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Modality and Possibility in Some

Intuitionistic Modal Logics

JOSEP M. FONT

1 Introduction Traditionally, since the time of Aristotle, modal logic was
built upon two main concepts, namely those of necessity and possibility, cur-
rently taken in an ontological sense. In the formal language they are represented
by two unary operators, L for necessity and M for possibility. In classical logic,
these operators are considered to be dual to each other and mutually definable
through the formulas M *-> -ιL-ι and L «-> -1Λ/-1. However if we work on an
intuitionistic nonmodal base logic, then some properties of the negation are
weakened, the duality disappears, and it is commonly admitted that both equiv-
alences cannot remain valid, because they lead to conclusions stronger than
wished (see [4]). Of course one could ignore one of the two modal operators,
but we think this pointless, because the dual interpretation of one of them gives
natural birth to the other one.1 On the other hand, several studies of intuition-
istic modal logic have been published where neither of the two equivalences
holds, the operators L and M being both primitive and independent, and linked
through other indirect properties; see [19], [4]-[6], [9], [10], [18], [17] and the
global studies of [20], [3], and [8].

Our choice is to try to apply GδdePs proposal for S4 (from [13]) to an intui
intuitionistic base, that is, to consider L as a primitive symbol with implicative
S4-type axioms and to define M as ->£-». Here "p is possible" just means that
"it is contradictory that p is necessarily contradictory"; we do not start from a
philosophical analysis of any concept of possibility (as Aristotle and the Middle-
Ages logicians probably did) but rather we make their properties follow from
those of a primitive concept of necessity, the link between them being a formula
where the "logical" negation plays an important part.2 So we are formalizing
a kind of derived or "negative" concept of possibility and it is in this sense that
we would speak of a "logical" possibility rather than of a "philosophical" or
"ontological" one. It should be emphasized that the remaining alternative, that
of considering M as primitive and defining L as -Άf-i, is not interesting because,
even if we adopt very strong axioms for M, the simplest properties of L cannot
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be proved. This is shown, with the aid of algebraic models, in example 5.10 of
[12].

The specific purpose of this paper is twofold: first, to analyze the behav-
ior of our M; second, to show the use of algebraic models to obtain logical prop-
erties of the systems under consideration. Concerning the behavior of M, we
focus on two points of special interest. On the one hand, the study of all dif-
ferent modalities, that is, of all possible combinations of the three operators
L, -i, and M that are nonequivalent. As is well-known, S4 has a finite and
indeed small number of different modalities, and they have a relatively simple
structure (see, e.g., [7]). The situation here will be much more complex, of
course, but we shall also find a finite number of modalities. On the other hand,
a really interesting point is the possible definition of intuitionistic modal logics
analogous to S5 in the sense of [5]. Clearly, this is easy to do: it is enough to
add to the basic system any one of the theses of S5 that are not theses of S4.
However, due to the peculiar features of intuitionistic negation, different but
classically equivalent axioms yield intuitionistically nonequivalent systems, and
so it is of interest to investigate the relationships which hold between them.

We are concerned only with extensions by formulas that have already been
used in classical works of modal logic to obtain S5 as an extension of S4. More-
over, the operator M does appear in almost all these formulas, and this increases
the interest of the analysis. We show four logical systems of type S5, but we
make no attempt to single out one of them as "the true analogue of S5",
although we see that they are of increasing strength, and share more and more
modal theorems with S5. Only the last one is not intuitionistically plausible,
again in the sense of [5]. We hope that the results shown in this paper can con-
stitute a basis to reflect on and to discuss the adequacy of considering -ιL-ι as
a genuine intuitionistic modal operator.

As we said before, we try to make an exhaustive use of algebraic models,
and accordingly we will use logical formulas only when it is strictly necessary,
mainly to define logical systems and to state some results such as the reduction
of modalities. The algebraic models of our systems are the topological pseudo-
Boolean algebras we have studied in [11] and [12]. Thus this paper will contain
few proofs3; the reader can consult [12] for all propositions and other facts
stated without proof in Section 3.

