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On Defining Sentential Connectives

JOSEPH JURCIC*

1 Introduction Since Lesniewski1 first set the rules of definition for the
introduction of new notation into a logical system, sentential connectives have
been almost completely neglected. Traditional accounts of the rules of defini-
tion, like Carnap's ([2], pp. 66-73) and Suppes' ([9], pp. 154-162), treat only
relation symbols, operation symbols, and individual constants. Even when not
neglected, as by Tar ski ([10], pp. 150-151), the rule for defining connectives
covers their introduction in but a few expressively powerful languages. In this
paper, then, we develop a sufficiently general, purely syntactical rule for defining
sentential connectives. And because traditional accounts of the rules of definition
usually call for us to frame definitions as material equivalences within the object
language, these treatments cannot provide for the introduction of new notation
into weaker languages which lack a suitable equivalence connective. So, we also
extend our treatment of the definition of connectives to other parts of speech,
thus allowing the introduction of new symbols into impoverished systems as well.

To begin, recall the rule which Patrick Suppes offers for defining relation
symbols:

An equivalence D introducing a new «-place relation symbol P is a proper
definition in a theory if and only if D is of the form

P(υl9...9υn) = S9

and the following restrictions are satisfied: (i) vx,..., υn are distinct vari-
ables, (ii) S has no free variables other than vit..., vn, and (iii) S is a for-
mula in which the only non-logical constants are primitive symbols and
previously defined symbols of the theory. [9], p. 156

Because we find analogous concepts later, we call these three restrictions: (i) n-
arity (since we require that P take n distinct variables), (ii) parametric relevance

*I am grateful to Gerald Massey of the University of Pittsburgh for his helpful com-
ments and guidance.
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(since we require that S contains only vu..., vn as free variables), and (iii) order
(since we require that the defined symbols of a theory be added in a fixed
sequence).

Following Lesniewski, Suppes gives the definition of a new predicate P as
a postulate of the theory. Flanking the biconditional sign are the definiendum,
which contains the new symbol, and the definiens, which contains as its only
nonlogical constants those that are primitive to the theory or have been previ-
ously defined. Further, Suppes demands, as we do, that definitions meet the tra-
ditional standards of eliminability so that we may remove the defined symbol
from any context by replacing it with an expression containing as nonlogical con-
stants only primitive and previously defined symbols, and noncreativity so that
by the introduction of the new symbol we admit as a theorem no formula, lack-
ing the new symbol, that was unprovable without the new definition.

But in general, definitions of given connectives using the biconditional, as
an approach directly analogous to Suppes' would suggest, will not do. Too
often, we sacrifice the requirements of eliminability and noncreativity. Instead,
we offer a rule for defining connectives, and later, rules for relation, operation,
and constant symbols, that require definitions to assume the form of schematiz-
able, two-way inference rules. As a preliminary discussion, then, we devote the
next section to inference rule schemes.

2 On inference rules A single inference takes the form Δ h A, where Δ is
a set of wffs called premises and A is a wff called the conclusion. Thus, in a
standard sentential language:

(1) {pDq,p}\-q,
(2) {(pDq)Dq,pDq}\-q,

(3) {pDp,p} Yp

are all inferences. Similarly, in a standard first-order language:

(4) {VxFx D VΛΓGΛΓ, VXFX} \- VxGx

(5) {VxlyHxy} \- VxlzHxz
(6) {vxiyHxy} h vziyHzy,

too, are inferences.
Rules, then, are sets of inferences; simply, the set of (l)-(6) is a rule. But

if we look at the structure of the inferences above, we note that (l)-(4) have the
same form, as do (5) and (6). And by expressing rules through schemes stated
in the metalanguage, we can specify infinitely many inferences of the same form.
So if we use Ά' and '2Γ to stand for any wff, we find that inferences (l)-(4) are
all instances of the rule scheme for modus ponens:

(7) {ADB,A}\-B.

Using V with subscripts to indicate any individual variable, we see that (5) and
(6) are instances of the rule for the alphabetic change of a bound variable:

(8) {(...A(v1)...)}\-(...A(v2)...).

