3x)

3 . . . .
as well as the pattern % However, again, we may differentiate variables and
»).

see this as a special case of

(u)(3v)(u =v)
»MEX)(y =x)
(x)Px

(») Py,

which is valid and does have responsive quantifiers.

Next Aristotle said that a syllogism could not have contradictory premises.
(3a)(Pa & ~Pa)
(a)Qa
(3b)(Pb & ~Pb)

(¢)Qc

Sure enough, is valid and has nonresponsive quantifiers.

But it is an instance of which does have responsive quan-

tifiers.
Again Aristotle said that a syllogism should not be breakable into shorter
arguments. If we violate this condition, consider the argument
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(a)(3b)(Pa D Qb)
(3a)Pa (/.. a sub-conclusion (3b)Qb)
(3a)Sa

(3a)(3b)(Qb & Sa).

This argument has three premises but can be broken into two arguments with
two premises each. Sure enough, it has unresponsive quantifiers, since we have
da
da

But this argument is an instance of

(d)(3b)(Pd > Qb)

(3d)Pd (/.. (3b)Qb)
of (3f)5f

(3/)(3b)(Qb & Sf).

So far it looks as if any example of a valid quantified argument with
unresponsive quantifiers can be shown to be a special case of a more general
form of argument which is reached by differentiation of the troublesome vari-
ables and which has responsive quantifiers.

However, things are not quite so simple. A variation of our last example
shows this:

1. (3@)(Pa & Qa)

2. (3a)(~Pa & Qa)

3. (a)(Qa D Ra)

4. (a)(3b)(a = b)

. (3a)(3b)(Pa & Ra & ~Pb & Rb).

Here Pa & Ra comes from premises 1 and 3, while ~Pb & Rb comes from
2, 3, and 4. So 3 is used for both parts of the conclusion and the @ in 3 must
be used both with the @ in 1 and with the @ in 2 and 4. If we try to replace the
a in 1 and the conclusion by d, then the @ in 3 will have to be d. But if we try
to replace the a in 2 and 4 by f, the a in 3 will have to be f.
So we have to double the ¢ in 3 in some way. One way would be to use
premise 3 twice and then differentiate to get
1. (3d)(Pd & Qd)
2. @) (~Pf& Q)
3.1. (d)(Qd D Rd)
3.2. (/)(Qf D Rf)
4. (H@EL)(f=Db)
.. (3d)(3b)(Pd & Rd & ~Pb & Rb)

A less simple way, but one that turns out to be more general in its utility,
is to imagine that A = D U F and to rewrite 3 as (d)(f)((Qd D Rd) & (Qf D
RY)).

The original argument is then regarded as a special case of:

1. (3d)(Pd & Qd)

2. (AN(~Pf & Qf)

3. (d)(/)(Qd D Rd) & (Qf D Rf))
4. (H(3D)(f=b)

. (3d)(3b)(Pd & Rd & ~Pb & Rb).
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Before proceeding further, it is useful to go to a simpler formulation of the
conditions for responsiveness.

D p

If ¢ is an argument, then g is the antilogism.” The argument is valid iff
- ~r
r Z

the antilogism is inconsistent.

In writing a quantified antilogism, we will suppose that the negation in ~r
has been driven inwards by ~3 = v~ and ~V = 3~, so that the negation is part
of the matrix. If the antilogism is inconsistent, so will be the matrix. The argu-
ment has responsive quantifiers (transmitting validity) iff the antilogism has
responsive quantifiers (transmitting inconsistency).

p b
Now ¢ is inconsistent iff ¢ is valid for arbitrary unquantified Q. The
~r ~r

Q

effect of switching to the antilogism is thus to simplify the conditions for respon-
siveness by omitting reference to a conclusion.

Theorem The quantifiers of an antilogism are responsive iff

(a) no term is undistributed more than once

(b) the terms are orderable so that, if... (a)...(3b)... is in any statement,
then a comes before b in the ordering (or as I shall say ‘a > b’) and there are
no circles.

Proof: Clear from above remarks. Alternatively, the new condition 1 is the old
1 plus the old 2, and the new 2 is the old 3. QED

Let us now return to the problem of trying to see valid arguments (or really
inconsistent antilogisms) with nonresponsive quantifiers as “special cases” of
other arguments (antilogisms) with responsive quantifiers. Suppose

(3a)Pa
(3a)Qa

(a)Ra
(3a)Sa

is valid, violating condition 1: Then take the antilogism

(3a)Pa
(3a)Qa
(a)Ra
(a)~Sa
and this is inconsistent.
Consider then
(3b)Pb
(3¢)Oc
(b)(¢)(Rb & Rc)

(b)(c)(~Sb & ~Sc).
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This second antilogism is, as a general form (given fixed P, Q, R, S), equiva-
lent to the original, but now has responsive quantifiers.

For if the first antilogism is inconsistent, suppose the second is consistent
for some B and C. Take A = B U C. Then the first would be true in the interpre-
tation that makes the second true. So the second is not consistent.

Conversely, suppose the second is inconsistent but the first is true for some
A. Then take B = C = A and the second is true. So the first is inconsistent.

So the original argument can be regarded as a special case, and equivalent
to, the argument

(3b)Pb

(3¢)Qc

(b)(c)(Rb & Rc)
(3b)(3c)(Sb v Sc),

namely the case where both B and C are the same class A.

We may then validate the second of these arguments by the Medieval
method® —that is, by direct application of the fact that the matrix is valid and
the quantifiers are responsive —and then validate the original as a special case
of the second.

If every valid quantified argument is a special case of some other argument
validatable by the Medieval method, then the Medieval method acquires com-
plete generality. I shall show exactly this for arguments that do not violate con-
dition 2 (for antilogisms—the noncircularity condition), and shall show
something close to this for all quantified arguments.

To approach the general method for cases satisfying the noncircularity con-
dition, let us look at an example.

(3a)(b)(3c) (d)Pabcd [Note (b)(3c)]
(2a)(b) (c)(d)Qabcd [Note double (3a)]
(a) (¢) Rac

(3a)(b)(3c)(3d) ~Sabcd. [Note (3a)(b)]

The antilogism is

(3a) (b)(3c) (d)Pabcd
(3a) (b) (c)(d)Qabcd
(a) (¢) Rac

(a)(3b) (c)(d)Sabcd.

Condition 1 is violated by 3« in statement 1 and 2.

In the ordering for condition 2, we must have a before b because of
(a)(3b) in statement 4, and we must have b before ¢ because of (b)(3c) in 1.
A possible ordering is @ > b > ¢ > d. When we split a to satisfy condition 1, b
will be split also, and then c. If noncircularity were violated, our method would
lead to an infinite expansion.

Specifically let A = A' U A2, splitting @ into a! and a?.

(3a')(b)(3c)(d)Pa'bcd
(3a%)(b) (c)(d)Qa*bcd
(ah)(a?) [(c)Ra'c & (c)Ra*c]
(ah)(a?) [(3b)(c)(d)Sa'bed & (3b)(c)(d)Sa’bcd].
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The third statement can now be prenexed by pulling out (c¢), but in the
fourth statement b needs to be split. So let B = B! U B2.

Then b is split, first in the fourth statement, and then working up to the
first and second statements. The result is

(3a")(bY)(b?) [(3c)(d)Pa'b'cd & (3c)(d)Pa'b?cd]
(3@*)(b")(b*) [(¢)(d)Qa*b'cd & (c)(d)Qa*b*cd]
(a')(a?)(c)(Ra'c & Ra’c)
(a')(a?)(3b")(3b?)(c)(d) [Sa'b'cd & Sa*b?cd].