2 The basic system and its modalities The formulas of all our logical sys-
tems are built up from a (usually denumerable) set of propositional letters with
the connectives L, -«(unary), and Λ, V, -• (binary). We use the letters p, q9... as
metamathematical variables for formulas, and we abbreviate -iLi as M. Our
basic system is:

Definition 1 We call IM4 the logical system having the following axiom
schemes and rules of inference: A complete basis for intuitionistic propositional
calculus, and

Lp^p
L(p^>q)-* (Lp-+Lq)
Lp -• LLp
The "Rule of Necessity": p V Lp.



INTUITIONISTIC MODAL LOGICS 535

From the preceding axioms and rules a syntactical consequence relation \-
is obtained in the customary finitistic way (the symbol h will be omitted when
it is clear that we refer to theorems). It is easy to show that in IM4, \-LLp «-*
Lp, and p-*q YLp -* Lg; so it is a "normal" modal logic. It has appeared else-
where under different names (see [3], [4], [17], [18], [20]), and it is a "canoni-
cal" analogue of S4, at least regarding the necessity operator. The analogy
applies also to its regular unidesignated logical matrices, that is, to its algebraic
models, which are a weakening of topological Boolean algebras.

Definition 2 A topological pseudo-Boolean algebra (tpBa from now on) is
an algebra (A, 7, -i, Λ, V, -») of type (1, 1, 2, 2, 2) such that (A, -ι, Λ, V, -•)
is a pseudo-Boolean algebra and / is a unary operator on A satisfying:

la < a for all a G A
I(a -+b) <Ia-+Ib for all a, b G A
I1 a = la for all a G A
71 = 1, where 1 is the maximum of A.

It is easy to see that 7 is monotone, that is, if a < b then la < Ib, and that
it satisfies I (a Λ b) = la Λ Ib for all a, b E A. We say that 7 is a topological
interior operator on A. An a G A such that la = a is called open, and the set
of all open elements of A is denoted by B\ it is a sublattice of A containing 0
and 1 and being relatively supcomplete, namely we have la = max{b GB:b<
a}, for all a G A. An alternative way of defining a tpBa over a given pseudo-
Boolean algebra A is to give aB^A satisfying all the preceding properties. This
is what we are going to do in the examples at the end of Section 3.

As is well-known, algebraic semantics is the most faithful one4 and it gives
a completeness theorem under some natural assumptions, basically equivalent
to the fact that the logic admits a Lindenbaum-Tarski algebra and it is the free
algebra of the class of algebraic models. Since this is our case, it follows that
a formula is a theorem of IM4 if and only if it is true in every tpBa, that is, the
corresponding algebraic expression equals 1 in every tpBa for all allocations of
values to its propositional variables.5 This is a usually fast way for proving
things, because in tpBas we have a lot of resources other than operating with
the algebraic translations of logical formulas.

For instance, the properties of M are those of the operator δ = -i/-i. Note
that from the definition we always have δl-^a = -ilδa for all a G A. If a = δa
then we say that a is closed, and we denote the set of all closed elements by Γ.
We quote here the most immediate and interesting properties of δ and T.

Proposition 1 In every tpBa A the following hold:
(1) δO = 0, a < δa, δa = δ2afor all aGA
(2) Ifa<b then δa < δb for all a, be A
(3) 7-i0 < -<δβf < -itf < δ-itf < ^Iafor all a G A
(4) -i-iflr < δa - δ-ι-itf = -i-ιδα/or all a EA
(5) T is closed under Λ and contains 0 and 1, and for all a G A it holds that

δa = min{tG T\a< t}
(6) -i70G 7 for all a G A.