In stating (8), however, we must impose the additional restrictions outside the
metalanguage that: (i) vx is a variable that is not free in A(v0, (ii) v2 is a vari-
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able that does not occur in A(vι), and (iii) (. . .Ά(v2).. ) results from
(.. .A(vι)...) by substituting A(v2) for A(vι) in (.. .A{vχ)...), so to avoid
incorrect inferences. Without these restrictions, we would have:

(9) {VxHxy} h VxHxx

as a proper inference according to (8).
Although both are inference rules, (7) and (8) differ markedly: while (7)

is schematizable,2 (8) is not. Unlike the rule for the alphabetic change of a
bound variable, the rule for modus ponens requires no restrictions; we can
express it by referring to its structure alone. Indeed, the expressions in (7) are
identical to formulas of the object language save that metavariables hold the
place of wffs in the language. In (8), however, we must do more than refer to
structure: we must comment upon it.

We formalize our notion of schematizable rules by first giving formation
rules for schematic expressions which are analogous to the formation rules of
the object language. For example, in a first-order system with identity, whose
primitive connectives are negation, implication, and universal quantification,3

we can exhaustively characterize all schematic terms as follows:

(i) If a is a metavariable standing for an individual variable, then a is a
schematic term,

(ii) If 7 is a metavariable standing for an individual constant, then 7 is a
schematic term,

(iii) If δ is a metavariable standing for a term (a variable, a constant, or
an fl-place operation symbol followed by n terms), then δ is a
schematic term,

(iv) If η is a metavariable standing for an «-place operation symbol and
δ j , . . .,δn are schematic terms, then ηδχ9.. ,,δn is a schematic term.

And all the schematic wffs:

(i) If φ is a metavariable standing for a wff, then φ is a schematic wff.
(ii) If 7r is a metavariable standing for an «-place relation symbol and

δi , . . .,δn are schematic terms, then π δ ^ . . .,δΛ is a schematic wff.
(iii) If φ and ψ are schematic wffs, then so are Γ ~ φ π and rφDψ'1.
(iv) If φ is a schematic wff and a is a metavariable standing for an indi-

vidual variable, then ΓVaφ~1 is a schematic wff.
(v) If δι and δ2 are schematic terms, then Γ δi = δ 2

π is a schematic wff.

We then call a rule schematizable if and only if we may state it using schematic
expressions alone.

Much of our notion of schematizability rests upon our conventions about
the metalanguage. We usually let the metavariables Ά9 and 'B' stand for any
wff, even identical wffs. But if one were to allow different metavariables to stand
for only distinct wffs, (3) would not count as a proper inference according to
(7). Modus ponens could then only be given by two rule schemes:

(10) {ADA,A}\-A

together with (7). Moreover, if one were to allow only bound variables in the
metalanguage and by VI (ui)' one were to mean that A contained V\ as its only
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variable, then the rule for the alphabetic change of a bound variable would be
schematizable, if somewhat limited. Here, however, we follow customary usage,
allowing for none of these provisions. Later, we argue that unschematizable rules
merely encode those that are schematizable.

Not only will our rule for defining connectives require that definitions be
schematizable, but because we wish to interchange definiendum and definiens
in any context, it also calls for definitions to be two-way inference rules. Put
simply, in a two-way rule of exchange, a single premise and conclusion can shift
roles. Consider the rules of double negation:

(11) {~~A}VA
(12) {A}Y~~A.

Dropping the set notation for convenience, we present (11) and (12) as the two-
way rule:

(13) ~~A\\A.

We further require that a definitional rule can operate on any part of a wff,
so that we may exchange the new connective, together with its scope, in an arbi-
trary formula, for expressions containing only primitive and previously defined
symbols as nonlogical constants. Unlike the rule for modus ponens, which would
yield improper inferences if we did not restrict its application to entire formulas,
a definitional rule may operate in any context. So, from the definition of an n-
place connective (x) and ( . . . (x) (A x , . . . ,A n ) . . . ) , we can infer ( . . . S...),
where S is an expression lacking the newly defined connective.

Finally, to ensure eliminability of the new connective, we assume that
definitional rule schemes may operate on definienda or definientia which can
contain free occurrences of variables. For if one were to do otherwise, one could
not replace the wff Ψx -fc Gx' which contains a newly defined, two-place con-
nective ft in a first-order language with a suitable expression lacking ft. Thus,
in some systems where one can make inferences only when the premises and con-
clusion contain no free variables (e.g., see [7]), our proposed definitional rule
schemes will not apply. With all this before us, then, we lay out our rule for
defining connectives more formally in the next section.