And now the second statement can be prenexed by pulling out (¢) and (d),
but ¢ has to be split in statement 1. We get

@Y ) (bY) (b)) (3ct)(3c?)(d) [Pa'blcld & Palb*c?d]
(3a*) (b1 (b*) (¢! (c*)(d)

[Qa*b'c'd & Qa*b?c'd & Qa’b'c*d & Qa*b?*c?d)
(aVY(@®)(c")(c?)[Ra'c' & Ra*c' & Ra'c? & Ra*c?)
(a')(a?)(3b')(3b%)(c")(c?)(d)

[Sa'b'c'd & Sa*b%c'd & Sa'b'c?d & Sa*b?c?d].

And now we have responsive quantifiers. So the validity or invalidity of
the original argument corresponds to the inconsistency or consistency of the
matrix of this expanded version. Note also that the original ordering was a >
b > ¢ > d. An ordering for our final result is @' > a2 > b! > b?>c! > 2> d.

Notice also that the original argument (or more obviously the antilogism)
had in effect the arbitrary conformable matrix, since P, Q, R, S could be any
formulas with the right number of places. So the expansion is really intrinsic to
the quantifier pattern itself and does not depend on the particular matrix.

This result is completely general for antilogisms violating condition 1 but
satisfying condition 2.

Theorem Any quantified antilogism satisfying 2 but violating 1 can be
mechanically expanded in a way depending only on the quantifier pattern into
an equivalent antilogism with responsive quantifiers.

Proof: The variables may be ordered @ > b > c...> w. Take the first of these
which occurs more than once existentially. Say it is b. Replace 3b¢,b,
ibg, b, . ..,3bo,b by 3b ¢, b1, Ibyd2b,, . ..,3b,é,b,. Also replace any (b)ob
by (b1)(by)...,(b,) [¢b; & ¢b, &...& ¢b,]. This last is no longer prenex,
which we worry about later. Moreover, by replicating ¢, we multiply any 3v in
¢. But this v is after b in the order, since (b)¢ = (b)...3v... if Jvisin ¢; so
b no longer is a multiple 3. The new order may be taken to be a > b; > b, >
b3y >by...>b,>c>d>...> w, and all multiple 3 variables are now after
b,. Take the next multiple 3’d variable, whether it was multiple in original
antilogism or has been made multiple by treatment of b. Suppose it is d. Replace
each 3d¢,d, 3d,d, etc. by 3d,¢,d,, 3d,$,d,, etc., and each (d)éd by (d,)
(dy)...[¢d, & ¢d, &. .. ] and take the new orderasa>b;>...> b, >c>
dy>d,...>...> w. Now all multiple 3°d variables are after the ds. Etc. Even-
tually there are no multiple existentials.

Now we have to consider the re-prenexing of our antilogism. Prenexing
itself is not always possible in logic with independently ranged quantifiers. A
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statement such as (@)Pa D (3a)Qa or (3a)Pa & (3a)Qa cannot be prenexed,
for instance, since there is no other variable logically equivalent in range to a.
However (a)Pa & (a)Qa can be prenexed as (a)(Pa & Qa) and R & (3a)Qa
can be prenexed as (3a)(R & Qa) if there is no a in R.

We also wish to extract the various quantifiers into prenex position so as
not to violate the restrictions imposed by the > ordering. The placement of quan-
tifiers need not actually be in the order of the > ordering but must conform to
its requirements. For instance, if @ > b, then we might have (b)(a), (3b)(3a),
or (3b)(a), but not(b)(3a).

The original placements in the original antilogism conformed to the con-
dition of the original ordering, and we have defined the new > ordering in terms
of the original one and the splitting process. So we need to be sure that the new
placements are conformable to that new > ordering.

In the splitting process, scope relations among quantifiers were in a sense
preserved. When 3d¢d is replaced by 3d;¢d;, the descendent d; takes up the
scope relations of its ancestor d. When (d)¢d is replaced by (d,) ... (d,) [¢d,
& ¢dy, & ... & ¢d, ], the results are as follows. Among themselves, the d;’s are
scoped in the determinate order d,, d,,...,d,. Quantifiers in one ¢ replica
have no scope relations with those in other ¢ replicas. The various d; all take
up the scope relations to quantifiers in the ¢’s which their ancestor d had.

In the original antilogism, no quantifier was scoped under any proposi-
tional operator. In the splitting process, quantifiers are scoped only under con-
junction.

Take any statement in our new antilogism. We now wish to re-prenex it so
that the placement of quantifiers is the same as in the original statement, except
that split variables are replaced by their descendants or the sequence of their
descendants.

Suppose this done for the first » quantifiers of the original statement —
taken in the order in which they occurred in the prenex—but not yet for the
n + 1%, The n + 1" quantifier or its descendants, or various copies thereof, are
still in the matrix of the so far extracted prenex. The matrix either begins with
a quantifier or is a conjunction of statements that do. The versions or the
descendants of the n + 1™ quantifier do not occur under the scope of those of
the (n + 2)™ or later quantifiers, so they occur at the beginnings of (some of)
the conjuncts. Moreover, the descendants are presented in the order determined
by the split. If the original variable d occurred universally, all its descendants
are universal and each may be extracted by [(d;)¢d; & (d;)yd; & (d;)wd &
m] = (d;) [od; & Yd; & wd; & m]. If d was existential, so are its descendants,
and each occurs only once if at all and may be extracted when it occurs by [¢
&y & 3d;wd; & m] = 3d;[¢ & ¥ & wd; & m].

Therefore prenexing may be performed in the order indicated.

But the order of prenexing which results is conformable to the new > order.
If (a;) ... (3b;) occurs then a; > b;. For since g; is universal and b; is existen-
tial, the original a is different from the original b. But if @ # b, the relative place-
ments of (a;) and (3b;) are the same as those of the original (@) and (3b) and
so conform to the original and hence the new > order.

The original antilogism has thus been expanded into a new prenexed antilo-
gism satisfying conditions 1 and 2. QED
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This method applies only when noncircularity is satisfied. When this
method applies it allows us to validate a quantified argument after expansion
by inspection, as with the traditional way of validating syllogisms. It also allows
invalidation, and gives us a decision procedure for arguments satisfying non-
circularity.

When condition 2 is violated things are not so nice. Consider the argument

1. (a)(3b)aRb
2. (b)(3a)bRa

3. (a)Qa.

Now interpret Q as follows. If there is an infinite sequence, possibly repeat-
ing, such that x; Rx, Rx3Rx, . .. and if x is a member of such a sequence, then
Ox.

aRb
Now the matrix argument bRq is valid, since if the premises are true then

Qa
aRbRaRbRaRb. .. is such a sequence for a.
Further the quantified argument is valid. For pick any a;. Then (by 1) find
b, such that a; Rb,;. Then (by 2) find a, such that a; Rb, Ra,. Etc. And we get
alelRaszzRa3Rb3 ..., and so Qa].

If we take the antilogism

(a)(3b)aRb
(b)(2a)bRa
(3a)~Qa

we see that both conditions for responsiveness are violated. (a)3b and (b)3a
is a circle. And also 3a occurs twice, though this point is insignificant; the con-
clusion 3a@Qa could be taken instead. The violation of noncircularity is the
important point.

Now it is possible to expand our argument into one with responsive
quantifiers —provided we allow an infinite premise set.

1.1 (ay)(3by)(a,Rby)
2.1 (b,)(3a3) (b, Ra3)
1.2 (a3)(3b,)(a2Rb,)
2.2 (by)(3a3)(byRas3)

Ln (a,)(3b,)(a,Rby)
2.n (bn)(aan+l)(bnRan+l)

(a1)Qay.

Here a, is distributed in its only premise (1.1) and circles have been eliminated.
Unfortunately however, the conclusion now follows from al/ the premises, but
not from any finite subset of them. Indeed the matrix conclusion Qa; follows
only from a/l the matrix premises.