We remark that (1) and (2) above tell us that δ is an order-closure operator, but
it is easy to see that it is not a topological closure; see for instance Example 4
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at the end of Section 3. Of course all preceding properties (better: almost all)
could be rewritten in their logical form as properties of M. Let us do so in what
concerns the reduction of modalities:

Proposition 2 The following formulas are theorems of IM4:
(1) -»L-ι-ιL/? «-+ -iLp
(2) L-i-ιL-ι/7 <-> L-ι/7
(3) L-iL-iL-iL/7 ~ L-^Lp.

Proofs: For (1) put la for a in the right half of (3) in Proposition 1. For (2) apply
/ to the left half of (3) in Proposition 1. For (3), apply / to /-ι/α < δl^Ia to
obtain I-ιIa < Iδl-ila, and do the same to la < δla to obtain la < Iδla, and then
by negation and further application of / get Iδl-^Ia — I^Iδla < I^Ia.6

To achieve the reduction of modalities it is enough to consider all combi-
nations of -i and L, since Mis nothing but - IL-I . Taking into account Propo-
sition 2 and the fact that LLp «-> Lp and that -ι -ι -\p <- -ιp, we see that all
modalities with more than three Ls reduce to shorter ones. It is obvious that a
moφility with at most three Ls does not admit more than six -ι without reduc-
ing to a shorter one, so we see that the total number of essentially different
modalities is finite. By working methodically and with the aid of suitable tpBas
we can arrive at the following:

Theorem 1 The system IM4 has 31 different modalities, 17 being affirma-
tive and 14 being negative, satisfying the relations shown in Figure 1 (where
means the empty modality).

This theorem can be found, in [17] (with some mistakes) and in [8] in its
right form; we are giving it here for the sake of completeness of the paper, but
we will not give more details of its proof.

However, the above-mentioned papers do not use M at all, that is, all
modalities appear written only with L and -i. In such a way they have a unique
shortest form, but if we use our M then this uniqueness disappears because of
the law -^LMp «-> ML-^p. There are some noteworthy equivalences produced by
this law, such as MLMp «-• -iLML-i/? and its "dual" -iMLM-»/? <-
-i -ILML-I -I/?. On the other hand, the only "real" laws of reduction of modal-
ities in IM4 are the ones in Proposition 2 and those arising from them; besides
LLp «-> Lp we quote the following ones: MMp «-> Mp, LMLMp ~ LMp,
MLMLp «-> MLp, -iM-^Lp «-> -ι-iL/7, and L-^M-^p «-> L-i-i/?. In giving the
written form of most modalities we have made use of M so as to show them in
their shortest form, and when this is not unique we have simply chosen the one
we found more interesting.

Another outstanding feature of IM4 modalities is the fact that if we want
to use only L and M and leave -» aside then we find exactly the same modali-
ties as in classical S4, and we find them arranged following the same scheme (see
Figure 2). We can also note that if φ is any modality built up from L and M,
then we have IM4 VΦΦp ~ Φp, that is, iteration of modalities which can be
written without -1 makes no sense.

It is not surprising at all that the situation turns out to be very different
when we introduce negation, and that the intuitionistic base we are working with
results in a quite complicated and nonsymmetric system of modalities, either
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affirmative or negative, as well as in the lack of symmetry (or duality) between
these two groups.

3 Systems of type S5 and their modalities In this section we shall present
the four extensions of IM4 we are concerned with, each one with its algebraic
models, and we will state the corresponding theorem of reduction of modalities,
along with some other properties. We shall complete the proofs of these the-
orems by going backwards from the strongest system to the weakest one, in
order to reduce to a minimum the number of tpBas actually shown or the num-
ber of computations to be performed on them.

The first extension of IM4 we treat will be defined by the axiom that von
Wright used in [21] to define his system M", which is deductively equivalent to
S5:

Definition 3 We call IM4W the extension of IM4 with the axiom M~^Mp -*
-iMp. A tpBa A will be called weakly monadic if and only if it satisfies δ-^δa =
->δtf for all a eA.