3 A rule for defining connectives With a clear understanding of the oper-
ation of inference rules, we put forth a rule for defining sentential connectives:

A schematizable rule of interchange R introducing a new «-place connec-
tive (g) is a proper definition in a theory if and only if R is of the form

and the following restrictions are satisfied: (i) n-arity: φu.. ,9φn are dis-
tinct metavariables standing for wffs; (ii) parametric relevance: ψ has no
metavariables standing for wffs other than φΪ9. ..,</>„; and (iii) order: ψ is
a schematic wff in which the only nonlogical constants are primitive sym-
bols and previously defined symbols of the theory. (For a similar approach,
see [3], p. 288.)



SENTENTIAL CONNECTIVES 193

Although we cannot enter a definition given according to this rule into the
course of a proof, as we can with the traditional postulate approach, neverthe-
less, we can introduce new notation within a deduction by applying a proper
definitional inference rule. Underlying this shift from definition as postulate to
definition as rule scheme is the equivalence of \-(A = B) and A H B in classical
systems of logic with the material biconditional. This equivalence, however, does
not hold for all languages. Consider the many-valued systems of Lukasiewicz,4

where the first entails the second, but not the converse. Thus, by adopting the
new rule for defining connectives, we offer a requirement for definability weaker
than that of the standard treatment. Still, with this rule, we avoid many seri-
ous complications that would arise if we were to take Suppes' approach directly
in defining connectives, as we shall see in the four examples below.

Strictly following Suppes, one might frame a rule for connectives so that
their definitions take the form ®(AΪ9.. ,9An) = S, where Au.. .,An and S
stand for wffs. But such a rule often runs afoul of the eliminability require-
ment.5 Consider a propositional language L\ with classical negation, material
implication, and equivalence as primitive connectives. One might then offer a
definitional postulate for disjunction:

(14) p\ι q = ~pDq.

Unless Lx includes substitution as a rule of inference, V would not be elimina-
ble. We could not replace '# v/?' with *~q Dp' given only (14) without a sub-
stitution rule. If, however, we were to adopt the definitional rule scheme:

(15) AVBH-ADB,

then, following our rule for defining connectives, not only could we eliminate
6p v q* in favor of 6~p D q\ as (14) suggests, but also 'q v/?' in favor of 6~q D
p\ since A and B are metavariables standing for any sentential variable, indeed
any wff, oΐ L\.

And still, if our language has substitution as a rule of inference, other dif-
ficulties set in. Consider a propositional language L2 that has classical conjunc-
tion and material implication as primitive connectives. Following a rule strictly
analogous to Suppes', one might offer:

(16) /? = #.= .(pDq)-(qDp)

as a definition of equivalence. But (16) is hopelessly circular. Not with the defini-
tional scheme:

(17) A=BH(ADB)-(BDA)9

however. Indeed, by applying (17) twice to the theorem:

(18) (pDq)-(qDp) .D. (p D q)-(q Dp): •
:(pDq) (qDp) .D. (pDq) (qDp),

we can establish (16) as a theorem of L2. More generally, within a classical sys-
tem, once we have (17), we may derive all instances of biconditional statements
analogous to the definitional rule of an arbitrary Λ-place connective (x), namely
(x)(Φi,. ..,</>„) H i/s replying only on the reflexivity of implication. Below, S is
any instance of ψ.
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Proof: \-(SDS)-(SDS)

K®G4i, . . .,An) DS) (SD ®(AU.. .9An))
\-®(Al9...,An) = S.

Even worse, one can construct a language too impoverished to supply a
suitable equivalence connective. Consider a first-order language L3 with only
conjunction and disjunction as its primitive connectives. There is no way to
express the truth function of the material biconditional using just these two con-
nectives. And without equivalence, a rule for defining connectives that is anal-
ogous to Suppes' for relations would fail. Moreover, in L 3, even Suppes' rule
for relations fails since it is given for a standard first-order language that pro-
vides the material biconditional. But the rule given here for connectives and
those offered later for other parts of speech enable us to introduce new nota-
tion into weaker languages.