This example shows that we cannot automatically expand an unresponsive
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quantifier pattern violating condition 2 into an equivalent finite responsive quan-
tifier pattern (with, of course, a different matrix reached by expansion). Nev-
ertheless, in this example we are dealing with a nonformal validity, resting on
the interpretation of Q. Because of this, the compactness theorem for formal
validity does not come into play. This suggests that if the same quantifier pat-
tern occurred in a formally valid argument, some finite subset of the premises
of an infinite expansion would suffice for the conclusion, though which finite
subset would depend on the particular matrix, rather than being intrinsic to the
quantifier pattern itself. The same suggestion also emerges from the expansion
process used for arguments violating only condition 1. If condition 2 is violated,
that process leads to infinite regress, so perhaps compactness could be used to
limit that regress.

In fact, I shall not take exactly the approach suggested by these consider-
ations but shall instead take an approach with similar results but based on
instantiation. I did at first try the approach suggested above and found that the
variables tended to get snarled up in each other and things got too messy for me.
(The problem was that one does not know in what order to extract the new vari-
ables in re-prenexing.)

Since the expansion process for nonresponsive quantifiers in general will
be guided by considerations of instantiation, let me briefly consider instantiation.

In standard quantificational natural-deduction systems, we are familiar with
instantiation and generalization, that is, EI, UI, EG, and UG. In logic with inde-
pendently sorted variables, these processes are just the same as usual except that
we have different variables a, b, c, etc. Since these variables are nonequivalent,
we must instantiate a to corresponding dummy-variables a,, a5, a3, and b to b,
by, bz, and each different variable-of-quantification to its own dummy vari-
ables. Then when generalizing, we generalize a, or a, or a3 to a, and b; or b,
or b3 to b, and so forth.

All instantiation and generalization will be to dummy-variables and never
to proper names. An individual, Socrates, may be named ‘s’. He may fall in the
range of A (human), x (thing), m (man or male human), or d (mortal). But none
of these variables will be instantiated to s. Rather they will be instantiated to A,
X1, my, or dy, and Leibniz’s Law will be used to bring s in.®

Take the example: Socrates is human: all humans are mortal; therefore
Socrates is mortal. Using the general-thing variable x, and predicates H and D,
the two premises are Hs, (x)(Hx O Dx). And we need for validity the extra
premise 3x(s = x). Then instantiating to x;, we get s = x,, Hx; O Dx,, and so
by Leibniz’s Law Hs O Ds. But Hs, and so Ds.

Or we may take as premises (#)Dh and 3h(s = h). Instantiation to h,
gives s = h, first and then DA;. From which, by Leibniz’s Law, Ds. If we re-
place D by 3d( ... = d) throughout, the result is similar.

So instantiation to names is not needed and all instantiation and general-
ization is between a given variable and corresponding dummy-variables.

We are going to approach the problem of expanding nonresponsive quan-
tifiers into responsive ones by way of instantiation. That there is indeed a real
relation between the process of instantiation and the idea of responsiveness has
probably already been noticed by some readers, or maybe all readers.

Suppose we have an antilogism and we regard the statements therein as
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premises for instantiation. I shall say that these premises are uniformly instan-
tiated if all quantifiers are eliminated by instantiation and each variable a is
replaced throughout the whole antilogism matrix by a single corresponding term-
of-instantiation a, .

Theorem A quantifier pattern of an antilogism is responsive iff the antilo-
gism can be uniformly instantiated.

Proof:

L. If the pattern is responsive, uniform instantiation is possible. This is
almost self-evident from the very notion of responsiveness, and rigorously prov-
able from the two conditions for responsiveness.

From the very notion of responsiveness, we think as follows. If uniform
instantiation were not possible, terms identical in the matrix would be differ-
entiated in every instantiation and so some inconsistent matrix would lose its
inconsistency, and so the quantifiers would not be transmitting or preserving
inconsistency in general and so would not be responsive.

But since this reasoning, though probably correct, is not very tight, let us
instead use the two conditions for responsiveness. We assume responsiveness.
So the two conditions are fulfilled. No 3a occurs twice and there are no (a)(3b)
circles.

All the statements are prenex and the front quantifier of each prenex is ini-
tially presented for instantiation. Whenever we instantiate, a quantifier vanishes
and the next quantifier in that prenex is presented.

We wish to instantiate each variable, aor bor cor . . ., to its single cor-
responding term of instantiation, a; or b, or ¢, or. . . .

We will never instantiate a universal quantifier in a given variable until after
we have instantiated any occurring existential quantifier in that variable.

If any presented quantifier is existential, instantiate at once.

If any presented quantifier is universal, and no existential quantifiers in that
variable occur, instantiate at once.

If at some point a universal quantifier is presented and its existential coun-
terpart has already been instantiated away, instantiate.

In this way either total uniform instantiation will be achieved or else we will
come to a stage in which all presented quantifiers are (1) universal and (2) have
existential counterparts still buried in the unpresented part of the prenexes.

But this is impossible, for, by condition 2, some presented variable v is the
presented variable that is first in the > ordering, and its existential quantifica-
tion cannot be buried after some other presented variable’s (say «’s) universal
quantification. For if... («#)... (3v), then v is not first in the ordering. This
proves .

I1. If the pattern is unresponsive, uniform instantiation is not possible. This
is rigorously provable either from the notion of responsiveness or from the two
conditions.

From the notion: If uniform instantiation were possible, then if the matrix
is inconsistent, an inconsistent instantiation could be derived from the quanti-
fied antilogism, which would therefore be itself inconsistent. So, contrary to
hypothesis, the quantifiers would be responsive.

From the conditions: Since the quantifier pattern is unresponsive, one of



338 LAWRENCE POWERS

the conditions must be violated. If there are two copies of 3a, each must be
instantiated to a different term and so nonuniformly. If there is a circle pattern,
say

(a)(3b)

(b)(3c)

(¢)(3a),

then we must first instantiate a universal quantifier somewhere along the circle.
Since it is a circle it doesn’t matter where we break in. So, from the top, take
a;, by, then c;, and now we need to instantiate 3a, and need a new term of
instantiation. This completes our proof. QED

In the above proof, I have brought in the very notion of responsiveness as well
as the two conditions. I have done this to indicate that the idea of uniform
instantiability is not merely equivalent to the idea of responsiveness (as these
ideas are merely equivalent to the idea of satisfying the two conditions). Rather
the idea of uniform instantiability and the idea of responsiveness are to a large
extent the same idea. Historically one could say, as I have, that the distribution
theorists were trying to work out conditions for responsiveness, but one could
equally well say they were trying to work out conditions for uniform instanti-
ation of an antilogism (or uniform instantiation-plus-generalization in an
argument).

The fact that responsiveness means uniform instantiation and nonrespon-
siveness means nonuniform instantiation suggests a way of expanding inconsis-
tent antilogisms with unresponsive quantifiers into ones with responsive
quantifiers. Since the antilogism is inconsistent, instantiate nonuniformly until
reaching an inconsistent set of quantifier-free instances. A given matrix state-
ment will thus be instantiated into a set or in effect a conjunction of instances,
and each variable-of-quantification will be differentiated into terms-of-
instantiation. This is a one-many correspondence between the variable and the
terms, because of nonuniformity. The obvious thought then is to expand each
matrix by M =M & M & M...& M into a conjunction corresponding to the
conjunction of instances, carrying the quantifiers along (QOM = QM & OM &
OM &...& QM), and then differentiate the variables into the terms of instan-
tiation, taking these as one’s new variables. If then the quantifiers Q can be
re-prenexed suitably, the inconsistent set of instances will be deducible by a uni-
form, one-to-one, instantiation. I now go on to show that this suggested pro-
cedure actually works.