It is clear that weakly monadic tpBas are the algebraic models of IM4W
and that we have the corresponding completeness theorem. There are some alter-
native definitions which use well-known conditions of classical modal logic or
of its algebraic studies,7 as the following proposition shows:

Proposition 3 In every tpBa A the following conditions are equivalent:
(1) δ-ιδα = -iδα for all a e A, that is, T is closed under -i
(2) ifaAδb = 0 then δaΛδb = 0 for all a, be A
(3) δ{a Λ δb) =δaΛ δb for all a, be A.

Proof: See [12], Theorem 2.1.

Weakly monadic tpBas are very interesting from the algebraic point of
view. For instance, in addition to (1) it can be shown that Γis closed under ->,
and, moreover, it has the structure of a Boolean algebra with a suitable supre-
mum. As such, it is a very natural quotient of the algebra (for proofs see [12],
Theorems 2.7 and 2.9).

Proposition 4 In every weakly monadic tpBa it holds that
(1) -i/δα = δ/-ια = ^δa for all a e A
(2) -iδla = -ilafor all a e A.

Proof: (1) δl-^a = -i/-i/-<tf = -1/-T-1-1/-10 = δ-^δa = -«δα by Definition 3. (2) In
a weakly monadic tpBa, (6) of Proposition 1 implies that ππ/α e Γfor all a e
A. Using (4) of the same place, we get ->δla = -iδ-i-i/α = -1-1-ι/αr = -ι/#.

Theorem 2 The logical system IM4W has 16 different modalities, 9 being
affirmative and 7 negative, satisfying the relations shown in Figure 3.

Proof: We have just explicitly seen the reductions -^LMp *-* ML-^p «-> ->Mp and
-iMLp <-+ -iLp. From them, we obtain -^-^LMp •-> Mp, -1-1 Lp <-• MLp,
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LML -iΛf-i ^ ^

^ " ^ L - i - ι ~LM

-π ^ M-i --^L

t I I
t

L-i -LAf-i L^L

Figure 3.

ML-i -I/? «-> -ιΛf-i/?, and ->ML-i-ιp <-> M-ι/7 by inserting -i and taking (4) of
Proposition 1 into account. Moreover, we also have L-^-^Lp ~ LMLp and from
this and the law L-iAf-i/? ~ L-1-7? (which follows from (2) of Proposition 2)
we find LML-1-1/7 <-> L->-»/? and also LML-^p «-> L-1/7. Now the diagram for
IM4 becomes the one shown above. After having proved Theorems 5 and 6 we
shall see that this diagram is exact, that is, that there are no implications other
than those actually shown and that these are proper.

The second extension of IM4 will make use of any one of four well-known
axioms and rules, originally used by Wajsberg [22], Lewis [16], and Becker [1].
The definition rests on the following:

Proposition 5 In every tpBa A the following conditions are equivalent:
(1) /-i/α = -1 la for all a E A, that is, B is closed under -1
(2) Ida = ha for all a<ΞA, that is, T^B
(3) a<Iδaforalla<ΞA
(4) If ha < b then a < Ib for all a, be A.

Proof: See [12], Theorem 3.1.

Definition 4 We call IMAM the extension of IM4 with any one of the fol-
lowing axioms: ^Lp -> L-^Lp, Mp -* LMp, p -* LMp, or with the rule Mp -+
qVp-+Lq.

A tpBa A will be called monadic if and only if it satisfies any one of the
conditions in Proposition 5.

Thus monadic tpBas are the models of IM4M. It is easy to see that they
are also weakly monadic (for instance, (1) of Proposition 5 implies (1) of Propo-
sition 3, trivially), and so IM4M is actually an extension of IM4W (and Example
4 at the end of this section tells us that it is a proper one). Some of the new
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axioms for IM4M are themselves really classical laws of reduction of modali-
ties. Let us see them all:

Theorem 3 The system IM4M has 10 different modalities, 6 being affirma-
tive and 4 negative, and they are arranged according to the scheme shown in Fig-
ure 4.