Further, if one were to frame definitions of connectives as postulates using
material equivalence in certain modal systems, the eliminability requirement
would be violated. We show this indirectly. Consider a modal language L4

which provides a rule of substitution and an equivalence connective but lacks
a rule of necessitation. We propose the definition of a new /?-place connec-
tive (x) as ®G4i,.. .,An) = S. To demonstrate that (x) is eliminable, we let S{ be
a wff containing (x) in some context, ( . . . ® {A j , . . . ,An)...). Given the order
restriction, we should be able to produce a new wff S2 where S2 is ( . . . S . . . ) ,
which, though logically equivalent to SΊ, does not contain the new symbol (x).
But that Si is equivalent to S2 depends solely on the substitutivity of the mate-
rial biconditional. In L 4, however, this rule fails. Thus, we lose eliminability.
For all these reasons, then, we reject a system of definitional postulates and,
instead, opt to treat the definitions of new connectives as replacement rules of
the theory.

We now show that a new connective defined according to our rule meets
both the eliminability and noncreativity requirements. We assume: (i) that the
definition of an arbitrary π-place connective (x) is a two-way, schematizable infer-
ence rule, (g)(</>i,.. .,φn) H ψ, which can operate on wffs containing free vari-
ables, and (ii) that the /z-arity, parametric relevance, and order restrictions hold.
To see that we can eliminate (x) from any context, we again consider a wff Si,
( . . . ® 0 4 i , . . .,An)...), which contains (x). Because our definitional scheme
entitles us to write S, an appropriate instance of ψ, for each occurrence of
® 0 4 i , . . ,An) in Si, we can produce a wff S2, where S2 is (.. . S . . . ) , which
contains only primitive and previously defined symbols as its nonlogical con-
stants. Thus, (x) is eliminable, provided that its definitional scheme applies to
wffs having free occurrences of variables, as noted in Section 2.

Further, as long as the theory's axioms are given as schemes or the axioms
contain only primitive symbols, the new connective's definition is noncreative.
We assume there is a wff Γ, not containing (x), which is provable from the
axioms and previous definitions of the theory along with the new definition
of (x). Let (P be a sequence of n wffs such that the nth wff is Γand for each k9

1 < / : < « , the kth line of (P is either an axiom or wff that follows from some
previous lines by a rule of inference or definitional rule scheme. To construct
(?', for every k, if the kth line of (P is a wff which does not contain (x), we enter
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that wff as the kth line of (P'. If the kth line of (P contains (x), we eliminate it
as its definition prescribes and enter the resulting wff as the kth line of (?'.

Now we see that <?'', too, is a proof of T. Suppose first that the kth line
of (P is an axiom. If the theory's axioms are given as schemes, the kth line of
(?' is an axiom, whether the kth line of (P contains (x) or not. And, of course,
in a theory whose axioms contain only primitive symbols, if the kth line of (P
is an axiom, then so is the kth line of (P'. But if the system's axioms contain
defined symbols and are not given as schemes, and if the kth line in the proof
(P is an axiom with the newly defined symbol, then we could not claim that the
wff resulting from the symbol's removal is also an axiom. The guarantee of non-
creativity is lost. There is, however, good reason not to countenance such sys-
tems, for if we were to choose not to introduce the new symbol, since definitions
are never mandatory, any axiom containing the new symbol would be
meaningless.

Without loss of generality, suppose now that the kth line of (P follows from
its preceding line by an inference rule or previous definition. Then, the kth line
of (P', too, follows from its preceding line by the same inference rule or defi-
nition. If the kth line of (P follows from its preceding line by the new definition,
lines k and k - 1 of (P' will be identical. Thus, (?' is a proof of T which does
not appeal to the definition of (x).

We now examine the converse. Our three restrictions prevent innumerable
catastrophes. If fl-arity were not imposed, one could admit as a proper defini-
tion of a two-place connective:

(19) A*AH(A A)\/A

into a language with conjunction and disjunction previously defined. Yet with
(19), it would be impossible to eliminate '*' from the expression 'p * q\ Para-
metric relevance prevents the definition of a one-place connective like:

(20) QAWA B.

If '©/?' were in some context ( . . . Q)p...), it would follow that for any wff B,
(...(p-B)...). Similarly, if for some wff B, ( . . . (p B)...), then
( . . . Qp...)would result. It is but one step to absurdity: if there is a B such
that ( . . . (p'B)...), then for all B, ( . . . {p-B)...). (20) is creative. And
finally, order prohibits circularity of definition, allowing for the eliminability
of newly defined connectives.