Definition Given an inconsistent quantified antilogism, suppose by succes-
sive instantiations (UI and EI), we derive a quantifier-free set of statements and
this set is inconsistent (by propositional logic plus identity). Then the derivation
is called proof by instantiation of the inconsistency of the original antilogism.

Idea Proof by instantiation is a kind of reductio. Since the original antilo-
gism leads to an inconsistent set of instances, it is itself therefore inconsistent.

In an actual reductio, one derives an obvious inconsistency from a not obvi-
ously inconsistent premise set. In proof by instantiation we, as it were, adopt
the sometimes laughable assumption that the inconsistency of a quantifier-free
set is always “obvious” and needs no further proof.
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Theorem For any formally inconsistent quantified antilogism, there is a
proof by instantiation.

Proof: The following construction'® is designed to produce the proof by instan-
tiation and also an ordered list of the terms of instantiation, ordered by their
first introduction.

Step 1: Put the antilogism statements into the statement set.

Then instantiate each variable v which occurs in the initial universal quan-
tifier of any statement. Instantiate such v to v,.

Then put the terms v; in the order used in the term set.

Then instantiate each statement 3v¢v in the statement set (beginning with
a 3v) to a term vy,4,.

Then put the terms vs,4, into the term set in the order used.

Then put the statements resulting from these instantiations into the state-
ment set.

Step n + 1: For any (v)(¢v) in the statement set and any term v, in the
term set, such that v, is a term of type v, and (v)¢v has not yet been instan-
tiated to v,, now so instantiate.

If any (v)¢uv is still not instantiated and is in the statement set, instanti-
ate it now to a new term v,. Put such new v,’s into the term set.

If any 3vév in the statement set has not been instantiated, instantiate to
Vapev- And put these terms (in the order used) into the term set.

In this process we note: every EI involves a new term of instantiation.

Further, the quantifier-free instances generated form a model of the quan-
tified statements of the original antilogism, in the sense that, for instance, if a
ranges over the a, terms, b over the b, terms, etc., then if (a)(3b)(c)pabc is
in the antilogism, then for every a, term, there is some b, term, such that for
every ¢, term, ‘¢a,b,c,’ is in the quantifier-free part of the statement set. For
(a)(3b)(c)dabc will eventually be instantiated to any a, term. If a, goes in at
stage n, (a)(3b)(c)pabc is instantiated to yield (3b)(c)pa, bc either at stage n
or at stage n + 1. Then 3b(c)¢a, bc is instantiated at the next stage, with b, =
bap(cypa,bes 10 Yield (c)ga,b,c. Then at the next stage c is instantiated here to
any c, terms already available, and to any other later.

Now we apply the compactness theorem. Since the possibly infinite set of
instance-statements forms a model of the original inconsistent antilogism, the
set of instance-statements is also inconsistent. If the antilogism is formally incon-
sistent, so is the set of instance-statements. And so, by compactness, some finite
subset of them is also formally inconsistent.

Therefore we can pick out of the whole possibly infinite process those parts
relevant to achieving that finite inconsistent set of instances. This part will be
finite and will constitute a proof by instantiation.

As a bonus we get the terms of instantiation in the order in which they were
introduced in the infinite process. Eliminate all those terms not used in the finite
process, and reconsider the order of the remaining terms by considering their
first introduction into the finite process. QED

Definitions Some more, given by example.
Suppose (a)(3b)(c)(3d)pabcd is a statement in the antilogism. Suppose
it is instantiated to @, b;c,d; and also from a, b, to ¢,d, and c3d;. Suppose also
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it is instantiated to a, b,c4d, and from a, b, to ¢;ds and c3dg. That is, these are
the instantiations retained in the proof by instantiation.
Then the instantiation tree for the statement is:

a b — zl Zl
1 1 2 2
/ \ C3 d3
N \
d,
__— Ca 4
a b2 Cy d5
T C3 dg.

The instantiation-expansion-relettering is then

(a)(3by) [(c))(3dy)da 1 bicidy & (c3)(3dy)da1bycrdy & (¢3)(3ds)da; by c3d;]
& (a2)(3by) [ (cs)(3dy)dazbrcads & (cp) (3ds)par by ds
& (¢3)(3dg)paz byc3ds] .

This latter is the following conjunction, but written in standard linear
notation:

(c1)(3dy)¢a,b,c,d,
(@))(3b)) & = (c2)(3dy)da, b, 2 d;
_— T (o) () ga b cads

\ (cs)(3dy)basbycqdy
(a2)(30,) & { (c1)(3ds)dazbyc d
(¢3)(3dg)daz byc3de.

The expansion-instantiation-relettering is so called because it is a reletter-

ing of the instantion-expansion, which is just like the instantiation-expansion
(i-e)-relettering but without the subscripts. Namely:

(a)(3b) [(c)(3d)pabcd & (c)(3d)pabed & (c)(3d)pabed]
& (a)(3b) [(c)(3d)pabcd & (c¢)(3d)pabcd & (¢)(3d)pabced] .

&

In terms of this same example, let me now develop the basic ideas of the
next theorem.

Given the proof by instantiation of a given antilogism, one can find the
instantiation tree for each statement of the antilogism, and hence the i-e-relet-
tering, and hence the i-expansion.

Given any statement in the antilogism, its i-expansion is derivable by
repeated use of P = (P & P), applied to parts of the statement. The original
antilogism and the antilogism of i-expansions are equivalent.

Given next the antilogism of i-expansions and adding new names of the
ranges A, B, C, D,namely A=A, =A,, B=B,=B,,C=C,=C,=C3 =
C4, D =D, =D, = D3y = Dy = Ds = Dg, we may (in our example) derive the
i-e-reletterings as a mere rewrite of the i-expansions.

If the expansion antilogism is given, the renamings are trivial and the relet-
tered antilogism follows. However if, instead, the “relettered” antilogisms were
given, the equations identifying its variables would not be trivial, so the unrelet-
tered expansion antilogism would not follow.
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In other words, assuming the consistency of the expanded antilogism, that
of the relettered antilogism follows, but the reverse is not in general so.

Suppose we wanted to prove the inconsistency of the original antilogism
including our example statement and had a proof-by-instantiation to guide us
in constructing another kind of proof not involving instantiation. From the
assumed-for-reductio consistency of the original antilogism, we deduce the equiv-
alent consistency of the expanded antilogism (using only the equivalence trans-
form P = (P & P)) and then (using the relettering argument only) we deduce
the consistency of the relettered antilogism. We would complete our proof by
one further reduction to a prenexed antilogism and this prenexed antilogism
would be shown inconsistent by the Medieval method.

In the present example, assuming the order of first instantiations in the
whole antilogism to have been a,b,c,d;ayb;ycy¢c3d,d3c4d,dsdg, the prenexed
version of our statement will be:

(a1)(3by1)(c1)(3d,) (a2)(3b) (¢2) (¢3)(3d,) (3d3) (c4) (3d4) (3d5) (3d6)
[¢a bicid, & dpa,bycads & pa bc3ds & paybycaby & day bycids
& ¢02b2C3d6].

In this case, the quantifiers are extracted in the order in which their vari-
ables (a;b;, etc.) were first introduced by instantiation in the proof-by-
instantiation.

Consulting the tree formulation of the relettered statement needing prenex-
ing, we see the methods used in the prenexing process.