Proof: From the very axioms we get L~^Lp «-> -iLp, LM^p ~ M^p, LMp <-
Mp9 and LMLp <-• MLp. Since monadic tpBas are also weakly monadic, from
a < ba we have δ-^δa - ->δα < ->α, and then (4) of Proposition 5 gives us
-ιδ# < /-itf, which completes in IM4M the law \--^Mp <- L^p. From it one
gets -ιAί-φ «-> L-i-i/?. Thus the diagram for IM4W becomes the one in Fig-
ure 4, and, as in the preceding case, we delay the complete proof a little.

Z, - . - i *M

Li -1 M-1 - π l

Figure 4

Our third extension of IM4 uses an implicative axiom without M which was
used by Beth and Nieland in [2].

Definition 5 We call IM4S the extension of IM4 with the extra axiom
L(Lp-+q) «-> (Lp^Lq).

A tpBa A will be called strongly monadic if and only if it satisfies that
I(Ia -+b)=Ia-*Ib for all a, be A,

It is equivalent to say that B is a subalgebra of A. This makes clear that
all strongly monadic tpBas are monadic, that is, IM4S is an extension of IM4M.
Example 3 will show that it is a proper one. However we shall see later that
IM4S has exactly the same modalities as IM4M has.

Our last extension of IM4 can be obtained with three distinct axioms. The
first two are well-known modal laws whose duals have already been used; the
third one appears in [4] (and in a slightly different form in [17]).

Definition 6 We call IM5 the extension of IM4 with any one of the follow-
ing axioms: MLp -> Lp, MLp^p, and L-ιLp v Lp.

These three axioms are equivalent on the basis of IM4 because they are true
in the same class of tpBas, a very well singled out one, namely the class of all
semisimple tpBas. The information we need is contained in the following:
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Proposition 6 In every tpBa A the following conditions are equivalent:
(1) A is a semisimple algebra*
(2) B is a Boolean subalgebra of A
(3) δa = min{t G B:a < t} for all a eA
(4) δla = la for a l l a e A , t h a t is, B ^ T
( 5 ) δ!a<aforallaEA
(6) I-Λla v Ia=\ for all aEA.

Proof: See [12], Theorems 4.5 and 4.6.

We see in (2) that every semisimple tpBa is strongly monadic. This tells us
that IM5 is an extension of IM4S, but it also helps us to understand the struc-
ture of semisimple tpBas: they are exactly those tpBas where T = B and is a
subalgebra of A which is Boolean. This has an interesting logical reading: in IM5
the propositions expressing necessity and those expressing possibility are the same
(indeed they express their own necessity and their own possibility) and they have
a totally classical behavior. This is a characteristic property of S5, already noted
by Lewis.9 Consequently, we have the laws -ι-iL/? <-• Lp and ~^Lp v Lp. The
validity of such formulas is considered by Bull as "intuitionistically implausible"
in [4] and all systems containing it are rejected as genuine intuitionistic analogues
of S5 according to the criteria of [5], namely according to the one requiring that
collapsing the modal operators the system must yield the intuitionistic proposi-
tional calculus. However, our IM5 is weaker than the system initially considered
by Bull, because this one had the mutual inter definability of L and M, which
is not true in IM5, as we shall see later. It is easy to compare IM5 with MIPC,
the system introduced by Prior in [19] and studied by Bull in [5] and [6], in spite
of the difference of languages, by using the respective algebraic semantics. So
we can state:

Theorem 4 IM5 is the extension of MIPC with the extra axiom Mp <-•

Proof: Both systems IM5 and MIPC are complete with respect to their algebraic
semantics, IM5 with semisimple tpBas and MIPC with matrices (//, K, {1},
- I , Λ , V , - > , /, δ), where (//, -», Λ, V, -•) is a pseudo-Boolean algebra and KQ
H is a subalgebra of H which is relatively complete, with la = max{b G K: b <
a} and δa = min{t GK:a<t} for all a G A. That is, MIPC is complete with
respect to a special class of strongly monadic tpBas which have an additional
δ not related to /. But if we extend MIPC with Mp «-> -ιL-ι/? then δ becomes the
usual one of all tpBas and moreover it satisfies (3) of Proposition 6, which tells
us that the models of the extended system are the semisimple tpBas. So the two
systems are equivalent and the theorem is proved.