4 On schematizability Impermissible according to our rule for defining con-
nectives are those definitions that are unschematizable. Just as the definitional
postulates of Suppes make no provision for restrictions outside the object lan-
guage, so our definitional rule schemes prohibit restrictions outside the metalan-
guage. One might, for example, introduce the numerical existential quantifier by:

(21) l2vA{v) Hlv1lv2(vι Φ v2Ά(v1)Ά(v2)).

But (21) alone is not enough. As with the rule for the alphabetic change of a
bound variable, one must impose the additional restrictions that: (i) υx and υ2

are distinct variables, (ii) Vγ and v2 do not occur in A, and (iii) υx and v2 are the
first two allowable variables in the alphabetic sequence. For without condition
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(i), one could construe '32xFy? as 63x3x(x Φ x-Fx Fxγ. Without (ii), iyy32xGx/
could be taken as iyiy3x3y(xΦy Gxy Gyy)\ And without (iii), a single instance
of the definiendum would allow infinitely many interpretations of the definiens.
Thus, the definition of the numerical extistential quantifier does not meet our
demand of schematizability ([1] provides another, more complex, example). But
each condition selectively eliminates instances of (21) from those inferences the
rule should capture. (21) alone serves as a guide to the correct inferences which
the added restrictions specify. And as with the rule for the alphabetic change
of a bound variable, if one were to give a metalanguage which allowed only cor-
rect instances of (21), the definition would become purely schematic. Thus, (21)
encodes a schematizable rule in a restricted metalanguage.

So why disallow definitions like (21)? Restricting our definitional rules to
those that are schematizable enhances the formal character of the language. It
is, after all, the formal structure of the language which we wish our definitions
to mirror. By allowing unschematizable definitions as rules of the system, we
sacrifice structure in order to expand the language. Insisting, then, that proper
definitions be schematizable, we ensure that definitions given according to our
rule will reflect only the structural aspects of the language, as definitions given
according to the traditional rules do.

We have seen with the definition of the numerical existential quantifier how
an unschematizable rule encodes a single schematizable rule in a restricted
metalanguage. In turning to multigrade connectives, we shall see how a single
unschematizable rule encodes denumerably many proper definitions. Our rule
for defining connectives provides only for unigrade connectives which attach to
a fixed number of arguments to form new wffs; we cannot account for
multigrade6 connectives like the word 'and' which may take any finite number
of arguments. One might consider Wittgenstein's multigrade W of [12] (Propo-
sitions 5.501-5.51) as defined by:

(22) N(Al9...9An)\\(...{~Ar~A2)>... ~An).

But because the number of sentential arguments may vary with each instance,
(22) is an unschematizable rule. Still, by entering the schemes which (22) encodes
into a theory, we can find a suitable account of W . Rather than treat (22) as
n iterations of the connective ' ', as some propose, we view (22) as encoding
proper definitions for infinitely many unigrade connectives7 as follows:

(23) Nι(Aι)\\~Aι

N2{AUA2)W~AV~A2

N\AU A2i A3) H (~Ar~A2) ~A3

The chain of definitions (23), where we indicate the arity of each connective by
a superscript, expresses each instance of Wittgenstein's W schematically. So,
the recursive set U, whose members are the unigrade connectives W1', W2',
W 3 ' , . . . represents W , where for every positive integer n9 N(AU.. .,An) is
equivalent to Nn(Aχ,.. .,An).
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But suppose that one were to modify our rule for defining connectives to
allow recursive definitions. The two rules of interchange:

(24) Nι(Aι)H~Aι

(25) N»(Au...9An)HN'-ι(Au...9An_i).~An

would then completely characterize the connectives of U. Although (24) is a
proper definition as prescribed by our rule, (25) will not do. Not only is it
unschematizable but, without the resources of set theory, it does not meet the
eliminability requirement. Thus, our treatment of multigrade connectives can
provide only for the introduction of an infinite number of unigrade connectives
into the language, nothing more. Though we lose rules given in their "fullest
generality", we gain a schematizable account of W , for each instance of W can
be but one instance of a distinct connective of U.