(a;)(3b;) because of extraction from “one side only”. That is, (x)¢x &
V= (x)(¢x & ¥) and ¥ & (x)¢ = (x)(¥ & ¢x), and similarly for Ix.
(c;) by first extracting ¢; by “one side only” from the middle of

/ (C4) / (C4)
<(Cl) to (¢y) e
(¢3) (c3)
and similarly on top from
/ (Cl) /
=g «=u

And then (a;)(3b,) is already gone, but by “universal forward”
(a3)(3b3)(c1) D (cy)(ay)(3b,) brings (c;) to the front and finally

by “both sides” and we are done with c;.
In doing ¢, we used:

(1) from one side only
(2) from both sides [(X)dx & (x)y¥x = (x)(dx & ¥x)]
(3) universal forward'' [(3y)(x) D (x)3y;(»)(x) D (x)(¥)].
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Next 3d; by one-side-only, then ditto a,, 3b,, and then c,. Next c; is
moved to each & by one-side-only and then to front by both-sides. The rest are
trivial (all by one-side-only).

Now let us turn from our example to the general case.

Theorem Given any formally inconsistent quantified antilogism, and also
a proof-by-instantiation to guide us, it is possible to expand to prenexed relet-
tered antilogism and to certify the inconsistency of the latter by the Medieval
method.

Proof: The original statements may obviously be replaced by the expanded then
relettered statements. We now wish to get each statement of the relettered antilo-
gism into prenex form, possibly weakened by universal forward. We wish in each
statement to extract the quantifiers in accord with the order in which their terms
were first introduced in the proof-by-instantiation.

Suppose we have extracted in order all terms up to v; which is the next to
be extracted. If v; does not occur in some statements, we ignore those and
extract it in the ones in which it occurs.

If 3v; occurs in a given statement, no other occurrence of vy as (v;) or
(3v;) is found in that statement.

Further, any 3v; represents the first instantiation of v;, since each 3 gets a
new term in the instantiation process.

By the instantiation tree, any term in whose scope 3v; lies must be instan-
tiated before v; is first instantiated. So when it is time to extract 3v;, all other
quantifiers in whose scope 3v; lies have already been extracted into the main
prenex, and 3v; may itself be extracted by repeated uses of “one-side-only”.

Suppose then that v; occurs only universally in a given statement. No (v;)
occurs in the scope of another copy of the very same (v;). This is obvious
because the original statement was prenex and every quantifier involved a dif-
ferent variable. So no chain in the instantiation tree contains both (v;) and
(v;), much less (v;) and (v;).

So it is time to extract v;. If a copy of (v;) is inside the prenex of some
part of our statement, bring it to the front of that prenex by “universal forward”.
If it is at the front of one conjunct of a conjunction, bring it before the con-
junction by “one-side-only”. If it is before both conjuncts, bring it to the front
by “both sides”. Continue until it is at the end of the main prenex.

In this way the desired prenex of each relettered statement is achieved and
so the prenexed relettered antilogism is achieved.

It remains then to see that:

(a) The quantifier pattern of the prenexed relettered antilogism is respon-
sive, and
(b) Its matrix antilogism is inconsistent.

Of these, (b) is obvious, since the matrix antilogism is simply the set of
quantifier-free instances, with those corresponding to each original statement
conjoined.

And (a) is also obvious. Since the variables are ordered in each statement
consistently with the order of original instantiation, there can be no circles. And
since each 3 has its distinctive variable v;, responsiveness is guaranteed. QED
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The theorem just proven completes my rehabilitation of the Medieval
method. Every valid quantified argument can be certified by that method, and
it therefore achieves a kind of complete generality.

However, certain further questions are bound to occur to anyone with any
curiosity, and I should like to explore some of those further questions, though
I shall do so without any particular effort at rigor or exactness.

Quantification theory validates many complex arguments. But it does so
from a basis of basic principles. If I want to show the complete generality of
the Medieval method, I ought not to apply it only to complex arguments, but
rather —it will be suggested —1I ought to apply it to the basic principles of quan-
tification theory.

Now this idea does not, perhaps, turn out to be as interesting as one might
hope. The basic principles in question often have free variables, which my Medi-
eval method presupposes to be bound, and these principles sometimes concern
prenexing, which my method presupposes as already done.

However, let us look into the matter anyway.

In Kleene [8], p. 82, a rather formal system for standard quantification the-
ory is given. Kleene is thinking of quantification theory with function terms, but
I shall ignore these and suppose all terms are names or variables.

His system first postulates all tautologies and the rule of modus ponens.
He then gives four basic principles concerning quantification.

The first principle is the rule €odx , where C does not contain x free.

CD (x)Ax
I shall instead take the universal closure of the premise. Prenexing the conclu-
sion would then give us a trivial rule, while we cannot apply our method to an
unprenexed statement. However, a conditional can be derived by conditional

proof. So we consider the argument

(x)(C D Ax)
C

(x)Ax.

And this argument is certifiable by the Medieval method. But in saying that, I
am pretending that there are no variables except those shown, which is not really
what Kleene has in mind.

The second principle is the axiom schema Az O 3xAx with ¢ free for x in
A and another restriction having to do with ¢ being possibly a function. I shall
suppose f is a name.

With independently sorted variables, the principle is invalid without the
extra premise 3x(f = x). We may either prenex and get

Ix(t = x)
Ix (At D Ax)

or we may use the conditional proof idea and get

Ax(t = Xx)
At
IxAx
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Either of these is Medievally certifiable. But again I am treating Kleene’s schema
as if it were itself an explicitly given argument rather than a schema.

Kleene’s third principle is the axiom schema (x)Ax D At, with ¢ free for
x in A. This becomes either

Ix(t =x)
Ax(t =x) or (x)Ax |
Ix(Ax D At) At

and either is Medievally certifiable, with the usual proviso.
His fourth and last principle is

AxDC .
m (no x in C).

This becomes

(x)(Ax D O)
(Ix)Ax .
C

And this is Medievally certifiable, with the usual proviso.

Perhaps more interesting is to look at prenexing rules as such. Since my
method presupposes prenexing, it would be interesting to see whether my method
can also be used to justify prenexing rules.

Prenexing is most interesting with the material conditional, so let us restrict
ourselves to this case.

The four prenexing rules for the conditional are:

(1) PD axQx 2) PO (x)0Ox (3) xOx>O P 4 x)OxDOP
Ax(P D Qx) (x)(P D Qx) (x)(Qx D P) Ix(Qx D P).

And their converses are:

(®) x(PDOQOx) (6) )(PDOx) (7) (x)(@xDP) (8) x(QxDP)
P D 3IxQx PD (x)0Ox IxPx DO P (x)Ox D P.

To count as rules, these eight should also be general schema, but I consider
them here as explicitly given arguments.
The converses can be Medievally certified in the forms:

(5) 3x(PD>Qx) (6) (x)(PDQx) (T)x)(@xDP) (®) Ix(QxDP)
P P IxOx (x)Ox
IxQOx (x)Ox P P.

The prenexing rules themselves can be transposed.

1) () (P & ~0x) (2) 3x(P & ~Qx) (3') 3x(Qx & ~P) (4) (x)(Qx & ~P)
P & (x)~QOx P & 3x~Qx axQx & ~P (x)Ox & ~P .

Here I have also used quantifier conversion (~V = 3~, ~3 = V~).
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Now (1’) can be broken into

(x)(P & ~QOx) and (x)(P& ~Qx)’
p (x)(~0Ox)

each of which is certifiable, and the remaining cases may be handled similarly.

Let us now turn to questions of a more practical sort. By “practical” I mean
questions having less to do with what one would find in a meta-logic book and
more to do with introductory logic classes.

It is natural to wonder what would happen if a student in an introductory
logic class knew my method and tried to apply it to exercises he found in his
logic text. How difficult would such application be?

In Copi [2], p. 128,!? is an appropriate set of exercises. There are ten exer-
cises, but the last seems to be misprinted, so let us count ourselves wrong there
and try for 90%.