It should also be noted that Ono proved in [18] that MIPC is a conserva-
tive extension of (a system equivalent to) IM4S, that is, if φ is a formula with-
out M then MIPC \-ψ if and only if IM4S \-ψ . So we can say that to a certain
extent MIPC is an intermediate system between IM4S and IM5.

Concerning the reduction of modalities it is quite odd that in IM5 there is
only one new law of reduction, namely the one appearing in the definition,
MLp «-> Lp. So we have:
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Theorem 5 The logical system IM5 has 9 different modalities, 5 being affir-
mative and 4 negative, according to the scheme shown in Figure 5.

Proof: It is clear that the scheme for IM4M is transformed in the one here shown
for IM5. To see that all implications are proper and that no one holds between
p and L π π p w e consider Example 1.

Example 1: On the pseudo-Boolean algebra with 12 elements A = {0, a, b, c,
d, e9 f g, h, /, j , 1} given by the Hasse diagram10 of Figure 6, we take B = {0,
c, j , 1} as the set of open elements. This obviously defines a tpBa, as we
observed after Definition 2. We give here tables for -ι, /, and δ as they are the
operators we use most often:

O a b c d e f g h i j l

-i l e i j b h c O e b c O

I O O O c c c O c O c j l

δ 0 j j c 1 1 j 1 j 1 j 1

As we can see, B = Γand is a Boolean subalgebra of A, so this tpBa is a semi-
simple one, that is, a model for IM5. One can check that here If <f < -ι-ι/,
7/</-lπ/,/ππK -,-,£, -.i/< δ/, b φ 7-i-lft, I-Λ^fφf /i&< Ί&<δ-1&,

L~y ^ -i *• Af-i *-ιL

Figure 5.

1

Figure 6.
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and δ-ι/< ~^If. Consequently no one of the implications of the scheme can be
reversed nor can we add any one more: the scheme is exact.

We can also verify in the preceding example that the formula Lp «-> -1M-7?
is not a theorem of IM5, givingp for instance the value/.

We can now complete the determination of the modalities in all systems
weaker than IM5:

Theorem 6 The logical system IM4S is weaker than IMS and has the same
modalities as IM4M.

Proof: For the proof we are going to use Example 2.

Example 2: Let A = {0, a, b, c, d, e,f, g, h, 1} be the pseudo-Boolean algebra
given by the Hasse diagram of Figure 7, and take B = {0, c, e, Λ, 1]. It is easy
to check that B is a subalgebra of A, that is, the tpBa is strongly monadic. But
B is obviously not Boolean, so the tpBa is not semisimple. We have a model for
IM4S which is not a model for IM5, thus proving that the latter is stronger than
the former. Concerning modalities, of course IM4S has at most those of IM4M,
but in our example h = Ih < δlh = -ι -i/Λ = 1. So the only possible new reduc-
tion (the one which holds in IM5) is not true in IM4S. Since Example 1 is also
strongly monadic, we conclude that the diagram in Theorem 3 is exact for IM4S.

Note that we have already completed the proof of Theorem 3, too, because
Examples 1 and 2 are monadic tpBas, and so the counterexamples found there
do hold for IM4M. That this system is actually weaker than IM4S is shown by
Example 3.

Example 3: Take B = {0, d, g, 1} in the same pseudo-Boolean algebra as Exam-
ple 2. Here B is closed under -« but g -> d —fφ. B, so this makes a monadic tpBa
which is not strongly monadic, that is, a model for IM4M which is not a model
for IM4S.

Now to complete the proof of Theorem 2 we will exhibit a weakly monadic
tpBa where we can find counterexamples for all implications between modali-
ties of IM4W not appearing in stronger systems. The remaining ones are proper
simply because Examples 1 and 2 are, of course, weakly monadic.