5 Traditional rules revised We have already seen that for certain impov-
erished languages which cannot provide a suitable equivalence connective, the
traditional rules of definition fail. So in revising these traditional rules, we extend
our approach for defining connectives to treat relation symbols, operation sym-
bols, and individual constants. Thus, the expressive power of the language will
no longer limit the introduction of new notation into it.

We offer the following rule for defining relation symbols:

A schematizable rule of interchange R introducing a new /7-place relation

symbol P is a proper definition in a theory if and only if R is of the form

P(δu...,δn)HΨ,

and the following restrictions are satisfied: (i) n-arity: bu.. .,δn are distinct
metavariables standing for terms, (ii) parametric relevance: ψ has no
metavariables standing for terms other than δi,...,δn and no free
metavariables standing for individual variables, and (iii) order: ψ is a
schematic wff in which the only nonlogical constants are primitive symbols
and previously defined symbols of the theory.

Proofs of the eliminability and noncreativity requirements follow those offered
in Section 3.

Without stating the rule for defining operation symbols explicitly, we sim-
ply point out that their definitions take the f o r m / ( o l 5 . . . , δ n ) = α H Ψ , where
/ i s the new symbol, <5i,.. .,<5Λ are metavariables standing for terms, a is a
metavariable standing for an individual variable, and ψ is a schematic wff.
Essentially, the rt-arity, parametric relevance, and order restrictions remain
unchanged. We do, however, provide that ψ can contain a as a free variable.
And in order to meet the eliminability requirement, we also add a fourth restric-
tion, the justifying theorem, which requires that the schematic expression Slaφ
be derivable from the axioms and preceding definitions of the theory. We can
account for the definitions of individual constants by regarding then as 0-ary
operation symbols. Thus, '0' is defined by the rule:

(26) 0 = ̂  HVv2(t>2 + vι = V2)>
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provided that we can prove the theorem scheme:

(27) l\υι>tυ2(υ2 + Vγ = v2).

We see the importance of the justifying theorem in the proof of the elimin-
ability requirement below. Suppose we define the π-place operation symbol/by
the r u l e / ( δ l s . . . , δ Λ ) = αHΨ and the «-arity, parametric relevance, order, and
justifying theorem restrictions hold. Given a wff Si, which contains / i n some
context ( . . .f(t\,. . . , * „ ) . . . ) > w e w i s r l t o produce a wff S2 in which the new
symbol does not appear. From an appropriate instance of the justifying theorem
scheme, 3 ί vS, we can deduce S, where S is an instance of ψ. Applying the defini-
tional rule f o r / t o S, we have that f(tu . . .,tn) = v. And from existential gen-
eralization and conjunction introduction, it follows that 3v(S ( . . . v...)).
Thus, we have S2. Now that we have established a method to eliminate the new
operation symbol from any context, the noncreativity requirement follows by
a proof similar to the one in Section 3.

The restriction of the justifying theorem also prevents the introduction of
a two-place operation symbol like:

(28) tι<t2 = υH(tι<υ) (t2<v)

into ordinary arithmetic. Since T is strictly less than both '2' and '3', (28) allows
one to infer that Ί < 1 = T and Ί < 1 = 3\ The contradiction '2 = 3' follows
immediately. But since we cannot prove that the operation is uniquely defined,
(28) is not a proper definition according to our rule.

At last, our system for the rules of definition is complete. Thus, follow-
ing the results of our earlier study of connectives, we can revise the usual rules
of definition, thereby enabling us to introduce new notation into nearly any lan-
guage, no matter how impoverished.

NOTES

1. Lesniewski [5] first formulated the rules of definition and the requirements of
eliminability and noncreativity.

2. We owe the concept of schematizability to Professor Massey.

3. We consider quantifiers, when attached to variables, not as belonging to a distinct
class of symbols, but rather as sentential connectives, for when a quantifier-variable
complex prefixes a wff, a new wff results.

4. See Tarski [11], Paper IV, for the details of Lukasiewicz's systems.

5. This observation is due to Professor Massey.

6. Leonard and Goodman [4] first introduced the term 'multigrade', referring not to
connectives, but to predicates. Hendry and Massey [3], and Massey [6] study the
topic further.

7. McCawley [8] rightly argues that the first approach is misguided, but he also argues
against the second, maintaining that rules must be given in their "fullest generality".
See especially pp. 516-538.
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