Exercise 1 is

(3x) (y) [ (3z) Ayz D Ayx]

(») (3z2)Az
/.. (3x) () Ayx.

Prenexing and antiloging gives

(Ix)(»)(2) (Ayz D Ayx)
»)(3z) Ayz
(x)(3y) ~Ayx.

And we are done, with x > y > z.

Exercises 3, 6, and 7 are just as swiftly done. There is no need to add extra
revalidating identity premises nor to split any variable. Our so-far rather lazy
student gets 40% already.

Exercise 2 is

(x) [(3y)Byx D (z)Bxz]/..(y)(z) (Byz D Bzy).
Prenexing and antiloging we get

(x)(¥)(z) (Byx D Bxz)
(Iy)(32) (Byz & ~Bzy).

We need to add (z)(3x)(x = z) and (¥)(3z)(y = z) and take y > z > x. But
there are two 3z, so splitting gives

(z1)3x X =2
Mz, | y=2,
(x)(¥)(z2) Byx D Bxz,
(3»)(3zy) Byz, & ~Bz,y

Exercise 4 is similar. Exercise 5 needs an identity premise but no splitting.
We have already done 6 and 7. We have 70%.

Exercise 8 requires us to add an identity premise and then to split a vari-
able in order to break a circle.
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But 9 is the hardest exercise in this set.

(x)(Wx O Xx)

(xX)(Yx & Xx) D Zx)

() (I (Yy & Ayx)

() (V) ((Ayx & Zy) D Zx) /.. (x)((»)(Ayx D Wy) D Zx).

After prenexing and antiloging and doing the instantiation work, we find
we need to add a premise and split a variable.

() (3x2) X, =y
(x2) Wx; D Xx;
(x2) (Yx, & Xx3) D Zx,

(o | Yy&dm
(x) () (Ayx; & Zy) D Zx,
(3x1)(») (Ayx; D Wy) & ~Zx,.

The difficulty here is seeing the inconsistency of the matrix. Roughly:
Ayxy .. Wy, buty =x, .. Xy & Yy .. Zy, so Zx, (since Ayx), but ~Zx;.

We now have 90%. In no case was it necessary to split a universal quan-
tifier into two quantifiers. In other words, it was never necessary to expand the
matrix of any statement.

A glance at Pollack [15], p. 156, set B, shows 12 exercises even simpler than
Copi’s. In Kretzmann [9], a quick look did not reveal an exercise set of relevant
format.

In Leblanc and Wisdom [12], p. 235, we come to somewhat more exciting
exercises. There are 7 exercises called m through r. Exercise n, after we add two
identity premises, actually requires us to split two variables rather than only one.

But immediately after (p. 236) we find two further exercises s and ¢. These
are similar to each other, so let us look at s. Here for the first time we see a
really challenging exercise. It is

(x)(3y)(Fx D Gy)
(2y) (%) (Fx D Gy).

It is obviously valid by un-prenexing and re-prenexing the premises in a different
way. The antilogism is

1. (x)(3y)(Fx D Gy)
2. (¥)(3x)(Fx & ~Gy).

An instantiation proof is:

from 1, (3y)(Fx; D Gy)
Fx1 D Gyl
from 2, (Ix)(Fx & ~Gy;)
Fx, & ~Gy,
from 1, (3y)(Fx, D Gy)
FX2 D Gy2
from 2, (3Ix)(Fx & ~Gy,)
FX3 & ~Gy2.
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The order of instantiation is x; y;x,y,X3.
The inconsistency is Fx5, Gy, ~Gys.
The expansion is

(x1)(3y1) (x2) (3y2) } [(Fx; D Gy1) & (Fx; D Gy,)]
(¥1) (3x2) (¥2) (3x3) (Fx, & ~Gy, & Fx; & ~Gy»).

However, the first instantiations from 1 are not really needed, so a simpler
expansion is

(x2)(3y2) Fx; D Gy,
(V1) (3x2) (¥2)(3x3) (Fx, & ~Gy, & Fx3 & ~Gy,).

As a final step in our survey of introductory logic texts, we turn to Kal-
ish and Montague and Mar ([7], p. 172, group II). Here I expected to find
tougher exercises and I did. There are 19, numbered 83 to 101. I only did the
first sixteen. There were more split universal quantifiers here than in previous
sets.

The hardest problems were numbers 93 and 96. In 96 two premises are
added, two variables are split, including universal quantifiers. But the greatest
difficulty is that the matrix involves complex statements containing bicondi-
tionals and negated biconditionals, and its inconsistency is hard to see. Let us
by all means spare ourselves the details!

The hardest problem is number 93. This is a theorem.

(x) [(Fx & (~3xFx v (x)Gx)) D (x)(Fx v Gx)]
Prenexed, (x)(3y)(3z)(w) [(Fx & (~Fy v Gz)) D (Fwv Gw)]
Negated, (3Ix)(¥)(z)(Iw)(Fx & (Fy D Gz) & ~Fw & ~Gw).

After proof-by-instantiation, we find we need two added premises and we
need to split variables to get:

(3x1) (¥ (z1) (Aw;) (22) (Iwy) [Fx; & (Fy; D Gzy) & ~Fw; & ~Gw; &
Fx; & (Fy, D G33) & ~Fw, & ~Gw,]
(x1) (1) X =y
(w1)(3z7) W =2

where I have underlined the parts of the first statement relevant to inconsistency,
and where the order of variables is as in the quantifiers of the first statement.

In general, my survey of exercises in various logic texts confirms what my
theorem already announced, namely that valid arguments can be validated by
the Medieval method. And it also seems to bring out that such validation is usu-
ally easier than my theorem gave us any right to expect. At worst we may actu-
ally have to perform the proof-by-instantiation which is no harder than what
we usually do in natural deduction.

One final “practical” topic remains. There are some obvious conceptual dif-
ficulties involved in the teaching of standard natural deduction systems for quan-
tification theory, and these difficulties all have to do with the suspiciousness of
the instantiation and generalization rules.

A statement with a free variable, as reached by instantiation, has no truth
value and so seems to be no statement at all, and an argument composed largely
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of such nonstatements, such as a standard natural deduction, seems to be a
nonargument.

Logic ought, it would seem, to bring out the basis of valid reasoning. And
so the basic rules of logic ought to be self-evident, like the rules that Aristotle
used in syllogistic, and unlike, say, the rules of distribution.!3 The standard
rules of UI, EI, UG, and EG are haunted around by too many technical restric-
tions to be regarded as self-evident.

No doubt the real basis of these rules is given in the meta-logic books that
introductory students never see. But in practice we find ourselves talking non-
sense in explaining these rules. Few of us truly believe when we UI with later
anticipation of UG, that there really are any arbitrary objects, for instance. And
given the premise that some woman will win the beauty context, it seems a bit
premature to pick her out (in EI) and name her “y,”. Perhaps picking her out
ought to be left to the judges! And UG looks like inferring a generalization from
a single case.

Why then do we instantiate at all and thus get into all this trouble? Obvi-
ously, we instantiate in order to put the quantifiers temporarily aside so that
propositional logic can get a grip on the matrices.

Since, however, the idea of quantifier responsiveness allows us to do matrix
deductions without bothering to eliminate the quantifiers, the suggestion will
occur to the reader that perhaps we could revamp our natural deduction systems
in some way, so that instantiation and generalization would go away and be
replaced by quantifier responsiveness.

Let me say at once that we should not expect too much from this sugges-
tion. The very idea of quantifier responsiveness involves the idea of a “valid
matrix”. But a matrix by itself is full of free variables, and if a matrix argument
is not really an argument, then the hoped-for conceptual virtue is at best an
appearance of virtue. Assessing the matrix’s validity amounts, one might say,
to a hidden uniform instantiation.