• 1

h

fj/ \^£

0

Figure 7.
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Example 4: Take B = {0, α, b9 d, 1} over the same pseudo-Boolean algebra of
Example 2. The resulting tpBa has the following tables for -ι, /, and δ:

O a b c d e f g h X

-i X e c e O c O O O O

/ O a b a d b d d d l

δ 0 c e c 1 e 1 1 1 1

We see that T = {0, c, e, 1} is closed under -i but B is not. So this tpBa
is weakly monadic and not monadic. This tells us that IM4M is stronger
than IM4W. If we allocate p to e we see that the implications LMLp -* MLp,
L-i -1/7 -• -Άί-1/7, LΛ/p -> Λ/p, L-ι/7 -• ~>Λφ7, LM~\p -+ M"^p, and L-ιLp -> -ιL/7
cannot be reversed. So all the implications of Theorem 2 are proper. Finally
there cannot be any more implications than those shown in Theorem 2 because
otherwise they would appear in Theorem 3 or they are simply disproved by
allocating p to a.

Note that in Example 4 δc v be = c v e = h Ψ 1 = δh = δ(c v e), which
shows us that δ is not a topological closure, which we announced between
Proposition 1 and Proposition 2. Actually, the condition of δ being a topological
closure is true in all semisimple tpBas but it is independent of all other systems
(see [12]). For the sake of completeness we should show that IM4W is really
stronger than IM4:

Example 5: Take B = {0, c, 1} in the same pseudo-Boolean algebra of the pre-
ceding examples. Now T = {0, e, 1} which is not closed under -•, so this is a
tpBa which is not weakly monadic.

NOTES

1. It is worth noting that in modern studies of several modal-like logics, such as deon-
tic, epistemic, temporal,..., we always find two unary operators similar to the clas-
sical ones.

2. Recall the comments of Heyting on intuitionistic negation: "In intuitionistic math-
ematics only falsity *de jure' can play a part" ([15], p. 18).

3. On the other hand, this is not the first paper on reduction of modalities in intui-
tionistic modal logic; see [8] and [17].

4. However, this virtue can be a sin in specific circumstances, as Sotirov points out
on page 160 of [20]: " ( . . . ) algebraic semantics is very general, but at the same time
not very informative because it differs insignificantly from the logic itself."

5. Recall that in every pseudo-Boolean algebra a^> b = 1 iff a < b, and that a <-* b —
1 iff a = 6, iff a < b and b < a.

6. This proposition is stated without proof in [17], where there is a mistake in (3).

7. For instance, the definition of monadic Boolean algebras by Halmos in his series
of papers gathered in [14].

8. A tpBa is simple iff it has only two distinct open elements, 0 and 1 (this is equiva-
lent to having only two distinct congruence relations, which is the original univer-
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sal algebra concept of simplicity). A tpBa is semisimple iff it can be represented as
a subdirect product of simple tpBas. Several properties of semisimple algebras are
first proved for simple algebras and then extended to semisimple ones through this
representation.

9. In [16], p. 501, we read: "The principal logical significance of the system S5 con-
sists in the fact that it divides all propositions in two mutually exclusive classes: the
intensional or modal, and the extensional or contingent. According to the princi-
ples of this system, all intensional or modal propositions are either necessarily true
or necessarily false ( . . . ) . For extensional or contingent propositions, however, pos-
sibility, truth, and necessity remain distinct". Recall that Lewis is talking about one
interpretation, the one usually called the "Henle model", where the M operator only
takes the values 0 and 1 (that is, simple topological Boolean algebras).

10. As is well-known, finite pseudo-Boolean algebras are the finite distributive lattices,
and the operation-• is characterized by a-> b = max{c GA:a Λ C < b} for all a,
b E A. So the table for -* can be obtained from the Hasse diagram, as can those
for Λ and v; and recall that -*a — a -*• 0 for all a £ A.
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