Still, even the appearance of virtue is sometimes important in high places,
and who is to say that logic is not a high place? So let us proceed to explore.

But nor can we anticipate that all the complex restrictions needed in stan-
dard systems will be smoothed away. As we shall see, there will still be the usual
kinds of bugs and complications, though often somewhat relocated.

It might be thought that the artificiality of the conditions for responsive-
ness will be a problem. However, in the type of system I am envisaging, the con-
ditions for responsiveness will not be used, though the concept will be. The
student will be asked to know only that if all terms are universally bound, the
argument is automatically responsive.

Let me say also that I am not going to actually try to construct an actual
system. I am simply going to present some examples of what derivations might
look like in such a system, and I am going to explore what kind of complica-
tions might be involved.

The basic idea of such a system would be that if we had a premise 3x¢x,
we would define a new range X; = X N ¢ and, using the premise to permit the
supposition that this new range was nonempty, we would introduce a variable
x1, and so deduce by “pseudo existential instantiation” or “Elp” that (x;)¢x;.!*
Later, since X C X, if we deduce (x;)yx;, then by EGp we would conclude
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that axyx. Further, if we had a premise (x)wx, then by Ulp we would deduce
(xp)wx;.

Further, if we had a step (x;)éx; and a step (x;)¥x;, we would deduce
(x1)(éx; & ¥x;) and write “Conj, qr”, where the “qr” means the quantifier
pattern

(x1)
)

(x1)

is responsive.

Let’s do an example, pretending that we know what rules we are follow-
ing. In this example, I suppose, as is customary, that the initial variables x, y
have the same range X = Y.

I do the derivation by the usual and the new method in parallel.

1. 3xFx

2. (X)(Fx D (¥)(Gy D Qy))
3. 3xGx /.. Ax(Fx v Sx) & Ix(Gx & Qx)

OLD WAY NEW WAY Let X; =XNE,
X2 =XNG.

4. Fx; 1, EI 4. (x1)(Fxy) 1, Elp
5. Fx; D (»)(Gy D Qy) 2, Ul 5. (x1)(Fx; D (»)(Gy D Qy))

2, Ulp

6. (»)(Gy D Qy) 4, 5 MP 6. (»)(Gy D> Qy) 4,5 MP, qr

Here () is part of the matrix

of the inference; the responsive
(x1)

quantifiers are (x;)

6" (x)(Gx D Qx) from 6,

since X =Y

7. Gx, 3, El 7. (x)Gx, 3, Elp

8. Gx, D Ox;, 6, Ul 8. (x2)(Gx; D 0Ox,) 6”, Ulp

9. Ox, 7,8 MP 9. (x)0x, 7, 8 MP, qr

10. Gx, & Ox; 7, 9 Conj 10. (x)(Gxy; & Ox,) 7, 9 Conj. qr
11. Ix(Gx & Qx) 10, EG 11. Ix(Gx & Qx) 10, EGp
12. Fx; v Sx; 4, ad 12. (x1)(Fx; v Sx;p) 4, ad, qr
13. Ix(Fx v Sx) 12, EG 13. 3x(Fx v Sx) 12,EGp
14. 11 & 13 conj. 14. 11 & 13 conj.

No ‘gr’ is required here.

In this particular example, everything looks pretty easy. In the move from 6 to
6", we reletter using X = Y. Some restriction will have to be put on this kind
of move, for though
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(x)Ax
X=Y
S(nAy

looks good, we do not have so much liking for

(Ix) () (x #y) (@Fx)(AY)(x #y)
X=Y or for X=Y !
S@@E) #EY) S.(3x)(3x) (x # x)

But otherwise things look good.

Before looking at one more example where things are more complicated,
let us first consider the various fallacies which the usual restrictions in quantifi-
cation theory are intended to prevent.

One fallacy is that of what I shall call incomplete instantiation. It runs, in
the usual kind of system, as follows:

I. (x)(x=x) Given
2. y=x UI to y— WRONG
3. ()(y=x) UG
4. Ny =x) UG.

In our new kind of system this might be tried as

1. (x)(x=x)

Let Y=X
2. (V)(y=x) Relettering, or perhaps Ulp to an arbitrary y.
3.0y =x UG.

But here the fallacy is not really natural. The third step is incompetent since
UG is not in our system (only UGp is). But, more importantly, step 2 contains
a free x, and so is, in our system, regarded as ill-formed.

Another fallacy is that of using an old variable in doing EI. This can
involve two existentials. I do the fallacy in parallel.

OLD WAY NEW WAY
1. (3x)Px 1. (3Ix)Px
2. (3Ix)~Px 2. (Ix)~Px
Let X, =XNP
3. Px; 1, EI 3. (x1)Pxy 1, Elp
Let X;=XN~P
4. ~Px, 2,EI—-WRONG 4. (x;)~Px; 2, EIp—WRONG
5. Px; & ~Px,; 3, 4 conj. 5. (x1)(Px; & ~Px,) 3, 4 conj, qr
6. Ix(Px & ~Px) 5, EG 6. Ix(Px & ~Px) S, EGp.

Here again our new system acquits itself well; the fallacy requires us to
define the new range X; by both X; = X N P and X; = X N ~P. Thus we have
to define the same term twice. Obviously this is wrong.
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Doing an EI to an old variable may also involve a variable representing an
arbitrary x. In parallel:

OLD WAY NEW WAY
1. (x)Px 1. (x)Px
2. IxQx 2. IxQOx
/0 (x)(Px & Ox) /7 (x)(Px & Ox)
Let Y=X
3. Py 1, Ul to arbitrary y 3. (y)Py 1, Ulp (or is this

just relettering?)
Let us define Y =X N Q

4. Qy 2, EI—WRONG 4. (¥)Qy 2, EIp—WRONG
5. Py & Qy 3, 4 conj. 5. ()(Py & Qy) 3, 4 conj., qr
6. (x)(Px & QOx) 5, UG 6. (x)(Px & Qx) 5, UGp, or

just relettering.

Here again the difficulty is that inconsistent conditions are put on Y. If step
3 were simply (x)Px, then we would have said “Let X = X N Q” and the prob-
lem would have been one of defining a term in terms of itself.

So far our envisaged system is acquitting itself very well. It seems to bring
considerations usually left up in meta-logic down into the natural deduction deri-
vations themselves and seems to make the fallacious moves more implausible
than ever.

Unfortunately when we turn to the most important fallacy —the one cor-
responding to the noncircularity condition —the cracks in our system begin to
emerge.

The fallacy is usually one of generalizing in the wrong order and allows us
to argue from (x)3y to (3y)(x). It standardly looks like this:

1. (x)(3yY)Rxy /..(3y)(x)Rxy

2. (3y)Rxy 1, UI to arbitrary x
3. Rxy 2, EI
4. (X)Rxy 3, UG WRONG
5. (3y)(x)Rxy 4, EG

In our system it might look like this:

1. (x)(Ay)Rxy /..(3y)(x)Rxy
Let X, =X

2. (x1)(AY)Rx,y 1, Ulp (a needless step, really)
For each x; in X, let Yx; = YN R(x;...)
(Here our notation is starting to crack!)

3. (X)) (x))Rx1 Yy, 2, Elp, qr
Here the Elp is done under the responsive pattern 31;
1/

4. (¥x,)) (X1)Rxy yy, 3, reiteration, qr. — WRONG

5. () (x1)Rx1y 4, EGp

iy .
6. (3y)(x)Rxy 5, X =X, % is qr.
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In this example, our new system has an advantage and a disadvantage. The
advantage is that instead of hiding the switching of quantifiers behind a wrong
ordering of valid-looking steps, as the standard method does, the fact of switch-
ing is made naked in the move from 3 to 4.

But the disadvantage is that switching universal quantifiers looks awfully
(x)(»)

good. Isn’t it true that (¥)(x) = (x)(y)? Isn’t
(¥)(x)

the very paradigm of

a responsive pattern?

The solution to our puzzlement is not far to seek. The reason we standardly
cannot go from (x)3y to 3y(x) is that when we say (x)3y, there may for each
entity x be a different entity y. Note that this is a different entity y. The situa-
tion with (x;)(»y,) is similar but not exactly. For each x; in X, we define a
different range Y,, = YN R(x, ...). Thus for each entity x;, there is a differ-
ent variable “y, ”. In the expression “y, ”, the “x;” occurs free and must be
bound. In the faulty statement (yy,)(x;)Rx; Yy, the subscript “x;” of the first
“yy,” is unbound, and so the statement is ill-formed, since we do not allow free
variables in our system. Whenever “(y,,)” occurs, it must be preceded by either
“(x1)” or “(3x;)”.

To conclude our exploration of the possibility of the sort of system I am
envisaging, let us do a pretend derivation for the Leblanc and Wisdom exam-
ple s. I do the old and the new in parallel.

Since the problem results in switching quantifiers and we cannot do this
directly, the approach is by indirect proof and instantiation, actual or pseudo.

1. (x)(3y)(PxD Qy) /..(3y)(x)(Px D Qy)

OLD WAY NEW WAY
2. ~(3)(x)(Px D Qy) 2. ~(3)(x)(Px D Qy)
assumed for reductio assumed for reductio
3. (") (3x)(Px D Qy) 3. (»)(3x)(Px D Qy)
2, negation in 2, negation in
LetZ=Y
4. (Ix)(Px D Q2) 3, Ul 4. (2)(3x)(Px D Qz2) 3, Ulp
Foreachze Z, let X, =
XN (P_7 Q)

5. Px; 3 Qz 4, EI 5. (2)(x)(Px; 7 Qz)

4, Elp, qr (of (2)).

6. ~Oz 5, PC 6. (2)(~Q2) 5, PC, qr

(propositional calculus)
7. Px; 5, PC 7. (2)(x)(Px;) 5, PC, qr
Here we must carry (z) along.

8. (Iy)(Px; D Qy) 1, Ul 8. (2)(x)(I¥)(Px; D Qy) 1, Ulp
The premise is now Instantiation is to x,, but (z) is
brought in. needed to cover. The justification

is that (z)(X, C X). Now for each
2 X, let Y, = YN (Px;DQ ).
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9. le 2 Qy 8, EI 9. (z)(xz)(yxz)(sz i nyz)

8, Elp, qr
Instantiation is to y, , with
(2)(x;) covering. This is done
under qr of (z)(x;). (Or should
there really be “qr” here??)

10. Qy 7,9 MP 10. (2)(x;) (¥x,) Orx,) 7, 9 MP, qr
But Y = Z (see after 3) so, by 6.

1. (»~Qy 6, UG 1. (M (~Qy) 6, UGp

(if 4 was Ulp)

12. ~Qy 1L UL | 12, (2)(x) (0,) ~ O, 11, Ulp

Instantiation is to yy,

with (z)(x;) covering.

13. Oy & ~Qy 10, 12 conj. 13. (2) () (¥ ) (Qyx, & ~Q)y,)

10, 12 conj. qr.
And this is inconsistent. And this is inconsistent by matrix

and qr.

I began my exploration of this new kind of natural deduction system
because of the idea that eliminating instantiation and generalization, and thus
free variables, might give us a conceptually clearer and less complicated
approach to natural deduction. Unfortunately, though the kind of system
envisaged does look intriguing, it does not seem to free us notably from the usual
bugs and complications.

Let me close by returning to the main point of my paper. I have argued that
the Medieval method, that of the distribution theorists, can be extended to all
of quantificational logic. I have thus attempted to refute Geach’s claim that dis-
tribution theory was a blot on the history of logic.

However, to speak of “refutation” here is a bit misleading. In my work in
this paper I am conscious throughout of following the trail laid out by Geach’s
criticisms, and of continuing a work of understanding that Geach began. If this
be refutation, I am sure it is a kind of refutation that Geach will be happy to
receive.

NOTES

1. In [4], see especially chapter 1, and further in chapter 2 of [5]. He refers to the
“fools” who invented it in [S], p. 8, and in [4], p. 95. And he refers to the doctrine
as one of a series of “corruptions of logic” (see [5], pp. 55, 53).

2. For supposition theory, see [14]; [16]; [10], ch. 5; [13]; and [18]. As these sources
indicate, Sherwood, Ockham, and Buridan were among the important supposition
theorists. Unfortunately, we do not seem to know who the distribution theorists
were. Presumably they were very late Medieval or early Modern scholastics.

3. That the doctrine of distribution fails to distinguish (x)(3y) from (3y)(x) is
Geach’s most important criticism of that doctrine. Of course, it is a correct criti-
cism (it is elaborated especially in [4], chapter 1). However, we should note that the
supposition theorists distinguished the 3y after (x) from the 3y before (x) by having
two different terms for the 3y, depending on its location. (Of course, I am describ-
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10.

11.

12.

13.

14.

(1
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ing the situation very roughly.) Thus when the distribution theorists went to the sin-
gle term “undistributed”, they came closer to having a concept of existential
quantification as such.

Geach argues, although in a different way, that distribution theory cannot work in
syllogistic-with-negative-terms. See [5], pp. 62-63.

. These premises make B the complement of B with respect to B U 4 U B, which is

the sum of all ranges involved in this argument. Absolute complementation is, in
modern set theory, impossible.

Modern scholars have recently worked out what Aristotle meant by “syllogism”.
When I say that “Aristotle said” a syllogism must have a certain property, I really
mean that that property is included in the modern reconstruction of Aristotle’s
notion. See [17], [3], and also [11].

A definition due to Thom, generalizing a usage of Ladd Franklin (see [19], p. 181).

I call it “Medieval” although I don’t really know whether the distribution theorists
were still Medieval. At any rate, they based their work on that of the supposition
theorists, who clearly were Medieval.

This is similar to what happens in free logic. See, e.g., [6], pp. 29 ff.

I believe this construction is similar to one I have seen in a proof of the Lowenheim-
Skolem theorem.

Note that use of “universal forward” means here that (c,) is before (a,) in the
ultimate prenex, even though (c) was after (a) in the original, and even though
(c;) was in the scope of (a,) in the relettered expansion. These observations relate
to the unsnarling of the variables that “tended to get snarled up” on an earlier
approach (see p. 15).

In the Fifth Edition, this set is on p. 132. At any event, see the section called “Argu-
ments Involving Relations”.

That logic ought to bring out the self-evident basis of reasoning was the main point
which Descartes and Locke brought against the logic of their time, thus causing a
decay in logical studies among philosophers. See Locke, Essay Concerning Human
Understanding, bk. 1V, sec. xvii. And Descartes, Rules for the Direction of the
Mind, Rule X and beginning of Rule XIV.

Bochenski notes, in [1], p. 12, that logic tends historically to rise quickly and
then decay as “Former gains are forgotten, the problems are no longer found
interesting”. The instability of logical studies is due perhaps to the problem that if
logic sticks close to ordinary reasoning processes, it seems boring and trivial,
whereas if it develops esoteric and complicated rules, it seems irrelevant to ordinary
reasoning. In either case the question arises: why should people who naturally know
how to reason be pestered with the study of logic?

The problem of the self-evidence of the basis of modern quantification the-
ory seems significant for the future of logic.

My method here is somewhat similar to the method of Skolem functions.
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